
 
 

  
Abstract—An output-feedback controller design for flexible-

joint manipulators is presented. The proposed controller 
design consists of a nonlinear Luenberger-type observer, 
multilayer neural network plant identifier, and controller 
based on a backstepping framework and variable structure 
controller. Only link angular positions are measured as 
outputs.  The controller achieves good performance despite the 
presence of additive external disturbances, unmodeled 
dynamics, actuator nonlinearities, i.e., deadzone and backlash, 
and payload changes. Simulation of a two-link flexible-joint 
manipulator is included. 

I. INTRODUCTION 

YNAMIC modeling and control design of flexible-
joint manipulators have attracted the attention of many 

researchers due to the fact that joint flexibility is one of the 
major obstacles in the design of high performance motion 
controls for industrial robots [1]. Sources of joint flexibility 
arise from driving components such as actuators, gear teeth, 
transmission belts, or transducers inserted in joints to 
measure joint torque. Thus, if high performance is required, 
joint flexibility should be taken into account in both 
modeling and control design. 

Controller design for flexible-joint manipulators is quite 
a challenging problem. Besides being a highly coupled 
nonlinear system, the system is under-actuated, i.e., the 
number of control inputs is less than the degrees of 
freedom, which prohibits each link to be directly actuated 
by the torque input. In addition, the system possesses hard 
nonlinearities in the form of friction, deadzone and backlash 
[2]. In operation, the manipulator is usually also subjected 
to external disturbances, both repetitive and non-repetitive. 
In some situations, it is also impossible technically or 
economically to have sensors for all states. Moreover, the 
system is usually time varying due to payload changes. 

In the past, several control design schemes have been 
proposed for control of flexible-joint manipulators based on 
such design frameworks as backstepping, passivity-based, 
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singular perturbation and intelligent techniques such as 
fuzzy logic and neural networks. Comparison among 
various backstepping and passivity-based controllers based 
on cascaded plant is presented in [3]. Control design based 
on singular perturbation can be found in [4], [5], [6]. 
Intelligent techniques used for plant identifiers are reported 
in [7], [8]. All previous works are based on some rather 
restricted assumptions, such as unknown plant parameters 
must be linearly parametrizable, acceleration or force must 
be measured, plant is known exactly, disturbances are 
allowed only at input channels, system must be 
autonomous, etc.  

The controller design technique used in this paper is 
presented by the authors in [9]. Fig. 1 depicts the system 
block diagram. Multilayer neural networks are used to 
identify unknown plant functions using their universal 
approximation properties. Nonlinear Luenberger-type 
observer is used to estimate unmeasured states. This enables 
us to design a controller using only link angular position 
measurement. Controller structure is based on backstepping 
technique. Robustness is provided by variable structure 
controller. The plant being controlled is a two-link flexible 
joint manipulator subjected to external additive 
disturbances. Extension to more links can be done naturally 
and is not presented here. We include actuator 
nonlinearities, i.e., deadzone and backlash, and a reasonable 
friction model, as proposed in [13], in the plant used in our 
simulation. The control objective is to track a desired 
trajectory while payload changes.  

The paper is organized as follows. Section II contains the 
system description. Section III contains identifier, observer 
and controller designs. Section IV presents simulation 
results and Section V is the conclusion. 

II. SYSTEM DESCRIPTION 

Fig. 2 depicts the schematic of a two-link planar flexible 
joint manipulator. Links are driven by motors via chains 
and sprockets. Each joint has a linear torsional spring to 
provide flexibility. The second motor and sprocket are 
attached to the first link.   

A. Dynamics Model 

Lagrange’s method is used in deriving the mathematical 
model. Details of the derivation can be found in [10].  
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Assumption 1: kinetic energy of the second motor and 
sprocket are mainly due to their pure rotation and neglect 
the rotation of the link.  

Imposing Assumption 1 and letting 1 1 2[ ]Tq θ θ=  and 

2 5 6[ ]Tq θ θ= , we then have the plant model in a more well-
known form [11]: 
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where 1( )M q  is inertia matrix, 1 1( , )V q q�  is Coriolis matrix, 
K is joint flexibility matrix, J represents the inertia of 
motors and sprockets, B represents internal damping of the 
torsional spring, and 1 2[ ]TT T T=  is the input torque 
vector.  

B. Friction Model 

A reasonable friction model [13] is as follows:  
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where 0 1 2, , , , ,c s sF F vσ σ σ  are unknown parameters usually 
obtained from experiment, ξ  is the average deflection of 
the bristles in the micro scale, θ�  is the relative angular 
velocity between the two surfaces, and F is the friction 
force that comprises coulomb friction, Stribeck effect, and 
viscous friction. 

C. Deadzone Model 

Deadzone is a static nonlinearity that describes 
insensitivity of the system to small input signals. Deadzone 
at the input to an actuator system, e.g., DC motor, is usually 
caused by friction and mechanical wear. Because a 
deadzone changes the characteristic of the desired control 
input, compensation is needed to remove its effect. 
Compensation schemes using multilayer neural networks 
can be found in [2]. The mathematical model of deadzone 
as in [12] is given as follows: 
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,d d− +  are unknown numbers and may be time-varying. 

