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Anti-Windup Design with Guaranteed Regions of Stability for
Discrete-Time Linear Systems

J.M. Gomes da Silva Jr. and S. Tarbouriech

Abstract—The purpose of this paper is to study the design algorithms that explicitly optimize a criterion ang
determination of stability regions for discrete-time linear  at maximizing a stability domain of the closed-loop system.
systems with saturating controls through anti-windup |, [12], the modelling of the nonlinear behavior of the

schemes. Considering that a linear dynamic output feedback t d turati . de b . IVtoDi
has been designed to stabilize the linear discrete-time system Sysiem under saturation IS made Dy using a polytopic

(without saturation), a method is proposed for designing differential inclusion and quadratic Lyapunov functions.
an anti-windup gain that maximizes an estimate of the On the other hand, in [11], based on a transformation of
basin of attraction of the closed-loop system in the presence the saturation term in a deadzone nonlinearity, classical
of saturation. It is shown that the closed-loop system gector condition and S-procedure techniques are used to
obtained from the controller plus the anti-windup gain can deri tabilit diti iderina both dratil

be locally modelled by a linear system with a deadzone erive stability con IlonS.ConSI erng _O quadralic an
nonlinearity. Then, based on the propositon of a new Lure type Lyapunov functions. The main drawback of the
sector condition and quadratic Lyapunov functions, stability —approaches above is that the conditions allowing to compute
conditions in an LMI form are stated. These conditions the anti-windup gains are given in terms of bilinear matrix
are then considered in a convex optimization problem in i eqgjities (BMIs). In order to overcome this difficulty,

order to compute an anti-windup gain that maximizes . . . .
an estimate of the basin of attraction of the closed-loop iterative LMI algorithms are proposed to solve the synthesi

system. Moreover, considering stable open-loop systems, it is Problem. It is well-known that, in general, this kind of
shown that the conditions can be slightly modified in order approach does not lead to global optimal solutions and are
to determine an anti-windup gain that ensures global stability. very sensitive to the initialization [13].
On the other hand, the anti-windup problem for discrete-
l. INTRODUCTION time systems has recei_ved less attention in the Iiteratu.re.
It has been addressed in [1], [14] (see references therein),

The basic idea underlining anti-windup designs for Iinea]!rn the scope of the conditioning technique, and in [15] in

systems .With .saturating actuators is to introduce_contr%e context of constrained regulation. Recently, in [16§ t
modifications in order to recover, as much as possible, tl}%ti—windup problem for discrete-time linear systems was

performance induced by a previous design carried out on t%Gc‘idressed in afio-norm performance context. Similarly as
basis of the unsaturated system. First results on antiwgind .

! ) i _ in the continuous-time case, the proposed designs do not
consisted in ad-hoc methpds intended to work W'Fh StandaE&plicitly address the problem of enlarging the domain of
PID controllers [1], [2] which are commonly used in present,

ol I N hel o ability of the closed loop system.
commercial controliers. Nonetheless, major improvements Hence, considering discrete-time systems, the aim of this

in this field hgve been achieved in the last decade as it @3per consists in providing a technique that allows the
be observed in [3], [4], [5], [6]. [7], [8]. [9], [10] among computation of anti-windup loops in order to enlarge the
others. o region of asymptotic stability of the closed-loop systerneT
_Severa_l re_sults on the antl_-\_/vmdup pro_blem are COmem‘?ﬁeoretical conditions are obtained from the propositiba o
with achieving: global _stablhty properties. Since glo_balmodiﬁed sector condition and the use of quadratic Lyapunov
results cgnnot be achieved for open-loop .unstable “neﬂfnctions. Thus, differently from [11] and [12], the statyil
systems in the presence of actpator saturation, qualtses%onditions are directly formulated in an LMI form, avoiding
have to b? dgveloped. In. this context, a key issue i necessity of applying iterative algorithms. Furthereno
the determination of domains of stability for the closeds o' <hown that this new sector condition encompasses
loop system (estimates of the regions of attraction). Wit e classical one, largely applied in the literature (sae fo

very fevy exceptions, ”?OSF of the local resullts ava'l,apkﬁwstance [11] and references therein). This fact introduce
in the I|t§ratgre of anu—wmdup do n_qt provide eprICItin the problem more degrees of freedom, which leads to
characterization of the domain of stability. less conservative solutions. On the other hand, consiglerin

