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Distributed Multi-Sensor Multi-Target Tracking
with Feedback

Weerawat Khawsukand Lucy Y. Pab

Abstract— An algorithm that incorporates feedback in dis- R
tributed fusion architectures for maintaining target tracks in External Environment
cluttered environments is proposed. The decorrelated feedback
sequences are constructed by compensating global updated esti-
mates with track information due to global predicted estimates
and local track estimates. Because of its orthogonal properties,
these feedback sequences are then used in the filtering process |
to update local estimates before local processors acquire new
sets of measurements. The process of constructing these feed- |
back sequences is presented and implemented on a proposed :
distributed fusion system where each local processor receives
measurements from multiple sensors.

Communication Network
A

I. INTRODUCTION

More accurate and robust schemes to maintain trajectories \
of multiple targets in complex environments are increas-
ingly desired for many applications such as air traffic con- Global Processor
trol, military surveillance, and mobile robots. A centralized
processing architecture is often assumed in mathematically
developing tracking algorithms, and it has been shown that Figure 1. Distributed sensor fusion architecture.
tracking performance of centralized fusion architectures im- One drawback of distributed fusion is the difficulty in
prove significantly when multiple sensors are used [13nerging state estimates from different local processors due
However, increasing the number of sensors incurs a larger the loss of information inherent in forming the local
computational burden on the central processor as well &®ick estimates. Several track fusion techniques such as
greater communication bandwidth requirements. In practictrack-to-track fusion [1], [3], [4] and decorrelation of state
distributed processing architectures are used due to thestimates [6], [9], [10], [11], [12] have been developed for
lower computational demands, lower communication bandrrious assumptions and configurations of distributed archi-
width requirements, and greater reliability and survivabiltectures. For track-to-track fusion, state estimates for a com-
ity [5], [14], [15]. mon target from different local processors are correlated, and

The general distributed fusion architecture of Figlre computation of this correlation is rather cumbersome [1], [3].
consists of several local processors and one global processidiough an “optimal” track-to-track fusion is introduced [4],
Bi-directional communication between each level impliest does not incorporate any data association method.
that the distributed fusion architecture possibly uses feed- Decorrelation techniques produce decorrelated sequences
back in order to improve overall tracking performance. Eacho that the global processor can process them as measure-
local processor independently tracks targets in its surveitnent inputs to a filtering algorithm [6], [9]. In this way,
lance region with its own sensors. Measurements from difnany well-known “centralized” processing algorithms can
ferent sensors are received simultaneously. Because of the utilized at the global level in a similar manner as in
uncertainty of measurement origin, many centralized dathe local level. It can be shown that the “optimal” track-
association algorithms such as Nearest Neighbor (NN) [2fp-track fusion [4] and decorrelation techniques [6], [9] are
Joint Probabilistic Data Association (JPDA) [2], or Mixturemathematically equivalent when there is no measurement
Reduction (MR) [13], [16] can be implemented on each locabrigin uncertainty. We have recently extended the decorre-
processor. The target state estimates from each local prockged sequence approach [10], [11], [12] for more complex
sor are then passed to a global processor and possibly othr@cking environments that include the existence of clutter,
local processors. At the global processor, a distributed fusi@tata association, interacting targets, and multiple sensors
algorithm employs track fusion to combine the local tracks twhere the sequential Multi-Sensor Joint Probabilistic Data
form global tracks of targets in the entire surveillance regiomssociation (MSJPDA) algorithm is used at the local and

. . . nqlobal processors.
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N00014-02-1-0136). In general, the tracking performance of the global proces-

1 Instructor in the Department of Electrical Engineering, Chulachomklosor depends largely on the accuracy of the local track es-
T Bocuinci o osams gy imates and th track feimes achievable by each local pro-

§ Associate professor in the Electrical and Computer Engineering Depalq'-essor' Toimprove the tracking performance at the local level
ment, University of Colorado, Boulder, CO 803@@&o@colorado.edu and hence at the global level, in this paper, we incorporate

