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Abstract—In this paper, a novel systematic configuration 

procedure in choosing parameters is presented for the synthesis of 
linear anti-windup scheme by revising the original goal of the 
unified anti-windup framework. The anti-windup controller is 
derived from the parameters, which are characterized by the 
sufficient conditions for the stability and performance objective as 
to protect the system from adverse effects in present of saturation 
and recover the energy deficit after saturation. Moreover, the 
entire synthesis is cast as sub-optimization problems over Linear 
Matrix Inequalities (LMIs) and the effectiveness of the result is 
shown via simulation examples with comparison to other existing 
anti-windup schemes.  

I. INTRODUCTION 
HE notion of ‘linear anti-windup design’ has played a 
very important role in the study of systems with 

actuator saturation. The first paradigm in this field was 
stated in [5], where all previous linear anti-windup designs 
were unified in a general framework, shown in special 
cases in terms of two matrix parameters as choices for left 
coprime factorizations of the linear controller. Then, a 
further result pointed out in [6], which developed sufficient 
conditions to guarantee stability for the general framework. 
Recently, more linear anti-windup schemes have been 
proposed, providing desirable stability properties as well as 
performance achievements (see e.g., [3,7,8,9,11]). Without 
going to the detail about these approaches, our work has 
focused on the original goal of the unified general 
framework, and obtained a series of encouraging results 
(see, [2]). In [2], by assuming one of the two parameters to 
be zero, stability condition and performance objectives are 
derived in the form of LMIs. These results give light to 
systematic procedures in choosing parameters for the 
synthesis of anti-windup controllers. 
In this paper, based on the results in [2], the novel 
systematic configuration procedures in choosing parameters 
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are integrated, which is characterized by the sufficient 
conditions for stability and performance objectives as to 
protect the system from adverse effects in present of 
saturation and recover the energy deficit after saturation. 
Moreover, the anti-windup controller is derived by the 
parameters, and the entire synthesis is cast as a 
sub-optimization problem over LMIs. 
Notation. The saturation nonlinearity is described as 
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II. PROBLEM DEFINITION   
Recall from [4] that all known linear anti-windup 

schemes can be unified as the modified controller: 
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N(s) and I-R(s) correspond to left coprime factors of the 
original linear controller K(s) as: 
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Insert the saturation function Φ in the controller as 
shown in Fig. 1.  

When there is no saturation, (Φ=I), controller will be the 

linear controller. When saturation occurs, (Φ≠I), the 
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Fig. 1.  The anti-windup controller structure 



 
 

 

feedback by linear controller does not work, and the 
anti-windup problem has deduced to select suitable 
parameter, H1 and H2, in anti-windup forward controller N(s) 
and dynamic compensator R(s) to stabilize the closed-loop 
system and provide graceful performance degradation. 

For further analysis, substitute Fig.1 with Fig.2 (a). 

The Fig.2 (a) is equivalent to the Fig.2 (b). Then the 
interconnection of Fig. (b) can be concisely written as 
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Where A, Bw, Bu^, Cu, Duw, Duu^, Cz, Dzw, and Dzu^ 
are matrices of suitable dimensions. In particular, H1 acts 
independently on modifying the state equation via A, Bw, 
and Bu^ and H2 does that on the output equation. 

III. LMI-BASED ANTI-WINDUP SYNTHESIS 

A.  Anti-windup performance 
Firstly, consider a typical case that the system of Fig.1 is 

saturated by step disturbance and/or step reference input. 
Suppose that saturation starts at t=0, and the effects of the 
internal states on the response are denoted as )0()(~

pxsP  

and )0()(~
kxsK . After the saturation occurs, the response 

of the difference between u^ and u is represented by 
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For the purpose of protecting the system from severe 
overshoot in plant output, the unconstrained signal u must 
be protected from increasing awfully. Since u^ is bounded 
and other variables are finite, an ideal solution is N(s)=ε 
and R(s)=I-ε (if ε≈0), which satisfied N(s)=(I-R(s))*K(s). 
So the performance objective is defined as the limitation of 

the L2 norm of the anti-windup forward controller N(s) from 
its input, z, to its output, yN  
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Theorem 1. The anti-windup forward controller N(s) in 
Fig.1 is asymptotic stabilizable and has a weighted induced 

ℓ2 gain N
N

z

y
ε<

2

2 , which is a pre-defined upper bound 

01 ≥≥ Nε , if there exist matrix Q=QT>0, such that the 
following LMI with respect to Q, Y, H2 is satisfied: 
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(6) 
If the LMI is feasible, then H1=Q-1Y and H2 are the 

expected parameters to construct the anti-windup 
controller. 

Proof. See the appendix. 
 
