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Abstract— An algorithm that incorporates feedback in dis-
tributed fusion architectures for maintaining target tracks in
cluttered environments is proposed. The decorrelated feedback
sequences are constructed by compensating global updated esti-
mates with track information due to global predicted estimates
and local track estimates. Because of its orthogonal properties,
these feedback sequences are then used in the filtering process
to update local estimates before local processors acquire new
sets of measurements. The process of constructing these feed-
back sequences is presented and implemented on a proposed
distributed fusion system where each local processor receives
measurements from multiple sensors.

I. I NTRODUCTION

More accurate and robust schemes to maintain trajectories
of multiple targets in complex environments are increas-
ingly desired for many applications such as air traffic con-
trol, military surveillance, and mobile robots. A centralized
processing architecture is often assumed in mathematically
developing tracking algorithms, and it has been shown that
tracking performance of centralized fusion architectures im-
prove significantly when multiple sensors are used [13].
However, increasing the number of sensors incurs a larger
computational burden on the central processor as well as
greater communication bandwidth requirements. In practice,
distributed processing architectures are used due to their
lower computational demands, lower communication band-
width requirements, and greater reliability and survivabil-
ity [5], [14], [15].

The general distributed fusion architecture of Figure1
consists of several local processors and one global processor.
Bi-directional communication between each level implies
that the distributed fusion architecture possibly uses feed-
back in order to improve overall tracking performance. Each
local processor independently tracks targets in its surveil-
lance region with its own sensors. Measurements from dif-
ferent sensors are received simultaneously. Because of the
uncertainty of measurement origin, many centralized data
association algorithms such as Nearest Neighbor (NN) [2],
Joint Probabilistic Data Association (JPDA) [2], or Mixture
Reduction (MR) [13], [16] can be implemented on each local
processor. The target state estimates from each local proces-
sor are then passed to a global processor and possibly other
local processors. At the global processor, a distributed fusion
algorithm employs track fusion to combine the local tracks to
form global tracks of targets in the entire surveillance region.
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Figure 1. Distributed sensor fusion architecture.

One drawback of distributed fusion is the difficulty in
merging state estimates from different local processors due
to the loss of information inherent in forming the local
track estimates. Several track fusion techniques such as
track-to-track fusion [1], [3], [4] and decorrelation of state
estimates [6], [9], [10], [11], [12] have been developed for
various assumptions and configurations of distributed archi-
tectures. For track-to-track fusion, state estimates for a com-
mon target from different local processors are correlated, and
computation of this correlation is rather cumbersome [1], [3].
Though an “optimal” track-to-track fusion is introduced [4],
it does not incorporate any data association method.

Decorrelation techniques produce decorrelated sequences
so that the global processor can process them as measure-
ment inputs to a filtering algorithm [6], [9]. In this way,
many well-known “centralized” processing algorithms can
be utilized at the global level in a similar manner as in
the local level. It can be shown that the “optimal” track-
to-track fusion [4] and decorrelation techniques [6], [9] are
mathematically equivalent when there is no measurement
origin uncertainty. We have recently extended the decorre-
lated sequence approach [10], [11], [12] for more complex
tracking environments that include the existence of clutter,
data association, interacting targets, and multiple sensors
where the sequential Multi-Sensor Joint Probabilistic Data
Association (MSJPDA) algorithm is used at the local and
global processors.

In general, the tracking performance of the global proces-
sor depends largely on the accuracy of the local track es-
timates and the track lifetimes achievable by each local pro-
cessor. To improve the tracking performance at the local level
and hence at the global level, in this paper, we incorporate
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a feedback process for the distributed fusion architecture.
Previous work [19] on track-to-track fusion with a particular
distributed fusion system using pure Kalman filters (where
there is no measurement uncertainty) shows that feedback
improves tracking performance of all local processors by
reducing uncertainty in their updated state estimates. Thus,
this paper extends the decorrelated sequence approach [10],
[11] and derives how to construct decorrelated feedback
sequences at the global level to pass back to each local
processor for distributed multi-sensor multi-target tracking
in cluttered environments where the MSJPDA algorithm is
used. How these feedback sequences are used at each local
processor is also addressed.

The sequential MSJPDA algorithm is reviewed in Sec-
tion II , while the new decorrelated sequence algorithm incor-
porating feedback is presented in SectionIII . The process for
constructing the feedback sequences is derived and its imple-
mentation at each local processor is discussed in SectionIV.
Finally, simulation results and concluding remarks are given
in SectionsV andVI .

