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Abstract— The stability and robustness analysis of PD-plus- PD feedback controllers and a feedforward term containing

feedforward controllers comprised of a nonlinear gain PD complete manipulator dynamics [7], [8], [9].
feedback controller and a nominal manipulator dynamics

feedforward term is presented for the tracking control of rigid [I. MANIPULATOR DYNAMICS AND PROPERTIES
robot manipulators. Exponential convergence and the uniform The dynamics of am-joint rigid robot manipulator can
ultimate boundedness of the tracking errors are established. . qascribed by the Euler-Lagrange equations [10]

Simulation results are presented.
M(q)d + C(q,a)q + g(a) + Faq + £5(q) + ug = u (1)

|. INTRODUCTION where q € R™ denotes joint coordinatedyVi(q) is the

. . ymmetric positive definite inertia matri;(q, q)q is the
Control schemes for the trajectory tracking control 0€ector of centripetal and Coriolis termg(q) is the vector

g%d Irob?t r‘é\&:cnlpulaéor;[;:fn be tbrloadlﬁl classmet()j ats [1]61‘ gravity terms,F, is the diagonal positive semi-definite
-plus-feed-forward (PD+) control schemes, robust Corf, .y, o dynamic friction coefficientst,(q) is the vector

tsr:rlleorlr?jsggrse igfln ?ii%tlgfaﬁzggggcmkitgr%d%ngg?ofglgtsrgf static friction termsyu is the vector of control inputs, and
o P P -~ 11 is the vector of unknown but bounded disturbance terms.
loop stability and a feedforward component for trackin

. “NYhe model (1) exhibits some important properties [1] which
performance [2]. The feedback component is often a Ilne%r n be exploited to facilitate controller design. For subse-

constant gain PD controller and the feedforward compone ﬁent developments we use the following notatiaf:(A )

may consist of complete manipulator dynamics, parti oPd \ur(A) denote the smallest and largest eigenvalues,

dynamics, or it may be abgent completely. For the_case Ospectively, of a symmetric matrid, [x| — vxTx
the feedforward term consisting of complete manipulator,

. o ; . denotes the norm of a vectar, and || A|| = \/Axm(ATA)
dynamics, stability analysis of linear PD+ control schemea . . .
. . : enotes the induced matrix norm of any real matkix
has established the global asymptotic and exponential siar, . _ : T,
bility for the tracking control of rigid manipulators [2] operty 1: Mf(q) = (-j(q’ q) +O (a,4) [10]

y 9 9 P ' Property 2: There exists a positive constaky: such that
[3], [4], [5]- When the feedforward term does not contain
the complete manipulator dynamics, the origin of the state- [C(x,¥)z|| = [|C(x,2)y[| < kcllylllzl Vvx,y,z (2)
space is no longer guaranteed to be an equilibrium point ghe constant: satisfies the following bound [11]:
the closed-loop system and the tracking errors do not vanish
as time increases. For these cases, stability and robustness ke >n? <_m%x |cijk(q)> 3
analysis of the linear PD+ controllers has established expo- _ SN .
nential convergence and thmiform ultimate boundedness Whereci;i(a) is the (i, j, k)-th Christoffel symbol used in
of the errors for tracking control of manipulators[2]. the definition of matrixC(q, q). . _

Although the stability of closed-loop systems using th&roPerty 3: Since the inertia matridV(q) is symmetric
PD+ control laws is assured, performance is governed by tpositive definite and bounded for any there exist positive
choice of controller gains. The constant gain PD+ controllgfonstantsn, andm; such that
requires comparatively large initial actuator torques and m|x|? <x"M(q)x < ma|x|?, Vq,x €R™ (4)
actuator size can become a limiting factor for controller . _
performance. To improve closed-system performance, indanerem = qleann)\m(M(q)), m2 = jﬁ@,AM(M(Q))'
pendent joint nonlinear gain PD controllers have been intrd=or the following control design it is assumed that the
duced [6], [7], [8], [9]. These controllers have proportionalffiction effects, disturbance terms, and joint angle velocities
and derivative gains that are nonlinear functions of the joiraire bounded as follows:

position qnd velocity errors. The benefits of using the non- (< krar = Am(Fa) < Aur(Fa) = kpao (5)
linear gain PD+ controllers have been demonstrated using ko £ (c b y 6
simulation and experimental studies on rigid manipulators fs = ;;1]15” s ud = f;ﬁ”ud( )| ()
and global asymptotic stability results have been established . : .

