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Abstract— This paper introduces two unique testbeds that
have recently been developed to demonstrate the cooperative
control of teams of UAVs. The first testbed uses eight rovers
and four blimps operated indoors to emulate a team of
heterogeneous vehicles performing a combined reconnaissance
and strike mission. The second testbed uses eight small aircraft
that are flown autonomously using a commercially available
autopilot. This combination of testbeds provides platforms for
both advanced research and realistic demonstrations. Numer-
ous trajectory optimization and team coordination algorithms
have recently been developed to execute these UAV missions.
This paper highlights several of these coordination and control
algorithms and presents typical results for representative
experiments. These demonstrations of the high-level planning
algorithms on scaled vehicles operating in uncertain and dy-
namic environments represent key steps towards transitioning
them to future UAV missions.

I. INTRODUCTION

UAVs offer advantages over conventional manned ve-
hicles in many applications because they can be used in
situations otherwise too dangerous for manned vehicles
(e.g., eliminating anti-aircraft defenses) and without being
weighed down by the systems required by a pilot, UAVs are
capable of staying aloft on longer surveillance missions.
While the roles and capabilities of UAVs are growing,
current UAV control structures were conceived with limited
roles in mind for these vehicles. Thus it is necessary to
improve on this control structure in order to fully exploit
the expanding capabilities of UAVs. This includes devel-
oping techniques to optimize the coordination of a fleet
of UAVs, which is comprised of the coupled subproblems
of determining sub-team composition, allocating resources,
and optimizing vehicle trajectories [1]. These are all compu-
tationally intensive optimization problems that require good
situational awareness to achieve coordinated and cooper-
ative behaviors. Numerous algorithms have recently been
developed to achieve this cooperative behavior [2], [3], but a
key step towards transitioning these high-level algorithms to
future missions is to successfully demonstrate that they can
handle the implementation challenges using scaled vehicles
operating in realistic environments. Thus two testbeds have
been developed at MIT to perform these demonstrations.
One uses multiple rovers and blimps operated indoors to
emulate a heterogeneous fleet of vehicles performing a
search and rescue mission. The second uses eight UAVs
that are flown autonomously using a commercially available

autopilot from Cloud Cap Technology. Performing exper-
iments on these testbeds will highlight the fundamental
challenges associated with: (i) planning for a large team
in real-time; (ii) developing controllers that are robust to
uncertainty in situational awareness, and are sufficiently
flexible to respond to dynamic changes; and (iii) using com-
munication networks and distributed processing to develop
integrated and cooperative plans.

II. COORDINATION ALGORITHMS

Mixed-integer Linear Programming (MILP) has previ-
ously been shown to provide a natural framework for posing
coordination problems, and approximations such as the
decomposition approach have proven to provide accurate
yet tractable solutions to the overall problem [3], [4],
[5]. The decomposition approach simplifies the coupling
between the assignment and trajectory design problems by
calculating and communicating only the key information
that connects them. This is achieved using an approxi-
mate cost-to-go calculation to obtain good estimates of the
costs associated with feasible paths around “obstacles” (e.g.
buildings, no-fly-zones) in the environment. These costs are
then used in the assignment problem solved using the petal
algorithm [5], [6]. Uncertainty in the target classification
due to poor or conflicting information enters the problem
as uncertainty in the assignment costs. As demonstrated
in [7], the assignment process must be robust to these
types of uncertainty, and it is also vital to ensure that the
reconnaissance and strike tasks are allocated simultaneously
to provide the most benefit to the strike part of the missions.

Task Assignment – While the decomposition approach
greatly reduces complexity, the problem of task assignment
with precedence constraints has been shown to be NP-Hard,
and achieving the exact solution for a large team of UAVs
is computationally intensive and not suitable for real-time
applications. The petal algorithm uses a heuristic method
to prune out the solutions that are not likely to be part of
the optimal solution, which significantly speeds up the task
assignment process. While this approach has been shown
to work well for small problems, it is still difficult to run
in real-time for problems with larger numbers of vehicles
and tasks. To perform reassignment in real-time as required
in a dynamic, frequently changing environment, we have
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Fig. 1. System algorithm architecture for rover, blimp and UAV testbeds.

extended the petal method to develop a receding horizon
task assignment (RHTA) algorithm.