In [11] and [12], considering continuous-time SySteMSgiaple open-loop systems, it is shown that the theoretical

an attempt has being made to fill in this gap by proVidin%onditions can be slightly modified in order to determine
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by employing quadratic Lyapunov functions. Based on th§5]. Thus, considering the dynamic controller and this -anti
results of section Ill, an LMI-based convex optimizationwindup strategy, the closed-loop system reads:
problem to synthesize the anti-windup gain is proposed in ;; 4 1) Az(t) + Bsat(ve(t))

section IV. Section V provides numerical examples, illus- y(t) — Cx(t)
trating the effectiveness of the proposed design techniquezc(t +1) = Aczc(t) + Bey(t) + Ec(sat(ve(t)) — ve(t))
Concluding remarks are given in section VI. ve(t) = Cewe(t) + Dey(t)

. 6
Notations. For any vectorr € ®™, x > 0 means that ©

all the components of, denotedz;), are nonnegative. For
two vectorsz, y of R, the notationz > y means that
2@~y > 0,¥i =1,...,n. The elements of a matriA € £(t) = { (1) } e )
R are denoted byl(; ), i=1,...,m, j=1,...,n. zc(t)

A(;) denotes theth row of matrix A. For two symmetric  gnd the following matrices

matrices,A and B, A > B means thatd — B is positive

definite. A’ denotes the transpose df. diag(x) denotes A — { A+ BD.C BC. } . B=— { B ]

a diagonal matrix obtained from vecter I,, denotes the B.C Ac ’ 0

m-order identity matrix.Co{-} denotes a convex hull.

Define now an extended state vector

0

R-|

} : K= [ D.C C., ]
Il. PROBLEM STATEMENT

Consider the discrete-time linear system Hence, from (7) and (6), the closed-loop system reads:

(t+1) = Ax(t)+ Bu(t) 1) £(t+1) = A(t) — (B + RE:)Y(KL(1)) (8)
t) = Cuxlt

u(t) () with the functiomy(v) 2 v—sat(v). Note that, in this case,

wherez(t) € R, u(t) € R™, y(t) € NP are the state, the y(v) corresponds to a decentralized deadzone nonlinearity

input and the measured output vectors, respectively; and P(v) = [ V() o (V) ]’, where

0,1,2,.... MatricesA, B andC are real constant matrices

of appropriate dimensions. A | v e T vy > )
Considering system (1), we assume that :anorder ¢ (v(i)) =4 0 !f —Uo(i) = Vo(i) = Uo(i)
dynamic output feedback stabilizing compensator vy +uoey I v < —uog) ©)
z(t+1) = Acxc(t)+ Bey(t) @ Vi=1,...,m
ve(t) = Cexc(t) + Dey(t) Since, by hypothesis, the controller (2) is supposed to

stabilize system (1) in the absence of saturation, the ratri

where i, (1) € R s the cc_)ntroller statey, = y(t) is A is Schur-Cohn, i.e., in the absence of control bounds, the
the controller input and..(t) is the controller output, was
closed-loop system would be globally stable.

designed to guarantee some performance requirements an ) . . .
9 g P g he basin of attraction of system (8) is defined as the set

the stability of the closed-loop system in the absence of b, N .
control saturation. ofall £ e R such that for£(0) = ¢ the corresponding