" o I . X = t|l, kqao = t]. (7
for position control with independent joint nonlinear gain aat ti%i”qd( )l a2 f’e%i”qd( M- @
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The Control Problem: Given the desired joint angle trajec- for uy, has been extended to nonlinear gain PD controllers
tory qq(t) with finite first and second derivativeg;(¢) and [7], [8], [9].

dq(t), design a control law which assures that for any initial Here a more general structure of the gain matrices is
conditions and any admissible uncertainties, the positiotbnsidered for further extending the class of representations
and velocity trajectoriegy(t) and q(t) exponentially track of uy, for trajectory tracking control of-joint rigid robotic

the reference trajectories;(t) andq,(t) with some desired manipulators with nonlinear and coupled dynamics as given
rate of convergence and within some desired degree bf equation (1). The nonlinear controllers of this class are
accuracy. The joint angles and rates are assumed availatkfined according to

for feedback. N . NS
uy, = Ky, (q)q + Ka(q, 49,94, 44)q (14)
IIl. NONLINEAR CONTROLLERS FORTRAJECTORY ) . . . . . .
TRACKING OF RIGID MANIPULATORS where the derivative ga|n mat”Kd(q, q, 94, Qd) IS as-

. . sumed symmetric positive definite and bounded for all
The goal of the tracking control problem for robotic™ . i . .
,4,94,9q- In the following, we denote the symmetric

manipulators is to design a control law(q, q, 94, 44, Qa) q ?

s0 that(q, &) tracks(qg, 44) in Some sense. To accomplishpOSitive definite derivative gain matrix a&,(q,q), but
this, the following general control structure is considered:the subsequent developments equally hold for the more

general casd{,(q, q, a4, qq4). To ensure global asymptotic
u=1us(q,q,94,94) + usr(q,9,94,44,44) (8) stability of nonlinear gain PD controllers for manipulator
position control, previous studies [7], [8], [9] have con-

whereu,, is the feedback portion and;, is the feedfor- sidered positive definite diagonal proportional gain matrix
ward term. Here we investigate the stability robustness 3 (& . ~ . : )
»(@) with k(@) > 0,4 = 1...n as its diagonal

a class of nonlinear controllers with the feedforward term; . . i
élements. Here, the proportional gain mati&,(q) is

urs =M, (q)dq + Cn(q,q)dq + gn(q) (9) assumed symmetric with the structure:
whereM,,(q), C,.(q,q) andg,(q) represent the nominal kp11(da) kp12 kpin
or estimated values faM(q), C(q,q) andg(q), respec- ~ kp21 kp2a(Ga) - kpon
tively, and are subject to the following bounds: Ky (q) = : : . : (15)
o = Suﬂg ||M(Q) -M, <Q)H (10) kpnl kan te kpnn((jn)
qeR™
S = sup 1C(q, é1a) — Cnla, aa) (11) The diagonal elements &€, (q) have an upper bound and
a€eR™, |4l <kqa a positive lower bounde. they satisfy
04 = —gn 12 - ~
g ;;15”8(@ g.(a)l (12) R > k(@) 2 k05 >0, VE € R, (16)
Even though the subsequent stability and robustness an@r ; = 1,... n. Define constant symmetric positive defi-

ysis requires the existence of the above bounds, 68ly nite matricesK™ and KM as

needs to be known explicitly aralpriori to ensure stability ? P

and robustness. In the case of manipulators with a knowd,' = Ky(a) —diagK,(a)] +diagki;, - - ., k,y,,) (17)
range of uncertainty only in the inertia parameters, th

bound §- can be determined using (2) and (3). In many

applications an unknown payload is the main source ofK )" = K, (q) — diagK, ()] +diagk,{,, - -, kp.,) (18)
uncertainty thus leaving a single uncertain inertia parameter u '
affecting the computation ofc. Given kp;; > kp;; > 0,1 = 1,---,n, one can always

