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Abstract

Distributed modelling and control of Mobile Offshore
Base systems is considered. Specifically, a spatial array
system paradigm is used with a particular structure in spa-
tial and temporal dimensions. For the purpose of lineariza-
tion, a suitable coordinate transformation is applied to the
model. Comparisons between centralized and distributed
control strategies for the robust control of the system are
made. The distributed modelling approach results in lower
order models than the centralized approach, thus making
the control design both easier and faster, with no apparent
degradation in performance.

I. I NTRODUCTION

A wide variety of systems consists of similar units
directly interacting with each other or with their nearest
neighbors. These systems are often referred to asspatial ar-
ray systems. Examples of spatial array systems include ve-
hicular platoons (autonomous vehicle strings) on a highway
[12] and Unpiloted Air Vehicle (UAV’s) in formation flight
[11], as well as MEMS and smart structure systems. MEMS
consist of a wide array of micro devices which are capable
of sensing, actuating, computing and telecommunicating [8]
. All of these systems, though clearly diverse in nature, share
the feature that both the measurements and the controls
are spatially distributed; that is, each unit is equipped with
sensing and actuating capabilities. The concept of spatial
array systems can also be applied to flow control and heat
transfer problems [9] .

In this paper, we consider the modelling and control of
a specific vehicle string system, namely a Mobile Offshore
Base (MOB) system, which is, fundamentally, a string of
marine vessels (see Fig. 1). Mobile Offshore Base presents
a new application for the use of distributedH∞ control al-
gorithms for spatial array systems. A typical MOB consists
of a series of semi-submersible modules which may or may
not be physically connected. Each module is equipped with
on-board sensors, actuators and controllers - these may or
may not interact with each other. The primary task of the
controllers is to maintain the alignment of the modules so
as to form a runway in the sea.

Fig. 1. Mobile Offshore Base - five modules aligned

A. Centralized versus De-centralized Control

The strategy employed to control spatial array systems
may be centralized, fully de-centralized or distributed [5] .
In a centralized framework, all computations are performed
by a single controller and the control signals are transmitted
to each individual unit in the array; that is, sensor and
actuator information is shared globally.

Alternatively, de-centralized control schemes call for
some distribution of the computation across the network of
systems. In a completely de-centralized scenario, sensors
and actuators on the individual modules are connected only
to local controllers, which operate independently; that is
information is not shared globally. However, there may be
dynamic interactions between neighboring modules, making
the overall system interactions more complex.
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Fig. 2. Spatial Array systems - Interaction between the controllers

One factor which prohibits the widespread adoption of
de-centralized control is the lack of global performance
and stability guarantees[10]. Recently, techniques have been
developed for application ofdistributed control in spatial
array systems[3],[5]. This type of control implementation
is neither centralized nor completely de-centralized (Fig.2).



Each individual unit in the array is equipped with a con-
troller which has a particular spatial structure. The structure
determines the extent to which local information is shared
between the neighboring units. We consider the application
of such techniques to MOB systems.

II. M ODELLING MOBILE OFFSHOREBASE SYSTEMS

MOBs are modular semi-submersible floating bases
which can be easily deployed in the sea. Apart from forming
a floating interconnected runway, an MOB may also provide
flight maintenance, supply and other logistics support at sea.

MOBs may consist of any number of semi-submersible
units. In our study, we consider 5 modules, each around
200-400 m long, with no explicit physical connectors. Var-
ious configurations have been considered; see for example,
[1], [2]. In all cases, the air base is formed by aligning
the MOB platforms in an end-to-end fashion. MOB control
strategies previously considered and evaluated are discussed
in [14].