1( )h u  and 2 ( )h u  are unknown functions. 

D. Backlash Model 

The space between teeth on a mechanical gearing system 
must be made larger than the gear teeth width as measured 
on the pitch circle in order to avoid jamming when two 
gears are meshing. Backlash is the difference between tooth 
space and tooth width. Backlash results in a delay in the 

system motion. When the driving gear changes its position, 
the driven gear follows only after some delay. A backlash 
model as in [2] is given by 
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, ,d d m− +  are unknown numbers.  

E. Overall Plant Model 

Fig. 3 depicts the overall plant model, where u is our 
designed control input, τ  is output of the deadzone model, 
and T is output of the backlash model, which is input torque 
to actually drive the manipulator. Both τ  and T are not 
measurable. Adding a friction model (2.2) to the dynamics 
model (2.1), we have the overall model as follows: 
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where 1 1 1 2( ) [ ( ) ( )]TF q F Fθ θ= � �� and 2 2 5 6( ) [ ( ) ( )]TF q F Fθ θ= � �� . 
Letting 1 1 2 1 3 2 4 2, , , ,x q x q x q x q= = = =� �  we can transform 
the model to strict feedback form as follows: 
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where 2,ix T ∈ \  and ,i if g  are as follows: 
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Assumption 2: 1 2 , 1, , 4,ai ed C L i∞∈ ∀ =∩ …  are additive 
uncertainties that may depend on some states and time and 
are bounded by 

( , ) , 1, , 4, 1, 2,aik i aikUd x t d i k< ∀ = ∀ =…    

where aikUd  are unknown. 

III. CONTROL SYSTEM DESIGN 

Definition 1: *( ) ( ) ( )ˆ= −i i i� , where *( )i  is actual value to 
be estimated, ( )i�  is estimated error and ( )î  is estimated 
value.  

A. Identifier Design 

Each unknown function in (2.5) is identified by one 3-
layer NN as in Fig. 4 using its universal approximation 
property proved in [14]. Each variable in the network can 
be defined as follows: 
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( )s i  can be any appropriate activation function. In this 
paper we use a sigmoid function 

( ) 1/(1 ),iz
i is z e z−= + ∀ ∈ \ . 

Assumption 3: Any smooth nonlinear function, 

1 2( , , , )ng z z z ∈… \ , can be represented by a 3-layer NN 
with some constant ideal weight matrices, * *, ,W V as 
follows:  

* *
1 2( , , , ) ( ) ,T T

ng z z z W S V Z ε= +…   

where Uε ε<  is approximation error with unknown 
0Uε > . 

Assumption 4: * *, ,U UF
W W V V≤ ≤ where UW  and 

UV  are not known. 
The approximation of 1 2( , , , )ng z z z…  is given by 

ˆ ˆˆ ( ).T Tg W S V Z=  (3.1) 

Lemma 1: The NN approximation error can be put in a 
linearly parameterized form in terms of W�  and V�  as  
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Proof: See [15].                  
  

Replacing unknown functions in (2.5) with neural 
network estimates, we have 
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where 
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B. Observer Design 

To design an observer for plant (2.5), we proceed from 
mapping the states of the plant to the derivatives of the 
output y as follows: 

11 111

14 13 41 1 4
4

21 122 2 4

24 23 42

( ) ( )
( ) .

( )

( )

e

e
e

e

e

y xy

y xy H x
y H x

y xy H x

y xy

ϕ

ϕ

    
    
    
      

= = = = =      
     

    
    

        

# ##
���

# ##
���

 (3.3) 

Assumption 5: The plant (2.5) is uniformly completely 
observable. 

Proposition 1: Using a nonlinear observer [9] as follows: 
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where { }1 2
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There exists , 0 1η η< ≤ , such that ˆ(0, ), x xη η∀ ∈ →  as 
t → ∞ . 
Proof:  See [9]. 

C. Controller Design 

Assumption 6: There exist known constants 0ijkUg >  
such that  ( )ijk ijkUg g⋅ ≤ , 1, 2,3, 1, 2, 1, 2.i j k∀ = ∀ = ∀ =  

Assumption 7: 2 2
1d ex C L∞∈ ∩  is a vector of desired 

trajectory. 
Assumption 8: There exist unknown constants 0ijUx >  

such that , 1, , 4, 1, 2.ij ijUx x i j≤ ∀ = ∀ =�� …  
Assumption 9: There exist unknown constants 0iUT >  

such that , 1, 2.i i iUT u T i− ≤ ∀ =  
The control objective is to make output, 1x , follow 

desired trajectory 1dx  as closely as possible, while all the 
signals in the closed-loop systems are bounded. We propose 
the following controller for the system in (2.5). For 
convenience, arguments are dropped where appropriate. 



 
 

Proposition 2: Consider the closed-loop system 
consisting of the plant (2.5), the observer (3.4), the 
identifier (3.1), the deadzone model (2.3), the backlash 
model (2.4), and the controller as follows: 
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The smooth variable structure control terms are as follows:  
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We use the following σ -modification weight updating 
laws: 
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Assume all the above assumptions hold and assume there 
exist sufficiently large compact sets such that all input 
signals of all neural networks belong to these sets at all 
times. Then, for bounded initial conditions, we have that all 
system states ( , 1, , 4ix i∀ = … ), output (y), estimated 
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Proof: See [9].  