The general structure ofif, is motivated by the fact CONStructK;* and Kj\;f as defined in (17) and (18). For
that rigid manipulators belong to a class of mechanicg@xample K" andK," can be defined adiagonally dom-
systems that can be stabilized by PD-type control laws. THBant symmetric positive definite matrices satisfying

proposed feedback term is a general affine function of the n
tracking errors as per: A O D
) N . N =1,
up, = Kp(q, 9,94, 44)a + Ka(a, 4,94, 9a)a (13) s

with possibly non-zero off-diagonal elemerits;;.

whereq = qq—q andq = qq —q are the joint position and e fol10wing properties of the above gain matrices are
velocity errors, and<,(q, 4, qa; 4a) andKa(q, 4,44, da)  ysed for the stability analysis of nonlinear controllers.

are function m_atrices selected_ to satisfy stability and PeBroperty 4: Since the proportional gain matrk,,(q) and
formance requirements. In their simplest fork, andKq4 the constant matrice&™ and KM are symmetric and
P p

are diagonal positive definite constant matrices yielding t ositive definite, there exist positive constahts and &
most common independent joint linear PD control law. T P

: . i, , uch thatvqg, x € R",
improve certain performance characteristics or satisfy con-

straints on the control torques the class of representatios; [|x||* < x"K/'x < x"K,(q)x < x" K} x < kx|
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wherek,; = A\, (KJ') andkys = A (K))). Definition 1 Uniform Ultimate Boundedness (u.u.b.) [12]:
Property 5: Since the derivative gain matriK,(q,q) is A solution x(t) : [to,00) — RN of (21) with initial
symmetric and positive definite, there exist positive coneondition x(tg) = x is said to beuniformly ultimately

stantskq; and kg such that for allg, g, x € R®, boundedif there exist positive constants and ¢, and
) e ) for every o € (0,¢) there is a positive constarif (o)
kar[[x[|” < x" Ka(@, @)x < kao|[x]| such that|xo| < o implies that |x(¢)] < b for all

whereky; = inf A\ (Ka(@, @), koo = sup Ay (Ka(§,§)). = to+ T'(o). Here the constant is referred to as the
@ (Ka(Q d)). kaz p A (Ka(q ) ultimate boundUniform ultimate boundedness says that the
IV. STABILITY AND ROBUSTNESSANALYSIS solution trajectory of the system (21) beginningatat time

Here we present the results concerning the stability dp Will ultimately enter and remain within the closed ball
the closed-loop system when the controller (14) is used fd#(0)- If B(b) is a small region about the equilibrium, then

trajectory tracking with the dynamics described by (1). Thé\-U-D- is a practical notion of stability, which is also called
closed-loop system of (1), (9) and (14) is given as practical stability The next lemma contains conditions that

. . . . guarantee the u.u.b. and the global exponential convergence
M(aq)a+C(a,q)q+ Kp(a)q+[Ka(q,q) + Fala = Au (to a closed ball) of the solution trajectories of (21) [13].
(19) Lemma 2: Suppose there exists a continuously differen-
where tiable scalar functior/(x,t) : RY x Ry — R, with the