A. Single Vessel Model

The non-linear equations of motion for a single module
in a MOB can be written inbody-fixed coordinates[6] as

Mν̇ + C(ν)ν + D(ν)ν = τ + w (1)

where
• M = MRB + MA is the inertia matrix which consists

of the rigid body mode mass and the added mass
matrices;

• C(ν) = CRB + CA is the Coriolis matrix which
consists of the rigid body and added mass matrices
of the Coriolis and centripetal terms;

• D(ν) = Dp(ν) + Dv(ν) is the damping matrix which
consists of the radiation induced potential damping
terms and the viscous damping (skin-friction, wave
drift and vortex shedding);

• τ is the force vector which contains the body-
fixed components of the external forces and moments
(thruster forces, viscous drag etc),

• w is the disturbance due to wind and wave forces.
• ν = [u, v, r] is the velocity vector containing the surge,

sway rate and rotation components.
This model assumes that the MOB modules travel with a
negligible forward speed (u=0), and only horizontal motion
is being accounted for (i.e. we neglect heave, pitch and
roll dynamics in this discussion). Additional assumptions
include homogeneous mass distribution, and placement of
the origin of the body-fixed coordinate system along the
center line of the ship.

1) Transformation of coordinates:The equations of mo-
tion derived above lead to a non-linear model. For the
purpose of distributed control design, we prefer a linear
system model for the MOB. As it turns out, this linearization
can be achieved by suitable transformation of coordinates
under the low-speed assumptions which we have already
stated. One obvious choice for the coordinate transformation

is the Earth-fixed coordinatesystem[6]. This is an inertial
frame of reference with its origin at a fixed pre-determined
point.

To obtain the Earth-fixed representation, we apply the
transformation matrixJ(η) , denoting

η̇ = J(η)ν ; where
[

η̇
]

=




ẋ
ẏ

ψ̇


 (2)

and

J(η) =




cos(ψ) sin(ψ) 0
sin(ψ) −cos(ψ) 0

0 0 −1


 . (3)

The transformation matrixJ(η) transforms the equations of
motion from the right-handed body-fixed coordinate system
to the Earth-fixed coordinates, that is

η̇ = J(η)ν ⇐⇒ ν = J−1(η)η̇
η̈ = J(η)ν̇ + J̇(η)ν ⇐⇒ ν = J−1(η)[η̈ − J̇(η)J−1(η)η̇].

Using this transformation matrix, the Earth-fixed represen-
tation obtained is as follows

Mη(η)η̈ + Cη(ν, η)η̇ + Dη(ν, η)η̇ = τn + w (4)

where

• Mη(η) = JMJT ,
• Cη(ν, η) = J(CJT −MJT J̇JT ),
• Dη(ν, η) = JDJT ,
• τn = Jτ .

The transformed system model is also non-linear, as was
the case with model resulting in the body fixed frame.

A more suitable choice for coordinate transformation for
our purposes is thevessel parallel coordinate system[7].
This is a coordinate frame which is fixed to the vessel
with its axes parallel to an Earth-fixed reference frame.
The motion of the MOB is completely characterized by 3
degrees of freedom. Using the low-speed assumptions, we
infer that:

η̇ = J(η)ν ≈ P (ψ)ν (5)

where

P (ψ) = J(η). (6)

The vessel parallel system is defined by:

ηp = PT (ψ)η (7)

whereηp is the position in the body coordinates andP (ψ)
is the transformation matrix; clearlyPT (ψ)P (ψ) = I3X3.
For low-speed applications, we have

η̇p = ˙PT (ψ)η + PT (ψ)η̇

= ˙PT (ψ)P (ψ)ηp + PT (ψ)P (ψ)ν
= rSηp + ν (8)



wherer = ψ̇. Using low speed assumptions impliesr ≈ 0.
So finally we have

η̇p ≈ ν

D(ν)ν = Dν

C(ν)ν = 0. (9)

Thus, the model is transformed into the following system
of equations:

η̇p = ν

Mν̇ + Dν = τ. (10)

One of the main advantages of transforming the system
of equations into the vessel parallel coordinates is that
the transformed system is now linear inν. We can then
directly apply distributedH∞control tools for the purpose
of controller design.

At any time, the Earth-fixed positions can be computed
from the values ofηp by using the transformation:

η = P (ψ)ηp. (11)

So essentially the control system is based on the information
from the statesηp, ν and τ . At the same time,η contains
the information that describes the degree of misalignment.

