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Abstract— This paper describes an approach to synthesising
anti-windup compensators which can improve the behaviour
of systems subject to actuator saturation while also taking
into account uncertainty in the system. The class of uncer-
tainty considered is reasonably large and, moreover, is of the
type often used in practice and often considered in linear
robust control. The development of the ideas makes use of a
‘decoupled’ representation of an anti-windup scheme which
is useful for comparing the results from standard approaches
to anti-windup compensation to those compensators obtained
using the new robust approach. An interesting, but perhaps not
surprising feature of these results is that the often-criticised
internal model control (IMC) anti-windup solution emerges as
an ‘optimally’ robust solution.

I. INTRODUCTION
The problems associated with robustness, or lack thereof,

to model uncertainty and the problems associated with actu-
ator saturation have focused the minds of control engineers
for over a decade now. Remarkably though, these problems
have often been considered in isolation and the authors
are only aware of one substantial body of work which
attempts to unify some of the results ([1]). On a second
look though, perhaps this is not so odd: actuator saturation
could be considered, crudely, as model uncertainty and
taken into account in the same way as other uncertainty;
this could be handled quite routinely in the H∞ and µ-
synthesis approaches to controller design. Unfortunately,
the introduction of another uncertainty into the optimisation
problems has the tendency to make the resulting design
overly conservative and potentially of low performance.

In contrast, those engineers studying the behaviour of
systems subject to actuator saturation have, by and large,
chosen to ignore the effect of model uncertainty in their
proposals. In anti-windup particularly this has been the
case, with the prevailing attitude being to assume that if
the nominal linear design is robust, then the anti-windup
compensated system will inherit this robustness. This makes
some intuitive sense, although it seems more logical to
hypthosise that nominal linear robustness is a necessary,
but not sufficient, condition for the robustness of the overall
anti-windup compensated (nonlinear) system.

The origin of this work has two sources. The first
inspiration came from the work of [1] which contains a
useful account of pioneering early work on linear systems
subject to actuator saturation and model uncertainty. In [1]
is a collection of papers which address the analysis and
synthesis of controllers which, a priori, account for actuator
saturation and also ensure some degree of robustness for
the feedback interconnection. Most of these papers deal
with the same type of uncertainty: parametric or state-space
uncertainty, generally of the form

ẋ = Ax+Bsat(u)+ ∆(x, t)
︸ ︷︷ ︸

uncertainty

(1)

Although this type of parametric uncertainty is certainly
useful, in practice it is quite limited in scope and is not
very useful for capturing unmodelled dynamics which can
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be more of an obstacle than their modelled, but uncertain,
counterparts.

The second point of origin was the paper [2] where some
initial ideas were put forward to anti-windup compensation
in the presence of model uncertainty. This current paper is
a continuation of those ideas, but with more constructive
synthesis techniques. It is important to remark that the mo-
tivation for this work, and also for that of [2] is practical: in
our experience it has really been the unmodelled dynamics
which have caused the most difficulty in controller design
and, while present, the parametric uncertainty, has played
a less prominent role (it is often easily countered by large
enough low frequency gain).

The aims of this paper are two-fold. Firstly it aims to
bring robustness to the fore in anti-windup compensation,
where, except for [3], it has had little prominence. Secondly,
this paper aims to promote the use of a type of uncertainty
which is closer to that often used in practice (and to that
used in linear robust control theory, which has had great
success recently).

Notation used in the paper is standard. In particular we
define the induced L2 norm, or finite L2 gain, of an

operator H as ‖H ‖i,2 := sup06=x∈L2

‖H x‖2
‖x‖2

where ‖x‖2 =
√∫ ∞

0 ‖x‖2dt is the L2 norm of the vector x(t) and ‖x‖ is
its Euclidean norm. The H∞ norm for a linear operator P
is defined as ‖P‖∞ := supω σ̄ [P( jω)] where σ̄(.) denotes
the maximum singular value and P( jω) is the frequency
response matrix associated with the linear operator P. We
do not explicitly distinguish between a linear operator and
its transfer function. Equivalently, the H∞ norm may be
defined as ‖P‖∞ = ‖P‖i,2.

II. A GENERAL ANTI-WINDUP FRAMEWORK
We begin from the scheme introduced in [4], where anti-

windup is interpreted as choosing an appropriate transfer
function matrix M(s). The scheme is shown in Figure
1 where G(s) = [G1(s) G2(s)] is the plant and K(s) =
[K1(s) K2(s)] is the controller. This can be re-drawn as
the decoupled scheme in Figure 2. We have used the fact
that the saturation function and the deadzone functions are
related by the identity

sat(u) = u−Dz(u) (2)

sat(u) =





sat1(u1)
...

satm(um)



 Dz(u) =





Dz1(u1)
...