_ _ N N 7 following properties: (i) there are positive constantard
Au = [M(q) - M,(q)ldq + [Q(q, q) ‘ Cr(@:@da  _oh thatvx € RY andt e R,
+ [g(q) — gn(q)] + Faaq + £(q) +ug  (20)

clx|* < Vi(x,t) <ellx|?,
and (19) is anon-autonomousglifferential equation since
qq andd, are time-varying trajectories. Before stating thell) there are constan{g > 0 ande > 0 such that along the
stability results, we present the following lemmas. solution trajectories of (21)
Lemma 1: Consider a dynamical system V(x,t) < —pV(x,t) +¢ (25)

x; = £ (x1, ..., Xm, 1) (21) for all x s.t. uV(x,t) > ¢ andt € R,. Then the solution
e o trajectories of (21) are uniformly ultimately bounded and
}/vhelrlef_ < Iﬁ't ' f(')tLZ =1, 't't"m and# > Of Letl fi_ bf globally exponentially convergent to the closed h&llr)
ocally LIpSChItz with TeSpect I&, .. . , Xy, unitormiy in of radiusr = /¢/(p€). If in addition, ¢ = 0, then the

on bounded intervals and continuoug ifor ¢ > 0. Suppose : . . -
: = system (21) is globally exponentially stable about its origin
a scalar function/(x,t) : RV x Ry — R, is given such [1y3] (2l)isg y exp y g

that 9 In the following, sufficient conditions are given for the
V(x,1) 2 cillxl] (22) u.u.b. and exponential convergence of the solutipn=

wherex” = [xT,...,xT], N =ni +...+nym, ¢; >0 for @ da" of the closed-loop system (19).
i=1,...,m, and along the solution trajectories of (21) Theorem 1: Consider the robot model in (1) together with
the nonlinear gain PD+ controller in (14). Let the derivative

gain matrixK,(q, 61) be symmetric positive definite for all

’ Tij 12 oy . . . .

V) <= v Y wilx l[x:l|” + ¢ d,q € R™ with kg, > é¢, and the proportional gain matrix
ich JEL2i K,(q) be symmetric and has the structure given by (15)
where~;,~i;,7i; >0, ¢ > 0andly C I C {1,...,m}. with _diagonal elemipts satisfyi_ng (1_6). If the symmetric
If Vi € I (with reference to (22)) mat_n_cesKgf _and K, as desc_nbed in (17) and (18) are

/2 positive definite, then the solutiaq of the closed-loop sys-
S Z (VY (23) tem (19) is uniformly ultimately bounded and exponentially

v Yig cj convergent to the closed balt(r) defined below.

j€I2;

whereVy = V(x1(0),...,x,,(0),0), then

Proof: Consider the following scalar function:

Viad) = 3d M@a+ [ K (2)dz + 0d"M(a)d

Vo "/ 2 0
VB € [ 0,vi — Z Vij <O) ; (26)
GEI; € where the integral term can written as
the following inequality holds " i e < .
. Z / zikpii(zi)dz; | + 3 Z Z kpijGid;
Vix,t) < =Y Billxill> +¢ (24) i—=1 \70 i=1 j=1,j#i
i€l and « is a sufficiently small positive constant such that
for |x|| > R where R = /¢/(min 3;). . fkp ma 2(ka1 + kfar — dc) 0 @7
Proof: The proof follows from Lemma 2.1 in [5]. [ | i ma’ Mo’ 3wko + 2my + pk* oz
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wherek™ = ka2 + kckgar + ka2 + ¢ and constanp is

ka2 + kckqar + ka2 + 0c
>
21

and constaniv > 0 which will be defined later.