B. MOB Modelling

For the purpose of controller design, we convert the
vessel parallel coordinate system model to state-space form.
In order to account for the thruster dynamics, we use a
simple first-order model for the three thrusters which are
mounted on each unit of the MOB [7]. Thus, we incorporate
the limitations of the propellers. Three time constants in
surge, sway and yaw directions (Tsurge, Tsway, Tyaw) are
used for this purpose. The thruster model which we use is:

τ̇ = Athr(τ − τcom) (12)

where τcom is the commanded thrust by the controller
and Athr is the thruster matrix determined by the 3 time
constants, i.e.,

Athr =



− 1

Tsurge
0 0

0 − 1
Tsway

0
0 0 − 1

Tyaw


 . (13)

To determine a state space realization for the equations
of motion, we consider the statesηp = [xp yp ψp]

T ,
ν = [u v r]T and τ = [τx τy τψ] . Using these states
(positions, velocities and forces/torques), the state space
representation of the system can be written in the following
form:

ẋ = Ax + Bτcom (14)

where

A =




0 I 0
0 −M−1D M−1

0 0 Athr


 , B =




0
0

−Athr


 (15)

and

x = [ηp
T , νT , τT ]

T
. (16)

Here τ is the actual control force/moment which the
thrusters apply on the MOB units. The thrusters will provide
the required force and moment to steer the MOB to the
required position. Note thatτ can be written as

u = τ =
[

Fx Fy Fψ

]T
(17)

where Fx, Fy and Fψ are the thruster (actuator) forces
in the X and Y directions, and the thruster torque in
the ψ direction, respectively. The task of the controller
will essentially be to calculate these thruster forces and
moments, and transmit this information to the actuators.

C. Physical Details

We have assumed the following in our modelling and
control efforts (for each module in the MOB)

Length = 200 m (18)

Mass = 11000 kg (19)

M =




11937.3 0 0
0 27582.5 −899140
0 −899140 94732000


(20)

D =




210.73 0 0
0 185.638 7357.311
0 7357.311 30208.82


 (21)

Athr =



−0.33 0 0

0 −0.25 0
0 0 −0.167


 . (22)

Wind and wave disturbances of varying frequencies and
amplitudes are also considered as acting on the MOB; these
disturbances correspond to conditions up to Sea-state 7
(moderate gale conditions)[7].

III. H∞ CONTROL DESIGN FORSINGLE VESSEL

The first stage in our control design process for a string
of MOB modules is the study of a single floating module.
Equation (14) describes the single vessel model in state-
space form. For the purpose of control design for a single
vessel, we assume full state feedback to the controller.
The plant-controller interaction is modelled as an LFT. The
origin (of the Earth-fixed coordinate system) is chosen as
the vessel’s desired final point. Thus, the error, denoted by
z, is measured as the distance/angle of the vessel’s center
point from the origin. The task of the controller is to steer
the MOB to the origin in the presence of the unknown wind
and wave disturbances. Additionally, to account for the low
speed assumptions that we have made in the modelling
process, we need to monitor the velocity of the MOB
module. This is achieved by considering the velocityν as an
additional error variable, separate fromη. Clearly, our error
criterion will be to minimize the errorz. Such a criterion
will ensure that the module is steered to the origin at low-
speed even in the presence of wind and wave forces.



Naturally, disturbances play a major role in the design
of any robust controller. For the purpose of simulation,
we model wind and wave disturbances as sinusoids of
varying frequencies and amplitudes, which enter the model
as forces/torques in the surge, sway and yaw directions.

IV. CENTRALIZED H∞ CONTROLLER DESIGN

The single vessel controller design forms the basis for the
centralized controller synthesis. We now consider a string
of 5 vessels, initially in proximity to one another, but not
aligned. Each of these vessels is equipped with thrusters
which can exert forces/torques in the 3 directions. A central
controller collects sensor information from all the modules,
based on which it provides each vessel with a control
force/torque command. The equations of motion for all 5
MOB modules, together with their actuator models, form
the centralized model. Since a single vessel model has 9
states, the string of 5 vessels requires a total of 45 states
for modelling the system, i.e.,

x = [η1p
T η2p

T ...η5p
T ν1

T ν2
T ...ν5

T τ1
T τ2

T ...τ5
T ]