Dzm(um)



 (3)

where sati(ui) = sign(ui)min(|ui|, ūi) ∀i and Dzi(ui) =
sign(ui)max(0, |ui|− ūi)∀i. Also ūi > 0 ∀i ∈ {1, . . . ,m}.

In [5], it was shown that most anti-windup schemes can
be interpreted as certain choices of M(s) and therefore
schemes such as the Hanus conditioning scheme ([6]) and
the high gain approach ([7], [8]) can be analysed in terms
of Figure 2. The advantages of viewing anti-windup in
terms of Figure 2 is that the nominal linear performance
is separated from the nonlinear part of the scheme and
moreover, the stability of the scheme is dependent on the
stability of the nonlinear loop. From Figure 2, it can be
seen that the performance of the anti-windup compensator is



intimately related to the mapping Tp : ulin 7→ yd : if the norm
of this mapping is small, then the anti-windup compensator
is successful at keeping performance close to linear (which
we assume is the desired performance). In [9] (see also
[10], [11]), the L2 gain of Tp was minimised using a
system of linear matrix inequalities and, furthermore, M(s)
was chosen such that it corresponded to static or low order
anti-windup compensators. [9] demonstrated, using suitable
examples, that direct minimisation of Tp was central to
good anti-windup performance and compensators designed
according to the ideas in [9] seemed to perform a least
as well, and often better, than most other anti-windup
compensators.
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Fig. 1. Conditioning with M(s)
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Fig. 2. Equivalent representation of Figure 1

A. With uncertainty
Let us now consider the configuration in Figure 3 where

G̃ is the true plant given by G̃(s) = [G1(s) G2(s)+∆G(s)],
where G(s) = [G1(s) G2(s)] is the model of the plant
with which we work and ∆G is additive uncertainty to
the feedback part1 which we assume is stable and linear.
Other types of uncertainty such as output-multiplicative
where G̃2(s) = (I + ∆o(s))G2(s) and input multiplicative
uncertainty G̃2(s) = G2(s)(I +∆i(s)) could be used instead.
However, it is easy to see that both these uncertainties can
be caputured by additive uncertainty (∆G = ∆oG2 or ∆G =
G2∆i), although the converse is not always true (unless G2 is
invertible), so we prefer to work with additive uncertainty.
When uncertainty is present in the system, the appealing
decoupled structure of the original scheme is lost. Figure 4
shows an equivalent representation of Figure 3 . Note the
term ∆GM : ũ 7→ y∆ destroys the decoupling of the linear
system and nonlinear loop.

1It is likely that there will also be a perturbation of the disturbance
feedforward portion of the plant,G1, although this will have no bearing on
stability, so for simplicity we do not consider it
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B. Assumptions
1) The open-loop plant, G(s), is asymptotically stable.

This assumption is, in most cases, necessary for us to
obtain global results.

2) The (linear) uncertainty ∆G(s) is asymptotically sta-
ble. This mirrors the case in standard H∞ control
theory and allows us to use small-gain methods.

3) The nominal linear closed-loop system is robustly
asymptotically stable. When the saturation nonlinear-
ity is replaced by the identity operator, the closed-
loop system is stable and furthermore can tolerate
a certain amount of uncertainty (‖∆G‖∞ < γ , where
γ = ‖(I −K2G2)

−1K2‖∞) before becoming unstable.
This essentially amounts to assuming that the design
of the linear controller K(s) is “good” in the sense
that it robustly stabilises the system. We also assume
that the nominal linear closed-loop is well-posed.

4) The nominal linear closed-loop yields desirable per-
formance. This is a common assumption in the anti-
windup literature, and the performance of the anti-
windup compensator can be measured against the
deterioration of this performance when the control
signals saturate. This is related to the foregoing point
in the sense that we also assume that the linear closed-
loop yields desirable robustness properties and thefore
the performance of the anti-windup compensator can
also be assessed against its preservation of the linear
system’s robustness properties.

On the basis of these assumptions three features are
evident from Figure 4:

1) If ∆G is small in some sense, then the robustness
of the anti-windup scheme is similar to that of the
nominal, unconstrained linear system (via a Small
Gain argument).