>0 (28)

The first term ofV(q, 51) is a positive definite function
with respect tay becaus@®I(q) is a positive definite matrix.
To show that the integral term in (26) is a positive definite

function, rewrite it as

n

/ "R (e = Y ( / " z,.k,m(mdzi)

=1
1. .
+5 aKr'aq— - kaql (29)
= Z d k,m ~2 1 ~TKm~
Z p'n Z’L) Zi — 5 “ql + §q D q
From (16), we have foi =1,...,n
Gi Gi
/ Zikpii(z:)dz; > / zikpydzi = k]mqZ (30)
0 0
which yields using, (29) and Property 4,
a 1
[ K@i aTKpa = ghaldl? @D
0

Therefore, the lower-bound of (26) can be given as

~ A 1 2 1 ~ ~ 2
V(@& = 5milldll® + Skl + 0d" M)

Now, the cross term in (26) can be upper-bounded as
~T 2 ~ 2 1 ~ 112 2
leq” M(q)q| < amzlldlljall < Sama(llall” + llal®)
(32)
Hence, we havexa’M(q)q > —iama(l|a|® + [|lall?).
Therefore, we can lower-bourid(q, q) as

S 1 - 1 - 1 - -
V(g,q) > §m1||Q\|2 + §kp1||q||2 - iamz(qu +llal?)
> c1]|al® + c2llqlf® (33)
1 1
wherec; = i(kpl —amg) andeg = i(ml —amg) (34)

Sincea satisfies (27) implyingnin{c;,co} > 0, we have

From (16), we have fof =1,...,n

Gi di
/ Zikpii(2i)dz; < / zikpdz; = k;,”{qu (36)
0 JO
which yields using, (36) and Property 4,
q
| Ko < jalKYa < ghalal’. @)

Therefore, using (32) with Propemes 3 and 4, we can place
an upper-bound oW (g, g )

~ A 1 ~ 1 ~ 2 1 -
V(@8 < gmaldl* + sama(lal + 1) + 5kl al?

< esllal® + callall? (38)

1 1
wherecs = §(am2 + kp2) andey = 5(04 + 1)mg (39)

Thus the candidate Lyapunov functi®f(q, ) in (26) is a
globally positive definite, radially unbounded and decresent
function satisfying the inequalities:

c(lali® + llal?) < v(a,a) < e(lali® + lal?)
where_c= min{c;, c} > 0 and ¢ = max{cs, ¢4} > 0.
From Property 1, the time derivative &f(q,q) along
the solution trajectories of (19) is given by
V(@a) = -q"[Ka(@q )+Fd]q+aq TM(a)d
+ aqTC(q, a)"a—0q"K,(@)a (41)
— 0q"[Ka(@,q) +Faa+ (@" +aq")Au

Now, we establish upper bounds on the following terms.
Using Property 2, we have

(40)

aq"C(q, 44 — 0)7q

akellas — allllallllal (42)
akckearl|alllall + akellalllall?
and sinceM(q), K, (q) andK4(q, q) are positive definite
matrices, using Properties 3-5, we obtain
aqTM( )a < amollq|® (43)
a"[Ka(@,a) + Faa < —(ka + kgar) @] (44)
—aq 1K, ( )G < —akylal® (45)
| - aq" [Ka(@ a) + Fala| < a(ke + ksa)llallllall (46)

2" Clq,9)"a =

IAIA

ensured that/(q,q) in (26) is globally positive definite From Property 2 and the bounds (5)-(7), (10)-(12), we have

and radially unbounded and is zero at the equilibrium poin

(@ = 0,4 = 0). Therefore, the scalar functiovi(g, q) in

(26) is a Lyapunov function candidate. To show that the
scalar function (26) is decresent, rewrite the integral term

as

n

/: 2'K,y(z)dz =

Gi
(/ Zikpii(zi)dzi>
i=1 0

1~T M ~ 1 . JLI~2
+5a" K —§Zk (35)

it q;

g </ zikpii (zi)dz; —

1 ,
M ~2 ~Tyr M ~
2kpn z> + aq Kp q

hiC(a ) — Cula, @laall = C(a ) — Cula, aa)ldl
< cllaq — all (47)

| Au|| < Garkigas + 0 (gar + 411) + 6,
+ kraskgar + ks + kua (48)

= 11+ 2|l

wheren;, = darkgaz + (¢ + kraz)kqar + 04 + kfs + kua
andn, = é¢, and

(@ +aq")Au < |qf|Au] + afdl] Au|
< am|qll +mlal
+ama|lallllall + n2/lal?