T
. (23)

The error signals considered for theH∞ control design are:

z1 = η1

z2 = η1 − η2

z3 = η2 − η3

z4 = η3 − η4

z5 = η4 − η5. (24)

The criteria is thus to minimize the relative misalignment
between adjacent vessels. For the purpose of simulation,
we again consider full state feedback. The response of the
MOB system to the wind and wave disturbances has been
evaluated via simulations. Simulation results are shown in
Figure 3. The difference in theX, Y andψ positions of the
adjacent vessels is evaluated. As can be seen from Fig. 3, the
controller drives the relative misalignment to zero, roughly
within 0.67 minutes. The position of the first MOB module
is compared with the origin (its final position). Note that
the performance indexγ (which is a measure of disturbance
rejection) obtained for the centralizedH∞ controller design
is 3.04. The system responded similarly for all disturbances
up to sea-state 7. For larger disturbances, the MOB’s final
position oscillated around the origin.

V. D ISTRIBUTEDH∞ CONTROL DESIGN

The aim of the centralized model approach is to in-
corporate different MOB modules together in a single
system. Alternatively, we now model the MOB system as
a distributed system with identical sensing and actuating
capabilities at each module [3] [5]. The model thus obtained
is far less complex than the large centralized model of the
previous section.

An additional point to note is that the distributed synthe-
sis which we consider uses local information sharing in both
directions within the array. Recent work has indicated that
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Fig. 3. Centralized Controller Performance

information shared in only one direction (e.g. a ”lookahead”
scheme) is not sufficient to guarantee stability [13].

We have employed the spatial shift-operator multi-
dimensional modelling technique (discussed in [4], [5])
for modelling the string of vessels which form the MOB.
Using this approach, an infinite extent system realization
is captured by finite dimensional state matrices, which can
thus be used for controller design. Clearly, an infinite string
of MOB modules can be considered a spatially invariant
distributed system with one spatial variable (the positions
of the various modules). As has been pointed out in [3],
the infinite string approximation may be sufficient when
we have a large number of units in the spatial array.
Additionally, if the infinite system is well-posed, stable and
contractive, then all periodic interconnections of that system
inherit the same properties [5]. To describe the modelling
of a string of modules, first we define the following:

The forward shift operatorSi given by

(Siu(t))(s) := u(t, s1, .., si + 1, .., sL), i = 1, ...L

Similarly, the backward shift operatorSi
−1 is given by

(Si
−1u(t))(s) := u(t, s1, .., si − 1, .., sL), i = 1, ...L

The differential operatorλ is defined asλx = dx
dt , with the

inverse mapping denoted byλ−1.
Equation (10) describes the motion of a single vessel.

For the purpose of distributed control design, we consider
an infinite string of MOB platforms such that each module
at the spatial coordinates has two distinct neighborss− 1
ands + 1. The equations of motion for the platform at the
spatial coordinates now becomes,

ηp(s) = ν(s)
Mν̇(s) + Dν(s) = τ(s). (25)

To generate a multi-dimensional state-space representation
for these equations, we take the first three states as the posi-



tion in the vessel parallel coordinate system[xp yp ψp],
T

the next three states as velocities[u v r]T and the final
three as forces/torques[τx τy τψ].T Thus, the resulting
state matricesA andB for each unit are same as before. The
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Fig. 4. Plant(with the spatial and temporal structure)- Controller Inter-
connection

C andD matrices depend on the number of measurements
the sensors perform. To capture the above system in a
realization of the formM = {A,B,C, D, m} (using
the notation of [5]), the first nine states are defined as
above. The remaining six states are defined by the spatial
relationships amongst the units, namely

x10 = S1xp = S1x1

x11 = S1yp = S1x2

x12 = S1ψp = S1x3

x13 = S1
−1xp = S1

−1x1

x14 = S1
−1yp = S1

−1x2

x15 = S1
−1ψp = S1

−1x3. (26)

The resulting 15 state model thus defines the infinite-extent
system. The spatial operator modelling provides us with a
tool for evaluating a physical quantity at different spatial
locations. Thus, we are able to capture the behavior of the
entire spatial array in a single set of finite-dimensional state
matricesA, B, C andD.