2) If the mapping from ulin 7→ Mũ is small, again, the
robustness of the anti-windup system is similar to that



of the nominal linear system. (again using a Small
gain argument). So in other words the map ulin 7→ Mũ
contains important robustness information.

3) The robustness of the system with anti-windup com-
pensation can never be better than the robustness
of the linear system. Denoting the ‘modified’ un-
certainty ∆̃G : ulin 7→ y∆, this follows by noting that
‖∆G‖∞ = ‖∆G‖i,2 ≤ ‖∆̃G‖i,2 (by using a contradiction
argument). So, in a sense, the retention of the linear
system’s robustness can be considered as an optimal
property (discussed in more detail later).

III. SPECIAL CASE: IMC ANTI-WINDUP

Before we explore the consequences of uncertainty in
anti-windup further, it is interesting to consider a special
case: the much-maligned IMC anti-windup scheme. IMC
anti-windup was introduced in [12] as an anti-windup
methodology but many examples have shown it to be a
poorly performing anti-windup scheme (e.g. [13]). This can
be easily seen by viewing IMC anti-windup in Figure 2:
to obtain IMC-anti-windup we simply choose M = I. The
nonlinear ‘loop’ becomes simply the deadzone operator, and
the disturbance filter becomes the open-loop plant. Hence
the IMC performance will be poor if the open-loop plant
has lightly damped modes or nonminimum phase zeros.

As is often the case in linear control theory, there is
a trade-off between performance and robustness and this
seems to extend to anti-windup compensation. Consider
uncertain anti-windup in Figure 4 and choose M = I,
then again the nonlinear loop degenerates to the deadzone
function and the troublesome term, which destroys the de-
coupling of the linear and nonlinear parts of the system,
simply becomes the uncertainty, ∆G. This scenario is re-
drawn in Figure 5. For consistency we have retained the
notation ylin and ulin, although it should be understood that
these signals are no longer generated by a purely linear
system. Assuming no saturation, simple small gain analysis
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Fig. 5. IMC anti-windup with uncertainty

shows that we have stability robustness against all input
additive uncertainty

‖∆G‖∞ <
1
γ

(4)

where ‖(I −K2G2)
−1K2‖∞ := γ . Carrying out a small gain

analysis on Figure 5 we see we have stability providing that
the ‘modified’ nonlinear uncertainty ∆̃G satisfies

‖∆̃G‖i,2 <
1
γ

(5)

But as

‖∆̃G‖i,2 ≤ ‖∆G‖∞‖I −Dz(.)‖i,2 = ‖∆G‖∞‖sat(.)‖i,2(6)

= ‖∆G‖∞ (7)

we see that we have stability robustness to all uncertainty
satisfying inequality (4). However, as we also have ‖∆G‖∞ ≤
‖∆̃G‖i,2 we must have that ‖∆̃G‖i,2 = ‖∆G‖∞. In other words,
the IMC anti-windup scheme is guaranteed to be robustly
stable for the same class of additive uncertainties as the
nominal linear system. Recall, that it is not possible for an
anti-windup scheme to be more robust than the nominal
linear system because much of the anti-windup scheme’s
time is spent operating as a linear system. So, in a sense,
the retention of the linear system’s robustness properties is
optimal. Hence, although IMC schemes can be criticised
for their performance, they are in fact optimally robustly
stable!

IV. GENERAL CASE
A. A stability robustness criterion

From Figure 4, we have that

ylin = G1d+G2ulin +∆G[ulin−MF (ulin)]= G1d+G2ulin +∆̃G(ulin)
(8)

where F (ulin) is the map from ulin to ũ. Carrying out a
small gain analysis we see that the system is robust against
all additive perturbations such that

‖∆̃G‖i,2 = ‖∆G[I −MF (ulin)]‖i,2 <
1
γ

(9)

So nominal robustness is retained if ‖[I −MF (ulin)]‖i,2 ≤
1. However as F (ulin) = 0 around ulin = 0 (as it contains
the deadzone), ‖[I−MF (ulin)]‖i,2 can never be strictly less
than unity. Again this conclusion coincides with our prior
discussion as we could not expect an anti-windup scheme
to yield greater robustness margins than the linear system
upon which it is constructed. This also serves as justification
for the IMC scheme, although it is unlikely to be the unique
compensator which achieves this optimality.