RHTA significantly reduces the computation time by se-
lecting at most m (typically less than 3) tasks for each UAV,
then repeating the optimization over several iterations[8].
The process selects tasks to the mission list for each UAV,
updates the UAV’s position and time, removes the assigned
tasks from the task list, and repeats until all the tasks
are assigned. Timing and precedence constraints can be
imposed using the approach in [5] or by simply requiring
that tasks be removed from the list until all precedents have
been assigned. The first of these two approaches is more
complicated, but should yield a less conservative approach
than the second.

Trajectory Optimization – The final step is to compute
detailed UAV trajectories around the obstacles, which can
be solved using a MILP-based receding horizon planner [9].
This approach has been proven to guarantee the arrival at the
target in bounded time, as RH-MILP uses a simple vehicle
dynamics model in the near term and an approximate path
in the long term. This combination gives a good estimate of
the cost-to-go and greatly reduces the computational effort
required to design the complete trajectory. Discrepancies in
the assumptions made in the two models are handled by
ensuring that the planning horizon is sufficiently long [10].
Novel pruning and graph search algorithms have recently
been integrated with RH-MILP, and these also have the
effect of significantly reducing the computational load. In
the following experimental sections, the trajectories shown
are designed in real-time using this approach.

Control Architecture – Figure 1 shows the control archi-
tecture used for the UAVs, but the setup is very similar for
the rovers and blimps [5], [3]. Low-level control and the
basic estimation tasks are run onboard, and the planning
for the vehicles is done off-board. The planner outputs
dynamically feasible waypoint lists and actions (i.e. classify,
strike, assess) to the vehicles, and monitors the uncertain
states of the vehicles and the world map. When significant
changes to the situational awareness are detected, the cost
map is then updated, the tasks are re-assigned and/or the

Fig. 2. Control architecture: Decentralized path planning/Distributed task
assignment.

Fig. 3. Control architecture: Decentralized path planning/Centralized task
assignment.

trajectories are redesigned.

Note that the system infrastructure was set up to emulate
a fully integrated fleet of UAVs – all data passes through
a central hub that performs data management between
the planning computers and vehicles, effectively simulating
communication delays, vehicle sensors and uncertainty in
the environment. Using this setup greatly simplifies the
testbed, while maintaining nearly all of the functionality
of a fully integrated system. For example, as shown in
Figures 2 and 3, we can use our testbed to investigate the
impact of communication networking issues on the coordi-
nation problem by imposing various limitations/constraints
on how the planning laptops communicate (using their own
wireless or Ethernet links). Future work will demonstrate
the effectiveness of various control architectures on the task
assignment process, as would be seen in utilizing dynamic
sub-teams of various compositions.

The following sections describe the two multi-vehicle
testbeds that have been developed to investigate the per-
formance of these coordination and control algorithms.



Fig. 4. 4 of 8 ActivMedia P3-AT Rovers.

Fig. 5. 1 of 4 Blimps.

III. HARDWARE TESTBEDS

Rover/Blimp Testbed – The first testbed uses multiple
rovers and blimps operated indoors to emulate a hetero-
geneous fleet of vehicles that could be used to perform
Suppression of Enemy Air Defense (SEAD) type missions.
The rovers in Figure 4 are ActivMedia’s P3-ATs, which are
operated with minimum speed and turn rate constraints to
emulate the motion of an aircraft. A Sony VAIO mounted
on the rover processes sensor data and performs the low-
level control, while all high-level planning is done off-board
using 2.4 GHz Dell laptops running MATLAB, AMPL, and
CPLEX. A direct wireless Ethernet connection provides
a fast and reliable network between the laptops, so this
is essentially the same as having both laptops onboard.
The ArcSecond Constellation 3D-i is used to measure the
vehicle position indoors. This sensor uses laser metrology to
provide ±4mm position accuracy at 20Hz. The 7ft diameter
blimps in Figure 5 were scaled to carry the VAIO and
have an identical control architecture. The blimps were
designed to perform reconnaissance and classification tasks
in conjunction with the rovers that act as strike vehicles. The
blimps can also be used to map an uncertain environment
for the rovers.

Figures 6–8 show the result for a scenario with 4 rovers
and 14 tasks, which introduces enough complexity in the

mission that a global optimization would be very difficult
for dynamic real-time reassignment. However, RHTA with
m = 2 is shown to provide good performance despite the
complexity of the mission scenario. The mission begins with
4 rovers and initial assignments, but after several seconds,
rover 4 is lost. Figure 6 shows the effect of reassignment
when the tasks of rover 4 have been distributed among
the other rovers. Later in the mission, reassignment must
again be performed when tasks 9 and 11 are determined to
be located at different positions than previously assumed.
Figure 7 shows the final assignments when two new tasks
(15 and 16) are discovered and rover 3 is assigned to visit
these locations.