II. SEQUENTIAL MSJPDA FILTER

The sequential MSJPDA filter is an algorithm for esti-
mating stochastic systems such as in target tracking using
multiple sensors. Letxt(k) denote the state vector of target
t at the kth time interval. Suppose the target dynamics
are determined by knownF t(k) andGt(k) matrices and a
random process noise vectorwt(k) as follows:

xt(k) = F t(k)xt(k − 1) + Gt(k)wt(k), (1)

where the noise vectorwt(k) is a stochastically independent
Gaussian random variable with zero mean and known covari-
ance matrix, denoted asN [0, Qt(k)]. For a tracking system
with Ns sensors, thetth target originated measurementzt

j(k)
from thejth sensor is determined by a known matrixHt

j(k)
and a random noise vectorvt

j(k) as

zt
j(k) = Ht

j(k)xt(k) + vt
j(k), (2)

where the sensor noise vectorvt
j(k) is also a stochastically

independent Gaussian random variable with zero mean and
known covariance matrix, denoted asN [0, Rt

j(k)].
The predicted state and its error covariance are

x̂t(k|k − 1) = F t(k)x̂t(k − 1|k − 1), (3)

P t(k|k − 1) = F t(k)P t(k − 1|k − 1)
(
F t(k)

)′

+ Gt(k)Qt(k)
(
Gt(k)

)′

. (4)

In the sequential implementation, measurements from each
sensor are processed one sensor at a time [18] and the
algorithm can be summarized as follows. The predicted
measurements, innovation sequence (measurement residual),
and innovation covariance are

ẑt
j(k) = Ht

j(k)x̂t
j−1(k|k), (5)

νt
j(k) = zt

j(k)− ẑt
j(k), (6)

St
j(k) = Ht

j(k)P t
j−1(k|k)

(
Ht

j(k)
)′

+ Rt
j(k), (7)

for j = 1, 2, . . . , Ns. Note thatx̂t
0(k|k) = x̂t(k|k − 1) and

P t
0(k|k) = P t(k|k − 1) are the predicted state and its co-

variance, respectively. Then, the intermediate state estimates,
Kalman gains, and state estimate covariances are computed
as

x̂t
j(k|k) = x̂t

j−1(k|k) + Kt
j(k)νt

j(k), (8)

Kt
j(k) = P t

j−1(k|k)
(
Ht

j(k)
)′ [

St
j(k)

]−1
, (9)

P t
j (k|k) =

[
I −Kt

j(k)Ht
j(k)

]
P t

j−1(k|k). (10)

The final state updates and covariances are obtained after
processing measurements from the last sensor as

x̂t(k|k) = x̂t
Ns

(k|k) and P t(k|k) = P t
Ns

(k|k).

Once the state estimates and covariances are updated, the
algorithm is repeated for the new set of measurements at the
next time step.

When tracking targets in cluttered environments where
the origin of measurements is not known, a data association
algorithm such as the JPDA [2] method is needed. Clutter
refers to detections or returns from background noise, false
alarms, electromagnetic interference, neighboring targets,
etc. A common mathematical model for such interference
is a uniform distribution with densityλ in the measurement
space. These additional detections lead to the occurrence of
several measurements in the validation region of each target.
In the JPDA algorithm, the combined measurement

zt
j(k) =

mj(k)∑
`=0

βt
j,`(k)zj,`(k) (11)

is used in (6) wherezj,`(k) is the`th measurement for sensor
j at time k, βt

j,`(k) is the probability thatzj,`(k) is the
measurement originating from targett, and mj(k) is the
number of gated measurements from sensorj at time k.
When ` = 0, it denotes the possibility that there are no
target-originated measurements andzj,0(k) = ẑt

j(k). The
combined innovation is then used in the sequential MSJPDA
filter [8] to update the state covariance as

P t
j (k|k) = βt

j,0(k)P t
j−1(k|k)

+
[
1− βt

j,0(k)
]
P̄ t

j (k|k) + P̃ t
j (k),

P̄ t
j (k|k) =

[
I −Kt

j(k)Ht
j(k)

]
P t

j−1(k|k), (12)

P̃ t
j (k) = Kt

j(k)

{
mj(k)∑
`=0

βt
j,`(k)νt

j,`(k)
(
νt

j,`(k)
)′

− νt
j(k)

(
νt

j(k)
)′

}(
Kt

j(k)
)′

,

whereνt
j,`(k) = zj,`(k) − ẑt

j(k) is an individual innovation
for targett due to measurementzj,`(k).