B. Stability robustness optimisation
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Fig. 6. Robustness optimisation for general anti-windup schemes:
graphical representation of Tr

Here, we consider robustness optimisation using full-
order anti-windup compensators. As in [5] we choose M(s)
to be part of a right-coprime factorisation of G2(s) =
N(s)M−1(s) (this is a dual result to [14], where anti-windup
is described as a left coprime factorisation of the controller)
and attempt to choose a particular factorisation such that
robustness is optimised.

To preserve as much robustness as possible we would
like to minimise‖Tr‖i,2 := ‖[I−MF (ulin)]‖i,2. This can be
shown as Figure 6 where we want to minimise the L2 gain
from ulin to z. As mentioned in [9], this optimisation is
typically a difficult problem to solve, so instead we seek to
ensure a certain L2 gain bound holds for the map Tr.

Given a nominal plant realisation



G2 ∼
[ Ap Bp

Cp Dp

]

(10)

a full-order right coprime factorisation can be described as

[
M
N

]

∼
[

Ap +BpF Bp
F I

Cp +DpF Dp

]

(11)

where F is chosen such that Ap +BpF is a Hurwitz matrix.
To ensure robustness, that is to ensure that ‖Tr‖i,2 < γ , it

suffices for the following inequality to hold for sufficiently
small γ:

J =
d
dt

x′Px+‖z‖2 − γ2‖ulin‖2 < 0, x,z,ulin 6= 0 (12)

where x is the state vector associated with the realisation of
[M− I,M]. As shown in, for example [15], [9] this ensures
that the L2 gain from ulin to z is less than γ and that the
system in Figure 6 is asymptotically stable.

The deadzone nonlinearity belongs to the Sector [0, I] (see
[16], chapter 10), so we make use of

2ũ′W (ulin −ud − ũ) ≥ 0 (13)

where W > 0 is a diagonal matrix, to form

J̃ =
d
dt

x′Px+‖z‖2 − γ2‖ulin‖2 +2ũ′W (ulin −ud − ũ) (14)

If J̃ < 0, this implies that J < 0. Evaluating J̃ in a similar
manner to [9] (see also [10], [11] for the discrete-time cases)
yields the following LMI





QA′
p +ApQ+L′B′

p +BpL BpU −L′ 0 L′

? −2U I U
? ? −µI −I
? ? ? −I




 < 0

(15)
in Q > 0,U = W−1 = diag(ν1, . . . ,νm) > 0,L,µ > 0.

Satisfaction of this LMI means that inequality (14) is
satisfied and hence that the L2 gain from ulin to z is less
than γ =

√µ and a suitable choice of F is given by F =

LQ−1. From the
[ −µI −I

? −I

]

term of this LMI we can

see that, as anticipated earlier, the L2 gain can be no less
than unity, which is achieved for the IMC scheme.

C. Optimisation for robustness and performance
The primary goal of anti-windup compensation is to

provide performance improvement during saturation, but
optimising the LMI (15) alone does not guarantee this.
Indeed, there is little point in optimising (15) when an
optimal solution can be found by inspection as the IMC
anti-windup solution. The real use of (15) and the arguments
of the previous subsection is to use them in conjuction
with performance optimisation, the goal being to optimise
performance and robustness together, although there will
often be a trade-off.

In [9] it was argued that Tp, the map from ulin to yd
was central to the “true goal” of anti-windup compensation:
if the induced norm of this operator was minimised, the
deviation of the system’s nonlinear behaviour during and
after saturation would be minimised. The paper [9] solved
this problem with ∆G = 0, in the L2 sense, for static and
low order compensators (see also [10], [11]).

Realistically, we would really like to optimise some
weighted combination of Tp and Tr. This can be accom-
plished by solving the LMI.







QA′
p +ApQ+L′B′

p +BpL BpU −L′ 0 QC′
p +L′D′

p L′

? −2U I UD′
p U

? ? −µI 0 −I
? ? ? −W−1

p 0
? ? ? ? −W−1

r







< 0

(16)
in the variables Q > 0,U = diag(ν1, . . . ,νm) > 0,L,µ >

0. Wp and Wr are positive definite weighting matrices
which reflect the relative importance of performance and
robustness respectively and are chosen by the designer. The
derivation of this LMI is carried out in a similar way to that
of the previous section in the spririt of that done in [9].