Suppose now that the input vectoris subject to ampli- trajectory converges asym'ptotlcally to the onlgln. In mart
AN . ) ular, when the global stability of the system is ensured the
tude limitations defined as follows: ; ;
basin of attraction corresponds to the whole state space.
—up < u = ug (3) However, in the general case, the exact characterization
' _ of the basin of attraction is not possible. In this case, it
whereug;) > 0,7 = 1,...,m, denote the control amplitude js important to obtain estimates of the basin of attraction.
bounds. In consequence of the control bounds, the actugbnsider then the following definition:
control signal to be injected in the system is a saturated pefinition 1: A set€ is said to be a region of asymptotic
one, that is, stability for the system (8) if for alk(0) € £ the corre-
sponding trajectory converges asymptotically to the arigi
t) = sat(ve(t)) = sat(Cex.(t D.Cx(t 4 . . .
u(t) = sat(ve(t)) = sat(Core(t) + =) @) Hence, the idea is to use regions of stability in order to
where each component ofat(v.(t)) is defined,¥i = approximate the basin of attraction [17].
1,...,m, by: The problem we aim to solve throughout this paper is
summarized as follows.
Problem 1: Determine the anti-windup gain matrik.
and an associated region of asymptotic stability, as lasge a
possible, for the closed-loop system (8).
o ; ©) Of course, the implicit objective in Problem 1 is to
In order to mitigate the undesirable effects of the ' P |

Windup, caused by input saturation, an anti_windup terrﬁptimize the size of the basin of attraction for the closed-
E.(sat(v.(t)) — v.(t)) can be added to the controller [2], loop system (8) over the choice of the gain matfix This
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—Uo(l) |f vc(i) (t) < —UO(i)
vy (t) 1 — o) < vegs) (1) < wog)
ugy 1 vy (t) > uog)

sat(ve(t)) ) =



can be accomplished indirectly by searching for an anti- Theorem 1:If there exist a symmetric positive definite
windup gainE, that leads to a region of stability for the matrix W e R(+7e)x(ndne) g matrix Y € R7m*(ntne)
closed-loop system as large as possible or even that ensuaesl a matrixZ € R"<*™, a diagonal positive definite
global stability. matrix S € R™*™ satisfying:

In order to address Problem 1, we propose to use
quadratic Lyapunov functions and ellipsoidal regions of

- . X W -Y’ —WA'
stability, as will be seen in the sequel. _y 25 SB' 4+ ZR’ | >0 (13)
I11. STABILITY CONDITIONS —-AW BS+RZ w

_Y’.
@ 1>0 i=1,..m

following polyhedral set ©

Consider a matrixG € R™*(+n) and define the W WK’
KW =Y “g(i)

(14)
st {ee R s —yy = (K—G)E <upy  (10) then for the gain matrixz, = ZS~! the ellipsoid&(P) =
{& € Rtre ¢/ PE < 1}, with P = W1, is a region of
stability for the system (8).
Proof. The satisfaction of relations (14) implies that the
Y(KE) TH(KE) — GEL <0 (11) set&(P) is included in the polyhedral sef defined as
i . ) . _.in (10) with G = Y P [18]. Hence, from Lemma 1, for
is v_ern‘led for any matrixI” € %™ *™ diagonal and positive | £(t) € &(P) it follows that $(KE(t)) = KE(t) —
definite. _ sat(KE(t)) satisfies the sector condition (11). By consider-
Proof: Consider the three cases below. ing the quadratic Lyapunov function as defined in (12) and

Lemma 1:Consider the function)(v) defined in (9). If
¢ € S then the relation

(@): —ugu) < Ki§ < ugg) by computing the variation o (£(¢)) along the trajectories
In this case, by definitiony(K;£) = 0 and then of system (8) one gets:
(K0 &) T [ (K@ é) — Gié] =0 AV(E() = V(E®) = V(E(t+1)) =
(0 Kioé > oy §()'PE(1) — €(t) (A'PA)S(E

+2£(t)'A'P(B + RE )y (K¢(1))