III. D ECORRELATEDSTATE ESTIMATES

Decorrelation is a process of removing correlations be-
tween any2 correlated input sequences to produce uncorre-
lated output sequences. Mathematically, it can be described
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Figure 2. The channel model analysis for constructing decorrelated
sequences for the sequential filtering of multiple sensors.

by the Gauss-Markov theorem if the statistics of these in-
puts are jointly normally distributed [17]. In our distributed
tracking application, the correlated inputs are the predicted
and updated state estimates of the filtering algorithm. For
environments without clutter, the statistics of the predicted
and updated states are indeed jointly normally distributed.
However, the jointly normal distribution is no longer accu-
rate for cluttered environments because the statistics of the
track estimates and predictions are mixtures between jointly
normal distributions from actual measurements and uniform
distributions from clutter. Nevertheless, the decorrelation
process can still be used to construct decorrelated output
sequences if the cross correlation between any inputs is
correctly identified [10], [12].

Using the sequential MSJPDA algorithm at each local pro-
cessor, the decorrelation process at stagej = 1, 2, . . . , Ns of
any local processor can be described as [11], [12]:

yj(k) = x̂j(k|k)− Cj(k)x̂j−1(k|k), (13)

Cj(k) = Pj(k|k)P−1
j−1(k|k), (14)

Yj(k) = Pj(k|k)− Pj(k|k)P−1
j−1(k|k)Pj(k|k), (15)

where x̂j(k|k) and Pj(k|k) are, respectively, the interme-
diate state update and its corresponding error covariance
matrix. When tracking in cluttered environments,Pj(k|k) is
computed using (12) instead of (10). Cj(k) is a decorrelation
matrix andYj(k) is the covariance matrix of the decorrelated
sequencesyj(k). For simplicity, the superscriptst for target
identity are dropped in the above equations. Figure2 illus-
trates the decorrelation process for a local processor withNs

sensors.
The decorrelated sequences{y1(k), . . . , yNs

(k)} are or-
thogonal [11], [12],i.e., they are all uncorrelated to each
other, and remain uncorrelated for all timek. Having char-
acteristics similar to those of actual measurementszj(k), the
decorrelated sequencesyj(k) are used as measurements for
the global processor.

IV. FEEDBACK

Track estimates at the global processor are at least as
accurate as local estimates because they are obtained by
combining state estimates or decorrelated sequences from all

of the local processors. Tracking performance for the global
processor will further improve if the local track estimates
used in the combining process are more accurate. One practi-
cal approach to enhance global performance is to incorporate
feedback from the global processor back to the local level.
These feedback sequences are then used to update the local
estimates before each local processor acquires new sets of
measurements from their own sensors. Previous analysis [7],
[19] indicates that a specific distributed tracking system
using track-to-track fusion with feedback indeed improves
local tracking performance because it reduces the error co-
variance of each local estimates. These prior developments,
however, are based only on the pure Kalman filter without
incorporating any data association method.

One plausible choice of feedback information is the global
intermediate estimateŝxG,j(k|k) obtained from the sequen-
tial MSJPDA algorithm. These estimates, however, are cor-
related with each local state estimatex̂p(k|k). To bypass this
correlation problem, the decorrelation technique is used to
transform these global intermediate estimates into uncorre-
lated sequences. Passing all global decorrelated sequences
as feedback to each local processor is rather a redundant and
cumbersome process. It is obvious that the global decorre-
lated sequences already contain some knowledge of the local
estimates. As the numbers of local processors and sensors
increase, so does the number of decorrelated sequences.
Thus, the desired feedback to a particular local processor
should contain only current track information from all other
local processors [6], [7].

The overall feedback process consists of3 stages: (a)
decorrelation of global state estimates, (b) construction of
feedback sequences, and (c) incorporation of these sequences
at the local processors. Once intermediate estimates of the
global processor̂xG,j(k|k) are obtained, a similar process
as described in (13) – (15) is used to construct the global
decorrelated sequencesyG,j(k), their decorrelation matri-
cesCG,j(k), and their corresponding measurement matrices
BG,j(k) = I − CG,j(k). The feedback sequences for a
particular local processor are formulated and then passed to
that local processor for further processing.