Remark 1: Throughout this paper, we have only dis-
cussed full-order anti-windup compensation for two rea-
sons: (i) A full-order anti-windup compensator always ex-
ists, and (ii) the expressions and derivations of formulae
for static and low-order anti-windup compensators are more
complex, although the same ideas are certainly applicable
to these types of compensator. ��

Remark 2: Another advantage of using LMI (16) to
synthesise full-order compensators is that it tends to prevent
fast poles appearing in the compensator dynamics. If a
robustness weight (Wr) was not included in the optimisation
- or if Wr was only chosen small - the poles of the anti-
windup compensator tend to be rather fast, lying far to the
left of the imaginary axis. Obviously this would require a
very high sampling frequency for implementation, which is
not always possible in practice. However, when simultane-
ously optimising performance and robustness using (16), the
poles are placed in regions more comparable to that of the
controller. This feature is reminiscent of solving ‘singular’
H∞ problems with LMI’s, where poles tend to get placed
far from the imaginary axis. ��

D. Stability robustness of the work in [10]
The work in [10], [9] advocates only the optimisation of

anti-windup performance, that is the minimisation of the
L2 gain of the operator Tp. By setting Wr = 0 and solving
the LMI (16) we obtain a full-order compensator which
only optimises this performance. As argued in [9], [10],
this operator is central to obtaining desirable anti-windup
behaviour. It is interesting to examine whether this approach
has any intrinsic robustness properties.

Suppose that we consider output multiplicative uncer-
tainty instead of additive uncertainty, that is G̃(s) = (I +
∆o(s))G2(s), or equivalently that ∆G = ∆oG2. Now, our
expression for ylin becomes

ylin = G1d +G2ulin +∆oG2(I −MF (ulin))ulin (17)

We are sure that the system is robustly stable when
F (ulin) = 0 as this is a property of the nominal linear
system. Therefore the smaller we can make the extra term
−∆oG2MF (ulin) the closer to nominal robustness we shall
be. We can do nothing about ∆o, so the logical approach is
to make

‖G2MF (ulin)‖i,2 = ‖NF (ulin)‖i,2 (18)

as small as possible. As in [10], because G2(s) =
N(s)M−1(s) is a right coprime factorisation of the plant
G2(s), the quantity in equation (18) is exactly our per-
formance operator norm ‖Tp‖i,2. Therefore the minimi-
sation of ‖Tp‖i,2 leads not only to desirable anti-windup
performance, but it also endows the saturated system with



some indirect robustness when the the uncertainty is of
the output multiplicative type. However, the robustness is
not guaranteed to approach that of the linear system (that
is, the robustness of the system with ‘robust’ anti-windup
is not guaranteed to be as great as the robustness of the
unconstrained linear system). Nevertheless, it does appear
to explain some of the results of [17] where a discrete-
time version of the results of [9] were implemented on a
hard-disk system. In that work, few robustness problems
were encountered and the above analysis goes some way to
explaining this.

V. EXAMPLE
To demonstrate the implications of our results we use

an example introduced in [18]. The example consists of a
plant with a large resonant peak and the controller used
is a two-degree-of-freedom controller with large feedback
gain. However, we shall take this plant to be the perturbed
plant, G̃(s) rather than our nominal plant. We shall also use
a controller with a slightly lower gain, for reasons which
shall become clear later.

A. The unperturbed system
For our nominal plant we take the example of [18] with-

out the resonant peak (i.e the system is critically damped).
Thus, G2(s) ∼ (Ap,Bp,Cp,Dp) is described by the state-
space matrices:

Ap =
[

0 1
−10 −10

]

,Bp =
[

0
10

]

,Cp = [ 1 0 ] ,Dp = [0]

(19)
The linear controller K(s) = [K1(s) K2(s)] ∼
(Ac, [Bcr Bc],Cc, [Dcr Dc]), which was designed for
the plant G(s), is described by the state-space matrices

Ac =

[ −80 0 2.5
1 0 0
0 0 −2.5

]

,Bcr =

[
1
0
0

]

,Bc =

[ −1
0
0

]

,

Cc = [ −9450 3375 337.5 ] ,Dcr = [0],Dcy = [−135]

This is the same controller as in [18] but with a lower gain
in the feedback loop. The dashed line in Figure 7 shows the
response of the linear system to a pulse input of magnitude
1.2; the system is well behaved with no overshoot and a
fast settling time. When the control input is saturated at
±1 however, the system degrades to that shown by the
dash-dotted line in Figure 7; the system still exhibits no
overshoot, but actuator saturation has impaired the system’s
ability to track it’s reference signal accurately, the reference
and response being out of phase.