0-7803-8335-4/04/$17.00 ©2004 AACC 5356

S = Sensor P = Local Processor


mailto:Weerawat.Khawsuk@Colorado.EDU
mailto:pao@colorado.edu

a feedback process for the distributed fusion architecturéor j = 1,2,..., N,. Note thatz} (k|k) = 2'(k|k — 1) and
Previous work [19] on track-to-track fusion with a particularP¢ (k|k) = P!(k|k — 1) are the predicted state and its co-
distributed fusion system using pure Kalman filters (whergariance, respectively. Then, the intermediate state estimates,
there is no measurement uncertainty) shows that feedbakklman gains, and state estimate covariances are computed
improves tracking performance of all local processors bgs

reducing uncertainty in their updated state estimates. Thus,

this paper extends the decorrelated sequence approach [10], i

[11] and derives how to construct decorrelated feedback K§(k) — P}_l(k|k) (H§(k)) Sﬁ(k)]‘l, (9)
sequences at the global level to pass back to each local P?(k\k) _ [If Kﬁ(k)Hf(k)] o : B (10
processor for distributed multi-sensor multi-target tracking J J -1 '

in cluttered environments where the MSJPDA algorithm iFhe final state updates and covariances are obtained after
used. How these feedback sequences are used at each lpcatessing measurements from the last sensor as

processor is also addressed. nt N t _ pt
The sequential MSJPDA algorithm is reviewed in Sec- (klk) = &, (klk) and P*(k[k) = Py, (klk).

tionll, while the new decorrelated sequence algorithm inco®nce the state estimates and covariances are updated, the
porating feedback is presented in SectidnThe process for algorithm is repeated for the new set of measurements at the
constructing the feedback sequences is derived and its implgaxt time step.
mentation at each local processor is discussed in Sesfion  When tracking targets in cluttered environments where
Finally, simulation results and concluding remarks are givethe origin of measurements is not known, a data association
in Sectionsv andV1. algorithm such as the JPDA [2] method is needed. Clutter
Il. SEQUENTIAL MSJPDA RLTER refers to detections or _retl_Jrns from background _noise, false
alarms, electromagnetic interference, neighboring targets,
etc A common mathematical model for such interference
Wa uniform distribution with density in the measurement
space. These additional detections lead to the occurrence of

t at the kth time interval.t Supposet the targ.et dynamic%everal measurements in the validation region of each target.
are determined by knowh (k) and G (k) matrices and a In the JPDA algorithm, the combined measurement
random process noise vectot (k) as follows:

my; (k)
a'(k) = F'(k)a' (k — 1) + G* (k)w' (k), @) k)= Y B (k)2 (k) (11)
where the noise vectar® (k) is a stochastically independent =0
Gaussian random variable with zero mean and known covais used in §) wherez; ,(k) is the/th measurement for sensor
ance matrix, denoted a€[0, Q' (k)]. For a tracking system j at time k, 3} ,(k) is the probability thatz; (k) is the
with N, sensors, theth target originated measuremehitk) ~ measurement originating from targgtand mj; (k) is the
from thejth sensor is determined by a known matH_i,(k) number of gated measurements from sensat time k.
and a random noise vectof(k) as When ¢ = 0, it denotes the possibility that there are no
target-originated measurements ang (k) = 2:(k). The
zj(k) = Hj(k)a' (k) + vj(k), @) combined innovation is then usedﬁ}th(e ?seque%(tiazl MSJPDA
where the sensor noise vectdi(k) is also a stochastically filter [8] to update the state covariance as
independent Gaussian random variable with zero mean and  pt (k) = to(k)PE | (k|k)
known covariance matrix, denoted.&§0, R (k)]. ! » ]t - -,
The predicted state and its error covariance are + [1 N J’»U(k)] P (klk) + Fj (k),

&5 (klk) = &5, (k[k) + K (k)vj (k), (8)