A. Derivations and Constructions

The superscriptt for target identity is omitted for simplic-
ity. The feedback sequencesyf,p(k) for local processorp can
be formulated by removing the correlation due to predicted
estimateŝxG(k|k − 1) and that due to global decorrelated
sequencesyG,`(k) of the same local processor from the
current global state estimatesx̂G,N (k|k):

yf,p(k) = x̂G,N (k|k)− Cf,0(k)x̂G(k|k − 1)

−
∑
`>0

Cf,`(k)yG,`(k). (16)

CoefficientsCf,0(k) and Cf,`(k), respectively, are associ-
ated withx̂G(k|k − 1) andyG,`(k). The summation is over
those indices̀ for whichyG,`(k) are decorrelated sequences
resulting from track estimates of local processorp.



Since we can express the feedback sequence asyf,p(k) =
Bf,p(k)x(k)− ỹf,p(k), the feedback error is

ỹf,p(k) = Bf,p(k)x(k)− x̂G,N (k|k)+Cf,0(k)x̂G(k|k − 1)

+
∑
`>0

Cf,`(k)yG,`(k). (17)

Writing each estimated quantity in terms of its true state and
its random error,̃yf,p(k) is expanded to

ỹf,p(k) =

[
Bf,p(k) + Cf,0(k) +

∑
`>0

Cf,`(k)BG,`(k)− I

]
· x(k) + x̃G,N (k|k)− C0(k)x̃G(k|k − 1)

−
∑
`>0

Cf,`(k)ỹG,`(k). (18)

To determine the unknown values ofCf,0(k) andCf,`(k),
the following assumptions are enforced:

(A1) All errors at timek have zero mean,i.e., E {ỹf,p(k)},
E {x̃G,N (k|k)}, E {x̃G(k|k − 1)}, and E {ỹG,`(k)}
are zero.

(A2) At any timek, there is no correlation among̃yf,p(k),
ỹG,`(k), and x̃G(k|k − 1), i.e., E

{
ỹf,p(k)ỹ

′

G,`(k)
}

,

E
{

ỹf,p(k)x̃
′

G(k|k − 1)
}

, E
{

ỹG,`(k)x̃
′

G(k|k − 1)
}

,

andE
{

ỹG,`(k)ỹ
′

G,i(k)
}

for ` 6= i are zero.

If all error sequences have zero mean, then the coefficient
of x(k) in (18) vanishes. Consequently, we obtain

Bf,p(k) = I − Cf,0(k)−
∑
`>0

Cf,`(k)BG,`(k), (19)

and the feedback error in (18) becomes

ỹf,p(k) = x̃G,N (k|k)− Cf,0(k)x̃G(k|k − 1)

−
∑
`>0

Cf,`(k)ỹG,`(k). (20)

Since the construction of the feedback sequenceyf,p(k)
ensures that there is no correlation betweenx̃G(k|k− 1) and

ỹf,p(k), i.e., E
{

ỹf,p(k)x̃
′

G(k|k − 1)
}

= 0, we must have

0 = MN,0(k)− Cf,0(k)PG(k|k − 1)

−
∑
`>0

Cf,`(k)E
{

ỹG,`(k)x̃
′

G(k|k − 1)
}

,

MN,0(k) = Cf,0(k)PG(k|k − 1), (21)

where MN,0(k) = E
{

x̃G,N (k|k)x̃
′

G(k|k − 1)
}

and

PG(k|k − 1) = E
{

x̃G(k|k − 1)x̃
′

G(k|k − 1)
}

. The last
expectation vanishes due to the(A2) assumption. We know
from [11], [12] that the global decorrelated errorỹG,j(k)
can be expressed as a linear combination ofx̃G,j(k|k),
x̃G(k|k − 1), and previous̃yG,i(k) for i = 1, . . . , j − 1 as

ỹG,j(k) = x̃G,j(k|k)−
j−1∑
i=1

Dj,i(k)ỹG,j−i(k)

−Dj,j(k)x̃G(k|k − 1), (22)

where coefficientsDm,n(k) ,
n∏

r=1

CG,m−r+1(k). Using

the (A2) condition,i.e., E
{

ỹG,N (k)x̃
′

G(k|k − 1)
}

= 0, we

obtain an alternative form ofMN,0(k) as

0 = MN,0(k)−DN,N (k)PG(k|k − 1)