IV. SIMULATION RESULTS 

To represent an actual physical system as closely as 
possible, parameters of the plant dynamic model (2.1) used 
in our simulation are obtained from real experiments with 
the following results: 
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Parameters used in friction model (2.2) are as follows: 

0 10.01, 0.1, 10, 20, 0.1,c s sF F vσ σ= = = = =  2 0.02σ =  
for 1 2( ), ( )F Fθ θ� �  and 2 0.056σ =  for 5 6( ), ( )F Fθ θ� � .  

Parameters used in deadzone model (2.3) are as follows: 

1 20.1, 0.1, ( ) ( ), ( ) ( ).d d h u u d h u u d− + − += − = = − = −  
 Parameters used in backlash model (2.4) are as follows: 

0.1, 0.1, 1.d d m− += − = =  
 External disturbances that appear in (2.5) are as follows: 

1 4 1 1 1 2

2 3

[0.01sin( ), arctan( )] ,

[0.01randn(2,1)] ,

T
a a

T
a a

d d

d d

θ θ θ θ= =

= =

� �
 

where randn represents white noise. 
To simulate payload changes, all elements in the matrices 
,M V  above are multiplied by a factor of 3 during 

simulation periods from 1 to 6 s and 11 to 16 s. 
It can be verified that this system satisfies all required 

assumptions of the proposed control scheme. Only the 
output, 1 2[ , ] ,Ty θ θ=  is measured and all nonlinear 
functions are assumed unknown. The control objective is to 
guarantee that (i) all closed-loop signals remain bounded, 
and (ii) the output y follow the desired trajectory generated 
by passing a square wave of amplitude 10 and 5, for 1θ  and 

2θ  respectively, with zero mean, and 20-s period into the 
filter 31/( 2)s + . Number of hidden-layer nodes is 3. The 
observer and controller are as in Section III. All design 
parameters are as follows: 

10, 1,

15, 0.1, 2, 4,

0.1, [16,91, 216,180] , 1, 2.

wfi vfi wgi vgi ki

i wfi vfi wgi vgi ki

T
j

c i

L j

σ σ σ σ σ

η

Γ = Γ = Γ = Γ = Γ =

= = = = = = ∀ =

= = ∀ =

 

Sampling period is 1 ms. Saturation limit of control 
inputs is set at 50 Nm± . All initial values are set to 0.1. 
Simulation results are as shown in Fig. 6 to 8. We can see 
from Fig. 6 and 7 that the controller achieves good tracking 
performance of both 1θ  and 2θ  even if payload is changed 
during the two time intervals from 1 to 6 s and 11 to 16 s. 
This results from good observer and controller performance 
as seen in Figures 7 and 8, parts (c) and (e), respectively. 
Actual control inputs are bounded as shown in Fig. 8.  

To have a brief idea of how much each component in the 
control system contributes to the overall tracking 
performance, several plots are provided in Fig. 5. We 
compare four situations: a) when the observer is not used, 
b) when the identifier is not used, c) when both observer 
and identifier are not used, and d) when both observer and 
identifier are used. We can see that the tracking 
performance of this controller is comparable to that 
obtained in the ideal case. 

V. CONCLUSION 

Analysis as well as simulation using a rather complete 
model of a two-link flexible-joint manipulator shows the 

effectiveness of the proposed backstepping neural network 
observer-controller design scheme. It should be noted that 
this design scheme can handle uncertainties very well both 
from additive disturbances and from unknown nonlinear 
functions, which can be time-varying or contain unmodeled 
dynamics.  
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Fig. 1.  Observer-identifier-controller system diagram. 
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Fig. 2.  Schematic diagram of planar two-link flexible-joint manipulator. 
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Fig. 3.  Overall plant model. 
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Fig. 5. Overall tracking error ( 1 1dθ θ− ) comparison: (a) when observer is 
not used (measured states, unknown plant). (b) when identifier is not used 
(unmeasured states, known plant). (c) when both observer and identifier 

are not used (measured states, known plant). (d) when both observer and 
identifier are used (unmeasured states, unknown plant). 
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Fig. 6.  Tracking performance during 30 s: (a) 1 1versus dθ θ , (b) error 

1 1dθ θ− , (c) 1 1̂versusθ θ , (d) error 1 1̂θ θ− , (e) 1 1
ˆ versus dθ θ , (f) error 

1 1
ˆ

dθ θ− . 
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Fig. 7.  Similar to previous figure but with 2 2 2̂, , .dθ θ θ   
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Fig. 8.  Control input during 30 s: (a) torque 1T , (b) torque 2T , (c) 
variable structure control input 3 1dvscu , (d) 3 2dvscu , (e) 5 1dvscu , (f) 5 2dvscu .  


	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrP03.2
	Page0: 5250
	Page1: 5251
	Page2: 5252
	Page3: 5253
	Page4: 5254
	Page5: 5255