The sequential MSJPDA filter is an algorithm for esti-

multiple sensors. Let!(k) denote the state vector of target

i (k[k — 1) = F*(k)at (k — 1]k — 1), 3) Pj(k|k) = [T - K;(k)(ffﬁ(k)] P}_, (K|k), (12)
, mj(k ,
PH(klk = 1) = F(R)P*(k = 1k — 1) (F*(k) P(k) = K;.(k){ 3" Bkt (k) (v (k)
+G'(k)Q" (k) (G () - (4) =0
In the sequential implementation, measurements from each — Vi (k) (V;(k‘)),} (K;(k))/ :
sensor are processed one sensor at a time [18] and the

algorithm can be summarized as follows. The predicteq,hereyté(k) = z;.4(k) — 2'(k) is an individual innovation
measurements, innovation sequence (measurement resid%l,)targé’tt due to r'heasure?ne; o(k)

and innovation covariance are
25(k) = Hj(k)&5_, (k[F), (5)

Ill. DECORRELATEDSTATE ESTIMATES
-1

, . Decorrelation is a process of removing correlations be-
Lk) = 2L (k) — 24(k 6 :
vj(k) = z(k) = (k) , (©) tween any2 correlated input sequences to produce uncorre-
Si(k) = Hj(k)P;_,(k|k) (Hj(k)) + R%(k), (7) lated output sequences. Mathematically, it can be described
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: ety Ll of the local processors. Tracking performance for the global
Z(k|k —1) Z(klk—1) : ; : -
Cy(k) processor will further improve if the local track estimates
- used in the combining process are more accurate. One practi-
cal approach to enhance global performance is to incorporate
feedback from the global processor back to the local level.
These feedback sequences are then used to update the local
Za(k|k) . ya(k) estimates before each local processor acquires new sets of
. measurements from their own sensors. Previous analysis [7],
[19] indicates that a specific distributed tracking system
COn. (k) using track-to-track fusion with feedback indeed improves
i‘m(k\/t)‘L + ¥ yn, (k) local tracking performance because it reduces the error co-
variance of each local estimates. These prior developments,
Figure 2. The channel model analysis for constructing decorrelatedowever, are based only on the pure Kalman filter without
sequences for the sequential filtering of multiple sensors. incorporating any data association method.
by the Gauss-Markov theorem if the statistics of these in- One plausible choice of feedback information is the global
puts are jointly normally distributed [17]. In our distributedintermediate estimates; ;(k|k) obtained from the sequen-
tracking application, the correlated inputs are the predicteiiil MSIPDA algorithm. These estimates, however, are cor-
and updated state estimates of the filtering algorithm. Feelated with each local state estimaigk|k). To bypass this
environments without clutter, the statistics of the predictedorrelation problem, the decorrelation technigue is used to
and updated states are indeed jointly normally distributedransform these global intermediate estimates into uncorre-
However, the jointly normal distribution is no longer accu-ated sequences. Passing all global decorrelated sequences
rate for cluttered environments because the statistics of thas feedback to each local processor is rather a redundant and
track estimates and predictions are mixtures between jointjumbersome process. It is obvious that the global decorre-
normal distributions from actual measurements and uniforfated sequences already contain some knowledge of the local
distributions from clutter. Nevertheless, the decorrelatiopstimates. As the numbers of local processors and sensors
process can still be used to construct decorrelated outpotrease, so does the number of decorrelated sequences.
sequences if the cross correlation between any inputs Téus, the desired feedback to a particular local processor

correctly identified [10], [12]. should contain only current track information from all other
Using the sequential MSJPDA algorithm at each local prdocal processors [6], [7].
cessor, the decorrelation process at stagel, 2, . .., N of The overall feedback process consists3o6tages: (a)
any local processor can be described as [11], [12]: decorrelation of global state estimates, (b) construction of
feedback sequences, and (c) incorporation of these sequences
y;(k) = &;(klk) — Cj (k)& ;-1 (k[k), (13)  at the local processors. Once intermediate estimates of the
Ci(k) = (k|l<;)Pj 1 (k|E), (14) global processot: ;(k|k) are obtained, a similar process