−
N−1∑
i=1

DN,i(k)E
{

ỹG,N−i(k)x̃
′

G(k|k − 1)
}

,

MN,0(k) = DN,N (k)PG(k|k − 1). (23)

Comparing (21) with (23) and then using coefficients
CG,i(k) = PG,i(k|k)P−1

G,i−1(k|k) resulting from the global
decorrelation stage, we obtain

Cf,0(k) = DN,N (k) = PG,N (k|k)P−1
G (k|k − 1). (24)

To determineCf,`(k) when` 6= 0, we enforce that there
is no correlation among̃yf,p(k), ỹG,`(k), andx̃G(k|k − 1).
Thus, we obtain

0 = E
{

ỹf,p(k)ỹ
′

G,`(k)
}

= MN,`(k)

− Cf,0(k)E
{

x̃G(k|k − 1)ỹ
′

G,`(k)
}

−
∑
i>0

Cf,i(k)E
{

ỹG,i(k)ỹ
′

G,`(k)
}

.

MN,`(k) = Cf,`(k)YG,`(k), (25)

whereMN,`(k) = E
{

x̃G,N (k|k)ỹ
′

G,`(k)
}

andYG,`(k) =

E
{

ỹG,`(k)ỹ
′

G,`(k)
}

. Similarly using (22) and the orthogo-

nal properties, we obtain another expression forMN,`(k) as

0 = E
{

ỹG,N (k)ỹ
′

G,`(k)
}

= MN,`(k)

−
N−1∑
i=1

DN,i(k)E
{

ỹG,N−i(k)ỹ
′

G,`(k)
}

−DN,N (k)E
{

x̃G(k|k − 1)ỹ
′

G,`(k)
}

,

MN,`(k) = DN,N−`(k)YG,`(k). (26)

Comparing (25) with (26) and then using coefficients
CG,i(k) = PG,i(k|k)P−1

G,i−1(k|k) from the global decorre-
lation stage, we obtain

Cf,`(k) = DN,N−`(k) = PG,N (k|k)P−1
G,`(k|k). (27)

Next, the error covariances of the feedback sequences for
local processorp, denoted asYf,p(k) = E

{
ỹf,p(k)ỹ

′

f,p(k)
}

can be computed as follows

Yf,p(k) = PG,N (k|k)−MN,0(k)C
′

f,0(k)

−
∑
`>0

MN,`(k)C
′

f,`(k)− Cf,0(k)M
′

N,0(k)

+ Cf,0(k)PG(k|k − 1)C
′

f,0(k)−
∑
`>0

Cf,`(k)M
′

N,`(k)

+
∑
`>0

Cf,`(k)YG,`(k)C
′

f,`(k), (28)



wherePG,N (k|k) = E
{

x̃G,N (k|k)x̃
′

G,N (k|k)
}

.

We know from [11], [12] thatYG,j(k) obtained from the
global decorrelation stage could be alternatively expressed as
YG,j(k) = BG,j(k)P t

G,j(k|k). Thus using (21), (24), (25),
(27), andYG,`(k), we have the following:

MN,0(k)C
′

f,0(k) = Cf,0(k)PG(k|k − 1)C
′

f,0(k)
= Cf,0(k)PG,N (k|k), (29)

MN,`(k)C
′

f,`(k) = Cf,`(k)YG,`(k)C
′

f,`(k)
= Cf,`(k)BG,`(k)PG,N (k|k). (30)

Substituting (29) and (30) in (28) and after some cancella-
tions, we obtain

Yf,p(k) =

[
I − Cf,0(k)−

∑
`>0

Cf,`(k)BG,`(k)

]
· PG,N (k|k) = Bf,p(k)PG,N (k|k). (31)

B. Incorporation at the Local Processor

The global processor can construct the desired feedback
sequences for local processorp with the following process:

yf,p(k) = x̂G,N (k|k)− Cf,0(k)x̂G(k|k − 1)

−
∑
`>0

Cf,`(k)yG,`(k), (32)

Cf,`(k) =

{
PG,N (k|k)P−1

G (k|k − 1), ` = 0,
PG,N (k|k)P−1

G,`(k|k), ` = 1, . . . , N,
(33)

Bf,p(k) = I − Cf,0(k)−
∑
`>0

Cf,`(k)BG,`(k), (34)

Yf,p(k) = Bf,p(k)PG,N (k|k). (35)

The summation is over those indices` for which yG,`(k)
are decorrelated sequences resulting from track estimates of
local processorp.