—¥(KE(1)) (B + RE:) P(B + RE.)y(K¢ (t()l)s)
Thus, by using the sector condition (11) it follows tHat
AV (£(t) = €'PE - '(A'PA)E +28’A'P(B + RE. )Y

w(K(i)ﬁ) - G(i)f = K(z‘)§ — Uo(i) — G(i)f <0 _ 1//(B + REC)’P(B +RE.)Y + 27/)/T[¢ - GE
and, since in this casg(K;¢) > 0, one gets ] ) (16

vT > 0, T diagonal, or equivalently
V(K )T, [V (K@) — Gé] <0 X X,

(€): K& < —ug)

In this casey(K;)&) = K& —ugp). If £ € S'it
follows thatK;{ — G;y¢ < ug(;). Hence, it follows
that:

s ] (17)

In this case (K ¢) = Kué +uo. It € € St WNere
follows thatK ;& — Gi)& > —uq(;). Hence, it follows X, =P—-A'PA
that: Xo = A/P(B + REC) - G'T

X3 =2T — (B+RE,)P(B + RE,)

P(K$§) — Giyé = K€ +ug) — Gi)§ =0 , ,
o Note now that, by Schur's complement, relation (13) is
and, since in this casg(K;¢) < 0, one gets equivalent to

V(K E)Ti,0)[(Ki)§) — G)é] <0 { W -Y’

v 9 ] — X,PX,>0 (18)

for all T(; ;y > 0.
From the 3 cases above, onfec S we can conclude with X, = [-AW (BS+RZ2)]
that ¢(K ;&) T, [V (K»)§) — Gpé] < 0, VT > 0, Considering nowl”’ = S—! and pre and post-multiplying

Vi =1,...,m, whence follows (11)C P 0 |.
(18) by 0T it follows that

Consider now as Lyapunov candidate function, the X, X

quadratic function { X} X2 } >0
2 3
V(£(t) = &(t)' PE() 12)
1For notational simplicity we drop the time dependence and idens

whereP = P/ >0, P e R(tne)x(ntne) £(t) = € andy(KE(t)) = v.
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As a result, the quadratic form in (17) is positive definiteare also feasible solutions for (13) and (14) which means
implying AV (£(¢)) > 0 (i.e, V(&(t+1) < V(£(¢))). Since that the new proposed condition is more generic and less
this reasoning is vali¥/¢(t) € £(P), £(t) # 0, it follows  conservative than the classical one. On the other hand, note
that the functionV'(£(¢)) is strictly decreasing along the that in (1) it appears a constant and, in this case, the
trajectories of system (8). Hence, we can conclude thabmain of stability corresponds to a &P, v~ 1) = {¢ €
E(P) is a stability region for system (8) which meansR™*"c ; ¢ P¢ < 41}, Considering the result obtained
that for any£(0) € £(P), the corresponding trajectory with the new sector conditiony can be normalized as
converges asymptotically to the originl without loss of generality.

Theorem 1 provides stability conditions for the system
(8) in a local context. Considering the global stabilitye th
following corollary can be stated.

Corollary 1: If there exist a symmetric positive definite
matrix W € R(ntne)x(ntne) g diagonal positive definite
matrix S € R™*™ and a matrixZ € 1"<*™ satisfying:

IV. NUMERICAL ANTI-WINDUP GAIN DESIGN

Based on the result stated in Theorem 1, in this section
we aim to present a numerical procedure in order to solve
Problem 1. The main idea is to obtain an anti-windup gain
matrix that ensures the local stability of the closed-loop
system in a region of the state spdg&™"-. We are then

w -WK’ —-WA' interested in one of the following cases:
—KW 28 SB'+Z'R’ | >0  (19) 1) A set of admissible initial conditiong, c R+,
—AW BS+RZ w for which asymptotic stability must be ensured, is

then, forE,. = ZS—1, system (8) is globally asymptotically given. In this case_E_’C S_hOUId be comque_d irlorder
stable. to ensure the stability in a sé€f(P) containing=.