Y; (k) = P;(k|k) — (k:|k=) (k|k:) . (k|k),  (15) as described in13) — (15) is used _to construct_the glob_al
decorrelated sequenceg: ;(k), their decorrelation matri-

where i;(k|k) and P;(k|k) are, respectively, the interme- cesC¢; ;(k), and their corresponding measurement matrices
diate state update and its corresponding error covariangg; ;(k) = I — Cg (k). The feedback sequences for a
matrix. When tracking in cluttered environmeniy(k|k) is  particular local processor are formulated and then passed to
computed usingl(2) instead of {0). C; (k) is a decorrelation that local processor for further processing.
matrix andY’; (k) is the covariance matrix of the decorrelated o )
sequences; (k). For simplicity, the superscriptsfor target A Derivations and Constructions

identity are dropped in the above equations. Figurikus- The superscript for target identity is omitted for simplic-

trates the decorrelation process for a local processorMjth ity. The feedback sequencgs,, (k) for local processop can

Sensors. be formulated by removing the correlation due to predicted
The decorrelated sequencgg (k),...,yn.(k)} are or- estimatesig(k|k — 1) and that due to global decorrelated

thogonal [11], [12],i.e., they are all uncorrelated to eachsequencesc ((k) of the same local processor from the
other, and remain uncorrelated for all tirheHaving char- current global state estimateg: v (k|k):

acteristics similar to those of actual measuremef(is), the yrp(k) = dan(klk) — Cro(k)ig(klk — 1)

decorrelated sequencgg(k) are used as measurements for

the global processor. - Z Cre(k)yc,e(k). (16)
>0

IV. FEEDBACK CoefficientsCy (k) and Cs(k), respectively, are associ-

Track estimates at the global processor are at least aged withig(k|k — 1) andyg (k). The summation is over
accurate as local estimates because they are obtainedthgse indiceg for whichy¢ (k) are decorrelated sequences
combining state estimates or decorrelated sequences fromraulting from track estimates of local procesgor
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Since we can express the feedback sequenge g%) = | here coefficientsD k) A C ). Usin
By p(k)x(k) — 7, (k), the feedback error is mon () 7«1;[1 Gm—r+1 (k). g
Usp(k) = Byp(k)z(k) — ic N(k\k)+cf,o(k)§za(k|k -1) thbe(AZ) cor;dition,i.e.],c E {@N(k)fg(km — 1)} =0, we

obtain an alternative form k) as
Jrchp pr a7 N’O( )
>0 0= MN,o(k) — DNyN(k)Pg(ka — 1)
Writing each estimated quantity in terms of its true state and . )
its random error; , (k) is expanded to - Z Dy.i(k)E {yG,N—i(k)zG(Mk - 1)} ;
Urp(k) = [Bf,p( +Cro(k) + > Crao(k)Bau(k) —I|  Mno(k) = Dy (k)Fa(klk —1). (23)
_ >0 _ Comparing 21) with (23) and then using coefficients
(k) + e, N(k|k) — Co(k)zc(klk —1) Cg,i(k) = Pg.i(k|k)Pg;_, (k|k) resulting from the global
- Z Cro(k)jce(k (18) decorrelation stage, we obtain
=0 Cro(k) = Dy.n (k) = Pon (klk)Pg' (k|k —1).  (24)

To determine the unknown values 6% (k) and Cy ¢(k),
the following assumptions are enforced:

(A1) All errors at timek have zero mean.e., E {g¢ ,(k)},
E{Zan(klk)}, E{Zc(klk—1)}, and E{gg.(k)} i g
are zero, 0= B {§7, (k)i o(k) } = Miv,o(k)

A2) At any timek, there is no correlation amorig ,(k), - _

(A2) Acany tmet correlation among» (1) ~ Cra(k)E {wc(k\k D))
Gai.e(R), andi (klk — 1), e, B {i7,(k)ic (k) },

To determineC’; ,(k) when/ # 0, we enforce that there
is no correlation amongy ,(k), ga,¢(k), andZq(k|k — 1).
Thus, we obtain