To improve the behaviour of the system, static anti-
windup compensation as suggested in [9] is introduced.
This anti-windup compensation minimises the difference
between the nominal linear system’s response and the
saturated system’s response and was synthesised as

Θ =
[ −0.1909

0.1402

]

, ‖Tp‖i,2 < γ ≈ 24 (20)

A diagram of how this compensator is implemented is given
in Figure 8. Note that the unperturbed system is quadrat-
ically stabilisable by static anti-windup compensation, but
we cannot be sure that the perturbed system also has this
desirable property (in fact it does not). The solid line in
Figure 7 shows the response of the system with static anti-
windup: the response has improved and the system output
is now in-phase with the reference demand, although the
infeasibility of the reference means it is not possible for the
output to track the input with the correct magnitude. The
robust and full order anti-windup compensators introduced
in the following sections both yield a similar response to
that in Figure 7 when used on the nominal system G(s).
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B. The perturbed system
The true, or perturbed, plant, G̃(s) = G(s)+∆G(s) is the

plant given in [18]. This has a large resonnant peak and is
described by the following state-space matrices:

Ãp =
[

0 1
−10 −0.01

]

, B̃p = Bp,C̃p = Cp, D̃p = Dp (21)

The dashed line in Figure 9 shows the response of this
perturbed plant using the same controller as before; the
controller yields a similar type of performance to before and
hence can be considered satisfactory. However, when input
saturation is introduced, the static anti-windup compensator
actually drives the system unstable as depicted by the solid
line in Figure 9. In fact, this static anti-windup is worse
than no anti-windup at all, which at least remains stable.
Note that for this perturbed plant and controller, static anti-
windup is not feasible, so we cannot expect it to stabilise the
system in question. To overcome this problem, we choose
Wp = 0.001 and Wr = 1 and we synthesise a robust dynamic
compensator according to the LMI (16) . This yields the
matrix F as

F = [0.2242 0.0446]×10−4, γ ≈ 1 (22)

In this case we have essentially the IMC solution, as F is al-
most zero. As γ ≈ 1 we can expect to recover the robustness
results of the linear system. Figure 10 shows the system’s
response; the system is stable and although the response
is not as good as the unperturbed system, it is substantially
better than that of the static anti-windup compensation. Note
that this robust anti-windup compensation also performed as
well as the optimal static anti-windup compensation when
applied to the unperturbed plant.
C. Other anti-windup compenators

As discussed in Section IV-D the full-order anti-windup
compensation method obtained by setting Wr = 0 and solv-
ing the LMI (16) can, in a certain sense, provide a robust
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Fig. 9. Response of perturbed system with optimal static anti-windup
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Fig. 10. Response of perturbed system with robust anti-windup

anti-windup solution. This type of anti-windup solution is
the continuous time counterpart of the discrete-time full-
order compensator described in [10]. We designed a full-
order anti-windup compensator according to this approach,
choosing Wp = 1 and Wr = 0.0001 ≈ 0 and then solving the
LMI (16). The optimal gain matrix F was given by

F = [−1.3138 −0.1424]×104, γ ≈ 1 (23)

It is important to realise that in this case the guaranteed
robustness margin of the system is now given by

√

µ/Wr ≈
100, although this appears to be a conservative estimate.
Again note that this places the poles of the anti-windup far
into the left half plane and, therefore, this would require
a fast sampling frequency for correct implementation. Fig-
ure 11 shows the response of the saturated system using
this compensator; the stable response is indicative of the
scheme’s intrinsic robustness properties, although it does
appear to be more oscillatory than that of the robust anti-
windup compensator.

VI. CONCLUSION
This paper has introduced a framework for synthesising

robust anti-windup compensators for open-loop systems
subject to additive uncertainties. The problem was posed
in a similar way to that of linear H∞ control theory and the
solution which was proposed appears as a set of LMI’s of a
similar type to those proposed in [9]. The attractive feature
of the proposed solution is that the class of uncertainties
considered are those which are routinely considered by
control practitioners. As an important aside, we have also
demonstrated the optimal robustness of the much denigrated
IMC anti-windup strategy.
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Fig. 11. Response of perturbed system with full-order anti-windup

We note that many simple anti-windup schemes also
seem to be quite robust in practice. For example the Hanus
scheme ([6]) has been the practitioners method of choice
for some time (see [8], [19]) although it is not so easy to
prove this theoretically as the Hanus scheme is only globally
stable for a small class of systems, so proving that it is
globally robustly stable, generally, is impossible. However,
it seems likely that the Hanus scheme could be examined
with respect to something which might be described as local
robust stability.
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