Once these feedback sequences are sent to their respective
local processorp, they are used in the local data associa-
tion and filtering algorithm to update local state estimates
x̂p(k|k). The feedback sequenceyf,p(k) and its covariance
Yf,p(k) are treated as a measurement and its equivalent noise
covariance, respectively. TheBf,p(k) matrix now serves
as the measurement matrix for local processorp. In other
words, the JPDA algorithm at each local processor uses the
following substitutions

z(k) ⇐ yf,p(k), R(k) ⇐ Yf,p(k), H(k) ⇐ Bf,p(k).

This data association and filtering process must be com-
pleted before local processors acquire new sets of measure-
ments from their own sensors, and the updated estimates
resulting from the feedback sequences are used to initialize
the filtering process of the next time step.

V. M ONTE-CARLO SIMULATIONS AND RESULTS

We have evaluated the incorporation of feedback using
the decorrelated sequence method on distributed fusion ar-
chitectures as in Figure1. Monte-Carlo simulations of this

fusion algorithm have been run for a wide range of configu-
rations [12]. Here, we provide only a sampling of results for
various two-sensor-per-local-processor configurations such
as the (2,2), (2,2,2), and (2,2,2,2) configurations. For each
configuration, the numbers listed in a sequence indicate the
numbers of sensors for each local processor while a sum
of the sequence represents the overall number of sensors
for the distributed tracking system. The results for other
configurations show similar trends [12].

A. Tracking Models

In the simulations, the distributed system tracks two in-
dependent targets moving in two dimensions in nominally
straight lines corrupted by acceleration noise. The state vec-
tor of targett at thekth time interval consists of the position
and velocity of the target in thex and y directions, i.e.,
xt(k) = [x ẋ y ẏ]

′
for t = 1, 2. The system parameters

for each target are identical and time-invariant with

F =


1 δ 0 0
0 1 0 0
0 0 1 δ
0 0 0 1

, G = q ·


δ3/3 δ2/2 0 0
δ2/2 δ 0 0

0 0 δ3/3 δ2/2
0 0 δ2/2 δ

.

H = I4×4, Q = q ·I4×4, R = q ·I4×4,

δ = 1, q = 0.0144.

An identity measurement matrix implies that measurements
of all target states are available at each local processor. The
initial states are assumed to have Gaussian distributions with
known meansx̂t(0|0) and covariancesP t(0|0), with the
initial positions of the two targets being 5 units apart in they
direction:

x̂1(0|0) = [5, 0.5, 5, 0.5]
′

and x̂2(0|0) = [5, 0.5, 10, 0.5]
′
.

B. Performance Metrics

The performance measures used are the average RMS
error of the estimated target states and the average track
lifetime. Denote the errore(k) = x(k) − x̂(k|k) as the
difference between the true state and the updated estimate
obtained by the tracking algorithm, then the RMS error is
computed by

RMS =

√
1
L

∑
(e(k))′e(k),

where L is the number of “good” tracking points. These
points are taken into account only when the tracking algo-
rithm simultaneously satisfies the following criteria for a
given target and a given processor:

(i). At least one true target-originated measurement from
any of the sensors of the processor lies inside the gated
region for that target.

(ii). The Mahalanobis distance of the target state error
d(k) = (e(k))

′
(Pa(k))−1

e(k) ≤ 18.4668, where
Pa(k) is the updated state covariance resulting from
the Kalman filtering process.

The track lifetime of a target represents how long the
tracking algorithm can maintain target trajectories. The time



TABLE I

AVERAGE NUMBER OF CLUTTER MEASUREMENTS PER GATE.

Configurations
Clutter Density

2-Sensor
(λ)

Centralized
(2,2) (2,2,2) (2,2,2,2)

0.25 1.434 1.355 1.316 1.296

0.35 2.287 2.033 1.963 1.927

0.45 3.429 2.904 2.732 2.653

0.55 4.783 3.793 3.581 3.477

0.65 6.033 4.945 4.498 4.372

at which the tracking algorithm gives the last accurate es-
timate is designated as the target track lifetime. The local
processor is said to lose track of a target if one of the
following criteria is true:

(iii). The true target-originated measurements from all sen-
sors lie outside the gated region for 5 consecutive
times.