E {03k~ D)}, B o ikt - 1)}, 2 Gk 5 {iic. (k)5 ()}
andE {gjg (k)ie i(k)} for ¢ # i are zero. Mn (k) = Cyo(k)Ye,e(k), (25)
If all error sequences have zero mean, then the coefficient _ ¥
of z(k) in (18) vanishes. Consequently, we obtain where My (k) = E{xG,N(k\k)yG,e(k)} andYg (k) =
Byp(k)=1I—Cpolk ZO” )Be.o(k),  (19) E {yG74(k)yG’g(k)}. Similarly using ¢2) and the orthogo-
>0 nal properties, we obtain another expressionMoy ¢(k) as
and the feedback error in§) becomes )
(k) = Fan(klk) — Cro(k )fG(ka —1) 0=F {yG ~N(k)Jc ﬁ(k)} = My (k)
- C 20 J
%:o fZ yGl (20) _ Z DNz { JaN- z(k)ng(k)}
Since the construction of the feedback sequepgg(k) -D E Elk — )i o (k
ensures that there is no correlation betwegik|k — 1) and n.v (k) {mG( | 6.0 )} ’
rp(k), e, E {gf,,,(k)j’c(mk - 1)} — 0, we must have My (k) = Dy, n—o(k)Ye,e(k). (26)
0= Mpy,o(k) = Cro(k)Pa(klk —1) Comparing 25) with (26) and then using coefficients
’ ' , Cai(k) = Pg,i(k|k)P5j_1(k|k) from the global decorre-
—> Cru(k)E {?G,e(k)jc(k% - 1)} ; lation stage, we obtain
£>0
Cyo(k) =Dy n—o(k P k|k k|k 27
MNo(k):nyo(k‘)PG(k|kfl), (21) f:z( ) N,N E( ) GN( | ) G/( | ) ( )

) B Next, the error covariances of the feedback sequences for
where Myo(k) = E {ch,N(k\k)xG(kW - 1)} and  |ocal processop, denoted a¥ (k) = E {gjﬁp(kz)g}’p(k)}
Pgklk—1) = E {ic(k|k —1)Z4(k|k — 1) ;. The last can be computed as follows

expectation vanishes due to tf&2) assumption. We know - - k) = P B — M a(B)YCs - (k

from [11], [12] that the global decorrelated errge: ; (k) p(k) = Pa.n(klk) no(k)Cro(k)

can be expressed as a linear combinationzef;(k|k), —ZMNz Cfe k) — Cf,o(k)lev,o(k)
Za(klk—1),and previoungi( )forz‘:l ..,j—1las £>0
+ Cro(k )PG(k|k’—1Cfo Zcfe MNe k)
gGij(k) - mGJ k|k ZDJZ ij i ) >0
+ Y Crolk)Ye,o(k)Cy (), (28)
—Dj;(k )xG(k“f - 1), (22) >0

5359



wherePg n(k|k) = E {iG ~(k|k)Zg N(k\k)}. fusion algorithm have been run for a wide range of configu-
We know from [11], [12] thatt; ; (k) obtained from the rations [12]. Here, we provide only a sampling of results for

global decorrelation stage could be alternatively expressed ¥@ious two-sensor-per-local-processor configurations such

Ya (k) = Bg,;(k)P, J(kz\k). Thus using 21), (24), (25), as the (2,2), (2,2,2), and (2,2,2,2) configurations. For each

(27), andYg ¢ (k), we have the following: configuration, the numbers listed in a sequence indicate the
/ / numbers of sensors for each local processor while a sum
M o(k)Cy (k) = Cro(k) o (klk —1)Cf (k) of the sequence represents the overall number of sensors
= Cyo(k)Pa n(k|k), (29) for the distributed tracking system. The results for other
MNﬁ(k)C}’g(k) = Cro(k) Yok )Cfé( ) configurations show similar trends [12].
= Cyy(k)Bge(k)Pe,n(klk). (30) A. Tracking Models

In the simulations, the distributed system tracks two in-
dependent targets moving in two dimensions in nominally
straight lines corrupted by acceleration noise. The state vec-

. tor of targett at thekth time interval consists of the position
Yip(k) = |1 = Crolk ZC” )Bae(k) and velocity of the target in the and y directions,i.e,
at(k) = [x x y y] fort = 1,2. The system parameters
for each target are identical and time-invariant with
B. Incorporation at the Local Processor 1 6 00 5/3 6%2/2 0 0