In addition to protect the system from severe overshoot 

in plant output, the anti-windup controller is also required 
to guarantee the stability of the closed-loop system, and 
recover the energy deficit in present of saturation, so as to 
provide satisfied performance degradation. Therefore, by 
choosing the energy related form in ℓ2 norm, the 
performance objective is defined as the weighted induced 
ℓ2 norm from the exogenous input, w, to the deviation 

between u^ and u:
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Fig.2 Standard interconnection for the Anti-windup structure 

 
Definition 1. (Memoryless time-varying nonlinearities) 

Define the set NTV of all allowable structured memoryless 
time-varying nonlinearities as follows: 

{ 0,0),0(: ≥∀=ℜ→ℜ×ℜ= ttNNN uu nn
TV , 

}{ }]1,0[sec,,,, 21 torNNNNdiagN inu
∈= K . 

Obviously, NTV typically includes the saturation 
nonlinearity Φ presented by Notation. 
 
Theorem 2. (ℓ2 gain criterion). The anti-windup system (3) 
in Fig.1(b) is ℓ2 stabilizable for all N ∈ NTV and has a 

weighted induced ℓ2 gain λ≤
−

2
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2 such that the following LMI with respect to P, X, 
W, δ  is satisfied: 
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The upper bound on the weighted ℓ2 gain can be obtained 
from the definition of λ . H2=W-1X is the proposed 
solution to the anti-windup problem. 

Proof. See the appendix. 

B.  Systematic Procedure in Anti-windup Synthesis 
Although conditions in (6) and (7) give encouraging 

results to avoid adverse effects when saturation occurs, and 
pump necessary energy to recover the deficit after 
saturation, there are some limitations. Considering H1 
acting on the state equation in the closed-loop system in (3), 
it is difficult to arise LMI formulation for performance 
requirements in (7); on the other hand, the solutions in (6) 
only focus on improving the behavior of the anti-windup 
controller and lack of the consideration of the behavior of 
the entire closed-loop system. Therefore, a configuration 
procedure is presented to solve the problems and provide 
satisfied combination in (6) and (7). 

Step 1. Solve the anti-windup controller condition 
Given the linear controller K(s) and plant with a proper 

smaller real scalar 01 ≥≥ Nε , determine a solution H1 that 
satisfies condition (6).  

Step 2. Modify the state equation of the closed-loop 
system 

Given one parameter H1 from step 1, modify A, Bw, and 
Bu^ in the state equation of the closed-loop system (3). 

Step 3. Solve the stability and performance conditions in 
LMIs 

Define the upper bound ℓ2 gain 0≥λ , and determine 
a solution H2 that satisfies condition (7), which guarantees 
desirable stability properties and anti-windup performance 
in the closed-loop system. 

Step 4. Construct the anti-windup compensator 
Given the parameters determined in step 1 and 3, 

construct the anti-windup forward controller N(s) and 
feedback compensator R(s) in the anti-windup controller as 

. [ ])()(ˆ sRsNK =
Step 5. Validate this anti-windup controller 
Given N(s) and R(s) determined in step 4, compute the 

scalar Nε  again, which is normally not identical with that 
pre-defined Nε  in step 1, and prove that it is properly 
small as expected in condition (4). 

IV. COMPARISON TO OTHER ANTI-WINDUP METHODS 
A. Example 1 

Consider the following plant and linear controller taken 

from [7,10] as: ⎥
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A set-point change of [0.63 0.79]T is applied to the 
system at t=0, with a saturation limits of 2±  on the 
controller output. To compare our method to other 
anti-windup methods such as the static compensator in [7] 
and the anti-windup IMC [4,10], the performance index is 
listed in Table.1. 

By setting )001.0,001.0(diagN =ε and 003.0=λ  

previously, parameters  

and  are determined from (6) 

and (7), respectively. Finally, compute the scalar 
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which is determined as . It is small 

enough and satisfied the condition (4) as expected. 
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From the analysis of Table.1, the method in this paper is 
superior to IMC methods [4,10] obviously and its 
performance results are parallel to the static anti-windup 
compensator. However, the limitation of the static 
compensator synthesis technique is that the LMI constraints 
are not always feasible. Our method is more flexible to get 
feasible sub-optimal solutions from the conditions at the 
expense of the optimal solution. This will be proven in the 
following example where the linear static anti-windup 

TABLE I 
PERFORMANCE INDEX INDUCED BY DIFFERENT ANTI-WINDUP 

STRUCTURES 
1. UNCONSTRAINED;  2. CONVENTIONAL IMC;  3. SPECIAL IMC;  
4. STATIC COMPENSATOR;  5. PROPOSED METHOD IN THIS PAPER 

Method
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2
1

2 input
input

e  

1 
44.4133/44.4133 
34.6657/34.6657 

6.3158 
7.9198 

2 
41.9931/47.4444 
34.1193/35.2407 

33.6747 
15.0941 

3 
43.6209/49.8711 
34.0869/34.1251 

25.0804 
31.1176 

4 
41.9931/44.9290 
32.7767/32.7767 

7.0877 
8.8853 

5 
41.9931/42.0128 
32.7896/32.7896 

7.3850 
8.6496 

 



 
 

 

compensator is not feasible for it. 