Figure 9 shows an experimental result on the rover/blimp
heterogenous testbed. The scenario models the environment
where the information is partially available, requiring search
missions be executed concurrently with the strike. The
obstacles impede the rovers, but the blimp is able to fly
over them. In this experiment, the blimp is used to search
for tasks while the rover executes them. The trajectory on
the left shows the path of the blimp performing its search
pattern, and the trajectory on the right shows the path of the
rover as it navigates to each task. For the purpose of this
test, the heading command is sent to the blimp, while the
rover follows the waypoints (marked with ©) generated by
the RHTA. Initially, the waypoint C was not known, but the
blimp is sent to perform a reconnaissance of the open space
to the left, flying over the obstacle in the bottom of the fig-
ure. While the rover is en route to execute task B, the blimp
discovers the new task (waypoint C) and RHTA reassigns
that task to the rover. This initial result demonstrates the
successful integration of the heterogenous vehicles in our
planning system and future tests will incorporate robustness
into the task assignment for a heterogeneous system of
rovers and blimps in an uncertain environment.

UAV Testbed – The second testbed is a fleet of 8
UAVs (Figure 10) that are flown autonomously using the
Cloud Cap commercial autopilot interfaced directly with the
planning and task assignment algorithms. Figure 11 shows
the 7.5oz Piccolo autopilot from Cloud Cap Technologies
installed in the aircraft. Small aircraft (60-sized trainers)
were purposefully chosen to reduce operational complexity
while still providing a high degree of flexibility in the
missions that can be performed. The large trainer wing
and Saito-91 four-stroke engine allow an additional two
pounds of payload for sensor or communications upgrades.
Twenty minute flights are easily achievable in the current
configuration, and further extensions are possible.

The UAV testbed has been operated autonomously on
numerous occasions – Figure 13 shows the results of an 22
minute autonomous flight involving two UAVs simultane-
ously flying the same flight plan. Both vehicles tracked the
waypoints in the presence of wind and open loop formation
flight was achieved by adjusting the commanded speed until
the vehicles were in phase with one another. A 50 meter
altitude offset was applied to one of the vehicle trajectories
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Fig. 6. Re-assignment plan after rover 4 lost.
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Fig. 7. Assignment after wpts 15 & 16 found.
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Fig. 8. Experimental rover trajectories.
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Fig. 9. Rover and Blimp trajectories recorded during a heterogeneous
recon and strike demonstration.

in Figure 13 to allow for easier viewing.
A wireless video system has been integrated with the

UAV testbed to produce high quality images from the
airborne vehicles – Figure 12 shows a typical aerial shot
from one of the UAVs. This system is used to verify the
position of the vehicles and provide user feedback for high
level decision making.

Figures 14–15 show results from a mission flown on the
UAV testbed using receding horizon control to generate
waypoint plans in real time. In this scenario, the goal
locations used in the planner (shown as circles) were set
in a 400m × 600m box pattern over the extents of the
flying field and timing constraints [2] were enforced to
ensure a clockwise sequencing. Figures 14–15 show the
progression of the optimal planned paths and the telemetry
data from the vehicle during one circuit. Each “×” segment
represents one waypoint plan which is returned from the
optimal trajectory designer and is uploaded piecewise to
the UAV as the MILP optimization completes. The plans
are spaced at 100m or approximately 4 seconds from the
next in the sequence. With 2.4GHz Dell laptops running
CPLEXv8.0, these computations typically take less than 1
second providing substantial margin in completion times.

Fig. 10. 6 of the 8 UAVs in the fleet.

Fig. 11. Piccolo autopilot from Cloud Cap Tech.

The gray regions in Figures 14–15 represent obstacle
locations which were encoded into the scenario using mixed
integer constraints [9] to constrain the planned trajectories
within a safe operating distance. Although no dynamic
changes were made to the environment in this scenario (i.e.,
pop-up obstacle, goal discovery), the framework of the RH
controller also allows for this capability.

This flight test was conducted in the presence of winds
approximately 25% of the vehicle airspeed (The PT-60
aircraft are sized for 25m/s nominal airspeed) and in a
confined area, requiring minimum turn radius constraints to
be enforced. As a result of these conditions, roughly 40m



Fig. 12. Overhead of the local flying field at Crow Island taken with the
onboard camera.
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Fig. 13. Data from a simultaneous flight of 2 autonomous UAVs. Data
offset vertically for clarity.

overshoot offsets can be seen in the flown trajectories in
some instances. Wind disturbances act as a large contributor
to the position offsets seen in Figure 15, as such current
research investigates the incorporation of along and cross
track error feedback into the receding horizon formulation
for improved performance. In addition, along track speed
control is implemented to ensure meeting local timing
constraints and coordination among members of the fleet.