Substituting 29) and @0) in (28) and after some cancella-
tions, we obtain

£>0
- P n(klk) = By p(k) P n(k|E). (31)

The global processor can construct the desired feedbagk— 0100 ,G=gq 6%/2 6 30 20 .
sequences for local procesgowith the following process: 0019 0 0 0°/3 6°/2
R R 0001 0 0 6%2/2 9
Yrp(k) = ian(k[k) Cfo( )xc(klk 1) H=TIu  Q=qlia  R=qIu.
=2 Cre(k)ye.( (32) §=1 q = 0.0144.
€0
Pe.n (K|K)PS (k|k — 1), £=0 An identity measurement matrix implies that measurements
Cy k) ’ Cil ’ ’ (33) of all target states are available at each local processor. The
Fa N(k‘k)PG o(klk), £=1,..., N, initial states are assumed to have Gaussian distributions with
By, (k) =1—Cyo(k ZC” VB e(k), (34) known meansz’(0/0) and covarianced”*(0|0), with the
£>0 initial positions of the two targets being 5 units apart inghe
Yy p(k) = By p(k) P n (k[F). (35) direction:

A1 _ ! <2 _ !
The summation is over those indicédor which yg (k)  * (0[0) = [5,0.5,5,0.5] and&*(0]0) = [5,0.5,10,0.5] -
are decorrelated sequences resulting from track estimatesif Performance Metrics

local processop. The performance measures used are the average RMS
Once these feedback sequences are sent to their respeciiM@r of the estimated target states and the average track

local processop, they are used in the local data associajifetime. Denote the erroe(k) = z(k) — #(k|k) as the
tion and filtering algorithm to update local state estimategifference between the true state and the updated estimate

p(k|k). The feedback sequenge (k) and its covariance gptained by the tracking algorithm, then the RMS error is
Yy p(k) are treated as a measurement and its equivalent nojggmputed by

covariance, respectively. Th8; ,(k) matrix now serves

as the measurement matrix for local procegsom other RMS = \/1 Z(e(k)) e(k)
words, the JPDA algorithm at each local processor uses the L
following substitutions where L is the number of “good” tracking points. These

points are taken into account only when the tracking algo-

rithm simultaneously satisfies the following criteria for a
This data association and filtering process must be corfliven target and a given processor:

pleted before local processors acquire new sets of measurdi). At least one true target-originated measurement from

ments from their own sensors, and the updated estimates any of the sensors of the processor lies inside the gated

resulting from the feedback sequences are used to initialize ~ region for that target.

2(k) < ysp(k), R(k) < Yip(k), H(k) < Bfp(k).

the filtering process of the next time step. (i). The Mahalanobis distance of the target state error
d(k) = (e(k)) (P.(k)) "e(k) < 18.4668, where
V. MONTE-CARLO SIMULATIONS AND RESULTS P, (k) is the updated state covariance resulting from

We have evaluated the incorporation of feedback using  the Kalman filtering process.
the decorrelated sequence method on distributed fusion ar-The track lifetime of a target represents how long the
chitectures as in Figuré. Monte-Carlo simulations of this tracking algorithm can maintain target trajectories. The time
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TABLE |

AVERAGE NUMBER OF CLUTTER MEASUREMENTS PER GATE -x-- L(2,2) /——’/::—*-
gors| o 622) A
: ; A 1%s [P s
Clter Densty | g i) T
- = e 3oy ly P P
*) Centralized| ?2) | (2:22) | (22.2.2) 50181 o 6(2,22,2) R —‘*g
o —::::‘—
0.25 1.434 1.355| 1.316 | 1.296 2 e -~
0.35 2287 | 2.033| 1.963 | 1.927 50.17 -
0.45 3.429 2.904 | 2732 | 2.653 w /‘
0.55 4783 | 3.793 | 3581 | 3.477 - _—
0.65 6.033 4945 | 4.498 | 4.372 5018 _—
g o
[
_ _ _ _ 015
at which the tracking algorithm gives the last accurat. & S
timate is designated as the target track lifetime. The 2 /<>/< T
processor is said to lose track of a target if one of %™ e