(49)
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It now follows from the inequalities (42)-(46) and (49) thatconvergent to the closed bal¥(r) wherer = \/e/(uc)
the time derivative ofV’(q, él) becomes (c and care given by (40)). ]
oz 29 _.o Remark 1: Since the lower-bound af is zero, (56) can be
V(@) < —(kar + krar — amaz —m2)llal]” — akpllall®  gatisfied for any initial condition;, by choosing arbitrarily
+ a(kaz + ka2 + kokqar +n2) 4l |4l small o. Therefore, the domain of convergence is in fact

mlall + any||@l + oke|lall||all? (50) the entire state space and the solutigrof the closed-
loop system (19) is globally exponentially convergent to
the closed ballB(r) though without a uniform rate.

+

which can be rewritten as
V(@,q) < —(kar + kyar — a)[[all* — akya [lal®

R . ~ iiiro V. SIMULATION RESULTS
+ abllallllall + mllall + amlall + akellallllall

Results are presented to illustrate the exponential con-

< —(kar + ka1 — a)llal® - Oé’fle(?lH2 vergence and the u.u.b. of tracking errors when using the
ab gl I nonlinear PD+ controller for the tracking control of a two-
+ 7( p +pllall®) link rigid manipulator. Results are also presented to allow

comparison, in terms of tracking error convergence rates and
o o ultimate bounds, between the performance of the nonlinear
< —nllal” — aveflq]l PD+ controller and the linear PD+ controller.
+millall + amlal + ekelal llal? The planar elbow manipulator used in the simulation is
assumed to be actuated by two direct drive motors: motor
1 is attached to the ground and motor 2 is attached to link
i1 and has a mass of,» = 0.5kg. The links have lengths
?1 =l = 1m, massesn; = my = lkg concentrated at
o I, ; their mid-points {.; = l.2 = 0.5m), and gravity is taken as
squares, the following inequalities hold: 9.81m/s?. The manipulator carries a payloadif = 1kg
B m N Z located at the distal end of link 2. The moments of inertia
mlall < (\/ﬁ) + (2> <l (51)  of both links are taken to bd, — I, — 0.0833kg.m2.
2 2 For the purpose of illustration, the manipulator dynamics
mllall < (771> + (\/E> al? (52) without friction and disturbance terms are used with the
V2 2 only uncertainty due to payload varying in the range of
and using the above inequalities, the upper bound @ — 1]kg.

+llal + am|lall + akellalllal?

wherea = amy + 72, b = kg + kckqdl + kfdg + 12,
vy = kq1 + ka1 —a — %apb, vy = kp1 — 2—’;, andp is
a positive constant satisfying (28). Since the conditions
(27) and (28) imply that,, 5 > 0, now by completing the

V(q, 4) can be written as The desired trajectories of the joints are specified as
e L 3 L 3 ~ U = 0.257 + 0.5(1 — cos(0.57t
V@@ < —uldl? - Jorslal® + okclallal? o (1o 0T) (e
5 qd2 = 0.5m 4 0.25(1 — cos(wt))
(6%)

+ %1 + 7]1 (53) These trajectories were tracked using two controllers whose
o . . feedforward component is given by (9) with the nominal
= —mllal” = :lal” + 2 llallllal” + dynamic termsM,, (q), C..(q,q), andg,(q) are computed

wherey, = 3avy /4, 75 = 311 /4, andyy, = ake  (54) using a nominal payload of,; = 0.5k¢ which is different
from the actual payload of 1kg used for this simulation.