The preceding results demonstrate the capabilities of
the system to perform online MILP trajectory optimization
and task assignments, but these preliminary results also
highlight the need for added compensation for disturbance
rejection. Uncertain wind disturbances consisting of both
static and turbulent components act on the system and cause
the ±40m cross-track offsets seen in the execution of the
plan. An estimate of the static wind vector is available
from the Cloud Cap avionics, and this can be added to the
dynamics model used in the trajectory design. However,
the variations of the wind vector and the uncertainty in
the wind estimate can still result in significant variations
in the actual trajectory flown. To correct for these flight
errors, the planner has recently been modified to use current
vehicle states in the design of the next trajectory segment.
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Fig. 14. Initial demonstration of UAV receding horizon control. Planned
paths are dashed lines, vehicle telemetry are solid (start at 41 secs).
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Fig. 16. Timing for receding horizon control scheme.

This results in better feedback of the cross-track errors,
which improves the response to disturbances. However, this
introduces communication and computation delays, which
could lead to an unstable response.

Typical computation times for the trajectory optimiza-
tions are approximately 0.5 seconds per iteration, and there
is some small communication delay in transmitting the
waypoint plans to the vehicle. To avoid planning with old
information, we can include an approximate model of the
closed-loop vehicle dynamics to propagate the measured
vehicle state forward in time [11]. Figure 16 depicts the
timing of the receding horizon control scheme. A fixed
planning interval, T, is chosen corresponding to time scale



lengths that will make the planner suitably reactive to
changes in the environment. Measurements of the cross-
track position and heading states are made at time tk ,
X(tk) = [yct(tk) ψ(tk)]T , which triggers the trajectory
design algorithm. Using knowledge of the previous plan that
was implemented, u(k−1), an estimate of the vehicle state
at time tk + λT (0 < λ ≤ 1) can be made by propagating
the closed-loop dynamics:

X̂(tk + λT) = AclX(tk) +Gw̄

where Acl is the discretized closed-loop dynamics model, G
is the disturbance input matrix for w̄, the mean static wind
vector. X̂(tk + λT) is then used as the initial conditions
for the start of the plan u(k). The simulations and flights
currently use λ = 0.25 and T = 4s, which corresponds to
about 100m waypoint separation.

Figure 17 shows the results of simulating the same RH
scenario using this propagation of the vehicle state. The
simulation was done with both static wind and turbulence,
neither of which were modeled in the planner dynamics,
creating difficulties for the low level vehicle controller.
Even with these unmodeled inputs, using the prediction
step results in dynamically feasible plans for the vehicle
with cross-track errors less than ±5m. We have verified the
accuracy of these hardware in the loop simulations, and we
expect to see this type of improved performance once flight
tests resume this spring.

Because of uncertainty in both the estimate of the static
wind vector w̄ and the random variations about this estimate
δw̄, the value of the estimated state X̂(tk+λT) is uncertain,
which complicates the trajectory design problem. Assuming
an upper bound on the wind disturbance, Ref. [12] presents
an algorithm for designing trajectories that are robustly
feasible for all disturbances in the bounded set. This is
achieved by tightening the constraints in the problem, which
can be done without increasing the problem size. Note that
δw̄ can be dynamically updated as the confidence in the
disturbance estimates improves. We are investigating using
these additional robustness constraints within the following
algorithm (receding horizon control with propagation and
feedback):

1) Plan an N step trajectory subject to dynamical and
environmental constraints.

2) Execute the first step of the trajectory, T, and measure
the vehicle state. Update the disturbance statistics for
the propagation step.

3) Propagate state forward λT and use the estimated state
as the initial condition for the next plan.

4) Return to step 1

IV. CONCLUSIONS

This paper presents hardware demonstrations of the re-
ceding horizon task assignment and trajectory design on
two new rover/blimp and UAV testbeds. These multi-vehicle
testbeds provide unique platforms to evaluate various dis-
tributed coordination and control strategies. Future work
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Fig. 17. Predicted performance of receding horizon control with propa-
gation and feedback.

will integrate distributed collision avoidance formulations,
task assignment with the formation of dynamic sub-teams,
and missions with heterogeneous vehicles (e.g. several
rovers and blimps).
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