(iv). The distanced(k) > 18.4668 for 5 consecutive times.

For the global processor, only the 2nd and 4th criteria above
are used in the RMS error computation and the track lifetime
determination, respectively. It is not possible to use either
the 1st or 3rd criteria because the global processor does not
have access to the measurements received by all sensors.
Both RMS errors and track lifetimes are averaged over the
number of observed targets for each simulation. For the
local processor performance, these two metrics are further
averaged over the number of local processors. The final
average values are then again averaged over all 100 Monte
Carlo simulations.

C. Simulation Results

We are interested in tracking targets in a cluttered envi-
ronment. The number of clutter measurements is determined
by the densityλ which is varied betweenλ = 0.25 to
λ = 0.65 for the two-sensor-per-local-processor distributed
fusion architecture configurations. The average numbers of
clutter measurements per gate are given in TableI for the cen-
tral processor of a 2-sensor centralized configuration without
feedback as well as the local processor of a two-sensor-per-
local-processor distributed fusion architecture configuration
with feedback. Implementation of feedback clearly yields
smaller average numbers of clutter measurements per gate.
As the number of local processors increases, the average
number of clutter measurements per gate decreases for the
same clutter density. The results imply that the size of the
gated region for each sensor of the local processor is reduced
when feedback is implemented. In other words, feedback
reduces the error covariance of the local target estimates [19].
As a result, we should see improvement in the tracking
performance.

Figure 3 shows the average RMS performance for both
local and global processors when feedback is incorporated.
The global average RMS error decreases dramatically as the
number of local processors increases, while there is only

Figure 3. Average RMS error of the estimated target state versus clutter
densityλ for various two-sensor-per-local-processor distributed fusion ar-
chitecture configurations with feedback implementation. L(2,2) and G(2,2)
indicate the average RMS error at the local and global processors of a (2,2)
feedback configuration, L(2,2,2) and G(2,2,2) indicate the average RMS
error at the local and global processors of a (2,2,2) feedback configuration,
L(2,2,2,2) and G(2,2,2,2) indicate the average RMS error at the local and
global processors of a (2,2,2,2) feedback configuration.

Figure 4. Average track lifetime versus clutter densityλ for various
two-sensor-per-local-processor distributed fusion architecture configura-
tions with feedback implementation. L(2,2) and G(2,2) indicate the average
track lifetime for the local and global processors of a (2,2) feedback con-
figuration, L(2,2,2) and G(2,2,2) indicate the average track lifetime for the
local and global processors of a (2,2,2) feedback configuration, L(2,2,2,2)
and G(2,2,2,2) indicate the average track lifetime for the local and global
processors of a (2,2,2,2) feedback configuration.

a minimal improvement for the local average RMS error.
For the track lifetime performance shown in Figure4, the
different between the average track lifetime of the local and
global processors becomes larger as the number of local
processors increases.

Figures5 and6 demonstrate the performance comparison
of distributed fusion architecture configurations with and
without feedback. We see that incorporation of feedback
improves both RMS error and track lifetime performance of



Figure 5. Average RMS error of the estimated target state versus clutter
densityλ for various two-sensor-per-local-processor distributed fusion ar-
chitecture configurations with and without feedback.

Figure 6. Average track lifetime versus clutter densityλ for various
two-sensor-per-local-processor distributed fusion architecture configura-
tions with and without feedback.

the global processor. Adding more local processors yields
a larger improvement in both average RMS error and track
lifetime performance at the global processor when feedback
is used rather than not used. As the clutter density increases,
using feedback yields much lower average RMS error of the
global processor than without using feedback. Furthermore,
the simulation results from [12] show that the tracking per-
formance of the local processors also improves noticeably
when feedback is implemented.

VI. CONCLUSIONS

An algorithm to incorporate feedback for a general dis-
tributed fusion architecture has been developed. The con-
struction of feedback sequences removes correlations due
to the global predicted estimates and the decorrelated se-
quences of the local processors from the global state up-
dates. This uncorrelated property allows the local processor

to treat the feedback sequences as further measurements
for processing, and the feedback sequences are processed
before a new set of actual sensor measurements arrives.
The decorrelated estimation technique for distributed fusion
architectures shows significant improvement in tracking per-
formance in terms of lower average RMS errors and longer
average track lifetimes at both local and global processors
when feedback is incorporated.
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