Clutter Density (1)
(iif). The true target-originated measurements from all ““'Figure 3. Average RMS error of the estimated target state versus clutter

sors lie outside the gated region for 5 consecutiVgensityx for various two-sensor-per-local-processor distributed fusion ar-
times. chitecture configurations with feedback implementation. L(2,2) and G(2,2)

: ; ; : indicate the average RMS error at the local and global processors of a (2,2)
(IV)' The dIStancel(k) > 18.4668 for 5 consecutive times. feedback configuration, L(2,2,2) and G(2,2,2) indicate the average RMS

For the global processor, only the 2nd and 4th criteria abowror at the local and global processors of a (2,2,2) feedback configuration,

are used in the RMS error computation and the track lifetimle2:2:2,2) and G(2,2,2,2) indicate the average RMS error at the local and
.. . . . “global processors of a (2,2,2,2) feedback configuration.

determination, respectively. It is not possible to use e

the 1st or 3rd criteria because the global processor dor 1000

el

have access to the measurements received by all se o ('-3((22’22))
Both RMS errors and track lifetimes are averaged ove 900 L(2.2,2)
number of observed targets for each simulation. Fol 2001 Y
local processor performance, these two metrics are ft % —— G(2,2,2,2)
averaged over the number of local processors. The -%700’\
average values are then again averaged over all 1001 5 600 N \\
Carlo simulations. S RN

= 500 Ny Py
C. Simulation Results e \B\\\

We are interested in tracking targets in a cluttered 1 %400 \

ronment. The number of clutter measurements is deterr 300t \:“ ~~~~~~ .
by the densityA which is varied betweer\ = 0.25 to \\_ ~~~~~~~ %_\
A = 0.65 for the two-sensor-per-local-processor distribi 200 \\\3&
fusion architecture configurations. The average numbe 100 e

0.25 0.3 0.35 04 0.45 0.5 0.55 0.6 0.65

clutter measurements per gate are given in Tefaethe cen Clutter Density (1)

tral processor of a 2-sensor centralized configuration wi.... .. o ,
feedback as well as the local processor of a two-sensor- Figure 4. Average track lifetime versus clutter densityfor various

@ p . . p 0-sensor-per-local-processor distributed fusion architecture configura-
local-processor distributed fusion architecture configuratiotions with feedback implementation. L(2,2) and G(2,2) indicate the average

with feedback. Implementation of feedback clearly yield§'aCk lifetime for the local and global processors of a (2,2) feedback con-
flguration, L(2,2,2) and G(2,2,2) indicate the average track lifetime for the
smaller average numbers of clutter measurements per ge}t%al and global processors of a (2,2,2) feedback configuration, L(2,2,2,2)

As the number of local processors increases, the average®l G(2,2,2,2) indicate the average track lifetime for the local and global
number of clutter measurements per gate decreases for fiecessors of a (2,2,2,2) feedback configuration.

same clutter density. The results imply that the size of the

gated region for each sensor of the local processor is reducddninimal improvement for the local average RMS error.
when feedback is implemented. In other words, feedbadkor the track lifetime performance shown in Figutethe
reduces the error covariance of the local target estimates [1djfferent between the average track lifetime of the local and
As a result, we should see improvement in the trackinglobal processors becomes larger as the number of local
performance. processors increases.

Figure 3 shows the average RMS performance for both Figures5 and6 demonstrate the performance comparison
local and global processors when feedback is incorporateaf. distributed fusion architecture configurations with and
The global average RMS error decreases dramatically as thihout feedback. We see that incorporation of feedback
number of local processors increases, while there is onignproves both RMS error and track lifetime performance of
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0197 B ; ' to treat the feedback sequences as further measurements
@ -~ G(2.2) wifeed e for processing, and the feedback sequences are processed
[ - .

B o150 ggﬁ:i;wlfee J e | before a new set of actual sensor measurements arrives.
& -%- G(2,2,2,2) The decorrelated estimation technique for distributed fusion
e |75 Cl2222) wieed e A architectures shows significant improvement in tracking per-
=017 formance in terms of lower average RMS errors and longer
-.g P : e average track lifetimes at both local and global processors
S o6 L when feedback is incorporated.
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