Proof: ConsiderG = K. It follows that (11) is verified 2) We aim .to dﬁsign .the ant;-v:}indgp .gair; in orQer
for all £ € R™t"<. In this case, (19) corresponds to (13) to ma_xm:jze the est|rrr]1ate Odt e basin of attraction
and the global asymptotic stability follows] associated to it. In other words, we want to compute

E. such that the associated region of asymptotic

It should be recalled that the global stability can be stability is as large as possible considering some size

achieved only when the matri¥ has all its eigenvalues criterion. . o
in the closed unit disc [16]. Hence, the global stability Both cases can be addressed if we consider &geith

condition proposed in the Corollary 1 should be used onlg given shape and a scaling factér For example, le€, _
when A satisfies this assumption. Otherwise, only the locdf€ defined as a polyhedral set described by its vertices:
stability can be ensured. . _ _ =, 2 Cofv, € R r=1,...,n,}

Remark 1:The results in [11] for the continuous-time
case are stated considering a classical sector condition:

W(KE)TH(KE) — AKE] <0, VeEe S(K,u)) (20)

Recalling Theorem 1, we aim at searching for matrices
W,Y, S, Z in order to satisfy

B Eo CE(P) (24)
yvhereA is a positive di_agonal matrix and the stfK, u3) |y case 1, mentioned above, this problem reduces to a
is a polyhedral set defined as follows: feasibility problem with3 = 1 whereas in case 2, the goal

S(K,ué) = {£ € R —u()\ < K¢ < US} (21) will bg to maximize,é’.. Note that in the Iast_cquD defines
the directions in which we want to maximiz& P). The

with u())‘(i) = lf%(i? = i=1,...m problem of maximizing3 can be accomplished by solving
Considering this sector condition and following a similarthe following optimization problem:
procedure to the one applied in the proof of Theorem 1, min g
the following conditions are obtained for the discreteeim W.2,5,Y,p
case: subject to
, , w -Y’ —WA'
w ~-WK'A —/WA/ / (4) -Y 28 SB'+Z'R' | >0
—AKW 25 SB' '+ Z'R >0 (22) —AW BS+RZ 1,74 (25)
~AW BS+RZ W ) - Wi, v, 1
7 )
1% (=M WK | o KW -Ye  uge -
(1= Ao KW YU = / i=1,..m
. v,
O<A(i7i)§1, 1=1,...m (”Z) |:£J; W:|>0’ r=1,...,n,

Note that these matrix inequalities are bilinear in vagabl Considering = 1/,/u, the minimization of implies
W and A. It is easy to see that (22) and (23) corresponthe maximization of3. The satisfaction of the inclusion
to the conditions of Theorem 1 by taking = AK. relation (24) is ensured by the LMiii). Note that (25) is
Hence all the solutions obtained considering (22) and (223 eigenvalue problenfil8].
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A. Gain Constraints

. . . . .. . a4k \
A constraint of anti-windup gain limitation can be added \\
to the optimization problem (25) as follows. Note that, sinc 3r
E.= 7S 'itfollows that E.(; jy = Z; ;S . Hence, if o
2] ] (]7])

[ SGno L) } >0 '
Zayp  Sua 1T % or

by the Schur's complement one has L
—1 —1 2L

0= ZaS;.5%60 5.5 2 0
which ensures thatE.; ;))* < o _3\N

By the same reasoning, structural constraintstncan
be taken into account in (25) by fixing some of the elements  s— - - L . - .
of matrix Z; ;) as zero.

V. |LLUSTRATIVE EXAMPLES Fig. 1. stability region and trajectories féf. = 0.0920

Example 1:Consider the following linear open-loop un- o
stable system: ¢

e(t+1) = 1.22(t) +u(t) T

y(t) = a(t) o

and the stabilizing PI controller 2

z(t+1) = x(t) — 0.05y(t) ¢ o

ve(t) = zc(t) —y(t)

u(t) = sat(ve(t)) 21

Let the shape s€i, be defined by as a square region in -4r

the spacer®: B

EO=CO{{H;[11};{_11];{_“} I B ; ; : :

Considering, the control bound, = 1 and a scaling _ ] ) ] . ] ) ]
factor , we aim to compute an ant-windup gain, in 9%, & oM Obaned Wil - 0.0 b doman obtaned it
order to obtain a region of stability=, C £(P) with 5 as  region of linearity
large as possible.