e = ﬁj + 0‘777% (55) The feedback components of these controlleragge s =
" ) K,q + K,q for the linear PD controller, and
Define w in (27) asw = (Vo/c1)Y/? > 0 whereV = K () A
V(q,q)|i=0 > 0 for positive definiteV(q,q) ande¢; > 0 uso—npd = Kp(@)a + Ka(q,a)a (59)
is given by (34). Since: satisfies (27), we have for the nonlinear PD controller.
As stated in the previous section, tbaly requirements
T2 > Y210 (56)  for ensuring thestability of the above controllers are

and hence, using Lemma 1 fgh € (0,72 — 721w) With positive definite proportional and derivative gain matrices

|l > \/2/ min{71, B2}, the following inequality holds ~ chosen such thaks, > dc. From (58), the bound on
) ) the joint velocities is given afqq|| < 1.1 rad/sec. Using
V(a,q)

< —mlal? - Ballal? + ¢ the above numerical values for manipulator parameters and
< —min{yy, B2 }(|dl|® + lal?) + e (57) Property 2, the positive constakt: calculated based on

< V(4 ;)+€ C(q,q4) — Cn(q,qq) is given askc = 2. Therefore,
=THVAq we obtain the boundic using Property 2 and (11) as
where i = min{y;, 82}/¢. Now using Lemma 2, we can dc = 2.2. Now, theperformanceof the feedback controllers
conclude that the solutio of the closed-loop system are dictated by the type of nonlinear gain functions and the
(19) is uniformly ultimately bounded and exponentiallyactual parameters chosen for entries of the gain matrices.
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In this section, the feedback controllers are designed using
a numerical optimization techniqué4] and the Lyapunov
function based conditions are used only as stabiiby-
straintsfor the optimization problem.

Using this optimization process, the following diagonal
gain matrices were obtained

K, = diag197.06,41.94] and K, = diag70.11, 14.6]

194.2 74.3

0.2+]G1]’ 0.2+]g=]

tion error (rad)

for us,_pe, and K,(q) = diag{
K4(d,q) chosen as

} and
74.4 7.6 }
(0.5 + |Gu|)(1+0.07|ga]) " (0.1 + |G2])(1 + 0.07|g])

for us,_npq. For the range of values considered for the
tracking and velocity errors in the simulation, namely
for |g;) < 1.6 rad and|g| < 10 rad/sec, it is readily
verified that the diagonal entries are positive a&gd > i
for the selected gain matrices thus satisfying the stability
requirements. The parameter valuesify_,pq andus,—pq
were selected to achieve minimal tracking errors subject to
maximum joint torques:*** = 200N.m, us®* = 80N.m,
and the above stated stability constraints. The particular
choice of nonlinear gain functions in (59) is motivated by
the task of tracking the desired trajectories (58) quickly
and accurately subject to the maximum torque and stability
constraints. Fig.
The results of the simulation are shown in Fig. 1
Fig. 1(a) shows the exponential convergence of tracking
errors for both controllers and demonstrates that improvegp;
convergence is obtained using the nonlinear PD+ controller
while satisfying actuator limits (Fig. 1(d)). Fig. 1(b) & (c) 3
illustrate the improved ultimate bounds obtained for the
tracking errors of joint 1 & 2 using nonlinear gain PD+
controller. The improvements in the closed-system perfor—[4
mance using nonlinear gain PD controllers are attributed to
their exploitation of nonlinear gain variations (that dependI]
on g andq) as depicted by the difference in torque profiles
in Fig. 1(d).

posi

diag

position error (rad)

(6]

VI. CONCLUSIONS -

The tracking control of rigid manipulators using a gen-
eral nonlinear PD+ controller with incomplete feedforward g
dynamics has been shown to have exponential convergenJ:e]

and uniform ultimate boundedness of the tracking errors
and sufficient conditions have been established using &'

modification to the energy Lyapunov function and a lemma
for addressing higher order terms in Lyapunov functiorilo]
derivatives. Simulation results illustrate the stability an
robustness analysis and demonstrate the potential for p

formance improvement with this class of nonlinear PD+

[12]
controllers. [13]

11
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