B. Example 2 
The typical example as a damped mass-spring system is 

taken from [3]. By selecting 2.0=Nε , 

 is determined in condition (6). 
Then by setting w=r, z=e, and a smaller upper bound 
as

[ TH 0001.00052.01 = ]

04.0=λ , parameter  is determined 
from (7).  

5
2 10*9090.1 −=H

The response of unconstrained, constrained and 
anti-windup used method are shown in Fig.2. Our method 
performs satisfactorily, parallel to the method in [3, 11], 
and confirms the effectiveness of the systematic procedures 
to choose parameters. 

V. CONCLUSION 
Motivated partly from the ideas in unified anti-windup 

framework and extended the work in [2], the linear 
anti-windup paradigm proposed in this paper focuses on the 
development of systematic procedures to choose the two 
matrix parameters for the synthesis of anti-windup 
controller. And the performance of anti-windup synthesis is 
characterized by the ℓ2 norm of the deviation between the 
controller output and plant input, which is related to the 
energy of the unconstrained signal and the constrained 
signal. Therefore, the proposed anti-windup controller can 

protect the system from increasing awfully in the 
unconstrained signal (controller output), and recover the 
energy deficit in the constrained signal (plant input) in 
relation to the unconstrained control. Moreover, the 
performance objectives are shown to induce sub-optimal 
problem over LMIs. From the comparison between the 
proposed method and other existing anti-windup methods 
via simulation examples, our method shows graceful 
performance degradation, parallel to if not more effective 
than other schemes, in the presence of saturation, and 
confirms the success of the systematic procedures to choose 
parameters. 

APPENDIX 
Proof of Theorem 1. By applying a simple congruence 

transformation diag{ } to (6), and 

defining M=

III NNN
2/12/12/1 ,, −εεε

Nε Q, and a suitable small real scale 10 << γ , 
condition (6) is guaranteed if there exists a matrix M>0, such that  

 
(a) Output of the Plant  

 
(b) Input of the Plant 

Fig.3 Example plant response: dashed, unconstrained; dotted, constrained 
without anti-windup; solid, anti-windup method in this paper 
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It implies <0. Since 

M>0, the forward controller N(s) is asymptotically stable and 
 is a Lyapunov function of the system. 
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Proof of Theorem 2.  
Lemma 1 (Multiloop circle criterion in [2]). Let )(~

11 sP−  denote 

the transfer function relating  to u in Fig.2(b). Then, the 
closed-loop in Fig.1 is ℓ

û−
2 stabilizable for  if TVN∈Φ

1. )(~ sP  in Fig.1(b) is asymptotically stable; and 
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T>0, 0>δ , and X=WH2, such that the following LMI with 
respect to P, X, δ  is satisfied 
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Remark 1. Obviously, (B1) is guaranteed by the main result in (7). 
 

Lemma 2. (Lyapunov stability criterion in [6]). Define Lyapunov 
function, which is equivalent to (B1) as:  

τττττ

ττδτ

duuuuW

duuPxxxV

un

i

t
iiiii

t TT

∑ ∫

∫

=

−+

+=

1
0

0

))(ˆ)(ˆ)()(ˆ(2

)(ˆ)(ˆ)(

 (B2) 

Then, the closed-loop system in Fig. 2(b) is L2 stabilizable for all 
N N∈ TV, if there exist P=PT>0, δ >0, and 

, such that: V(x)>0 

for x≠0 and V(0)=0; V(x) satisfies 
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Remark 2. V(x)>0 for x≠0 is guaranteed by the P>0, δ >0, and 

W>0; V(0)=0 is obviously; 0)( <xV
dt
d

, for x≠0 is equivalent to 

the condition (B1), and thus guaranteed by (7). 

 

Therefore, (7) guarantees the stability of the closed-loop system. 
Now, the main result about performance in condition (7) is stated. 
Condition (7) is equivalent to the existence of a matrix 
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Integrate (B3) from 0 to t with the initial condition x0=0, and get 
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which satisfies the performance objective.  
Condition (B3) is guaranteed for all (x, w, u^)≠0 if 
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Because 0<J , the above matrix is negative definite, the 
equivalent condition is obtained as follows by applying Schur 
complement: 
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By applying a simple congruence transformation diag(I, I, I, W) 
to (B4) and defining X=WH2, (7) will be obtained.      □   
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