Using the optimization problem (25), the obtained opti-
mal solution isg = 1.9165 with smaller than the previous one. On the other hand, if we

0.0497 —0.0377 consider the classical sector condition one obtaihs=
P = [ _0.0377  0.1472 } and E. = 0.0920 —0.0011 and 8 = 1.5729, which shows that the proposed
approach is less conservative.

The figure 1 depicts several trajectories of the closed- The obtained domains of stability are shown in figure
loop system as an attempt to illustrate its basin of atbacti 2 The ellipsoidal estimates of the domain of stability
Regarding the state of the plant, it can be seen that the (@re seen to Span beyond the region of |inearity meaning
main of stability is confined to the interval0) € (=5, 5).  that saturation does effectively occur for certain initial
In fact, the closed-loop system presents two additionglonditions inside the estimated domain of stability.

equilibrium points in+ 1 25814 ) Example 2: Consider the model of an aircraft borrowed
AP . . . from [19]. The matrices of the discrete-time system ob-
On the other hand, the ellipsoidal estimate includes poinis. ; . : o
ained with a sampling period @f.001s are the following:

that are close to the boundaries of the basin of attraction,

especially in the direction of the state of the plant, thus 1.0000 0.0010 0.0000

providing a reasonable estimate of the basin of attraction. A= 0 0.9992 0.0432 | ;

In this regard, it is important to remark that the optimieati 0 0.0010 0.9987

criterion and the choice gty are degrees of freedom that

influence the ellipsoidal estimate of the basin of attractio —0.0000 —0.0000 10 0
It should be pointed out that without anti-windup gain B = | —0.0172 -0.0016 | ; C = [ 01 0 }

(i.e., E. = 0) the maximal value of? is 1.7562 which is —0.0002 —0.0003
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The matrix A has unstable eigenvalues. The followingprevious approaches. Furthermore, it has been shown that

matrices corresponds to a stabilizing controller. the

A, = —0.0087 ; B, = [ 2.2633 —0.3088 | ;

o]

Consider now the control bounds given day =

—173.4958
—17.5120

393.2203
38.6827

—53.3798

Ce = [ —5.4587

} (1]

200 2

300
and the shape set defined as an hypercube in thé spal@

defined by the states of the plant:
1 1

—_

1

(4]
= 1 -1 1 -1
=0 = { 1 ) 1 9 _1 ) -1 }
0 0 0 0 Bl
Solving (25) with the data above one obtains: (6]
E.=[0.0052 0.0004 ] ; 8=3.0801 7]

On the other hand, considering a similar optimization
problem based on conditions (22) and (23), one obtains ais]
optimal solutiong = 1.7498, which corresponds only to
56.8% of the 3 obtained with the new proposed condition. (g
Furthermore, it should be pointed out that, in this case, the
solution is not directly obtained. The optimal solution for[lo]
the BMI problem has been obtained by solving interactively
LMI problems with A fixed.

VI. CONCLUDING REMARKS [11]

We have provided a method to design an anti-windup
gain aiming at enlarging the region of asymptotic stabil-
ity of discrete-time linear control systems with saturateglz]
inputs. The method considers a given output linear feed-
back designed for the original systems in the absence of
saturation, and provide a design of an anti-windup gain iﬂgl
order to improve its region of asymptotic stability. Such an
improvement is always possible since the trivial solution

SO ; 14]
(zero gain) is part of the set of solutions encompassed lgy
the method.

Stability conditions, in both local and global contexts/tS]
have been stated. These conditions are based on the proposi-
tion of a new modified sector condition The main advantaggs]
of the proposed approach is that the stability conditioms ar
directly in an LMI form. Considering a criterion associated,
to the maximization of the stability region (estimate of the1g]
basin of attraction), it is then possible to formulate th&-an
windup synthesis problem directly as a convex optimizatiotlg]
problem, avoiding the iterative schemes present in the

results obtained with a classical sector condition are

particular cases of the present one.
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