The next step in the robust control design is to determine
a performance criterion for the system. This is defined in
terms of the errorz which we would like to minimize. An
obvious choice for the error is the degree of misalignment
between adjacent modules of the MOB string. Minimizing
this error will lead to alignment of the string of MOBs in
an end-to-end fashion. The error is defined as:

z1 = [xp(s + 1)− xp(s)]− [xp(s)− xp(s− 1)]
= S1xp(s) + S1

−1xp(s)− 2xp(s)
= x10 + x13 − 2x1. (27)

Similarly, we definez2 = x11 +x14−2x2 andz3 = x12 +
x14 − 2x3. To account for the physical limitations of the
thrusters, we need to keep the thruster forces/torques under a
certain pre-specified limit. In order to model this constraint,
we choose the other three output signals as the forces/torque

applied by the thrusters in the following way:

z4 = u = x4

z5 = u = x5

z6 = u = x6. (28)

The feedback signaly is chosen to be the position and the
velocity information provided by the sensors. Noise terms
have been added to each of these feedbacks to account for
the sensor and measurement noise, i.e.,

y1 = x1 + d4

y2 = x2 + d5

y3 = x3 + d6

y4 = x4 + d7

y5 = x5 + d8

y6 = x6 + d9. (29)

The differential operatorλ operates on the first nine states.
Our structured operator matrix is thus defined as follows:

∆ =




λ−1I9 0 0
0 S1I3 0
0 0 S1

−1I3


 . (30)

The finite dimensional realization for the infinite dimen-
sional system can now be written in the form:M =
(A,B, C,D,m), with m = [9, 3, 3]. The system matrices
A,B and C can now be split into temporal and spatial
parts giving ATT , ATS , AST , ASS , BT , BS , CT and CS .
The H∞ synthesis methods proposed in [5] are directly
applicable to this model.

The controller design for the distributed system involves
solving a system of LMIs in both spatial and temporal
variables. During the synthesis, it is assumed that the
controller has the same structure as that of the plant. For
the MOB model, the resulting controller has the structure

∆K =




λ−1I3 0 0
0 S1I3 0
0 0 S1

−1I3


 . (31)

Simulation results are given in Figures 5 and 6. Figure 5
shows the misalignment (distance between adjacent units)
in the X-direction. Figure 6 shows the instantaneous yaw
angles (ψ) of the modules. A non-zero initial condition is
assumed. As can be seen from the figures, the controller
drives the relative misalignment to zero, roughly within
1.2 minutes. Thus the controlled units become closely
aligned in an end-to-end fashion and form a runway, even
in the presence of moderate gale forces. Simulations were
carried out for disturbances up to sea-state 7. For higher
disturbances, the system did not perform well and the final
position of the MOB again oscillated around the origin, as
was seen in the centralized case. The performance index
γ, of the distributedH∞ controller obtained in this case
was 1.12. An important point to note here is that we have
included the control effortu in our error criterion with a
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between adjacent modules.
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unit weighting. In order to directly compare the distributed
and the centralized approaches (with respect to the control
effort required), the weighting onu should be modified.
The weighting factor should be chosen such that the control
effort required in the distributed case is essentially the same
as that in the centralized case.

VI. COMPARISON OFCENTRALIZED AND DISTRIBUTED

TECHNIQUES

We have completed both centralized and distributed con-
trol designs for our system. Table I shows a comparison of
the control orders and computational efforts, which we have
obtained for these cases. The distributed model is far less
complex than the centralized model as it requires only 15
states, as opposed to the 45 states required in case of the lat-
ter. Additionally, the controller synthesis for the distributed
case took approximately 6.47 seconds (on a Pentium-IV 1.3

Type of Plant Controller Time for
Model Order Order synthesis

Single Vessel 9 8 2.4 s
Centralized 45 45 16.2 s
Distributed 15 9 6.47 s

TABLE I

COMPARISON OFCONTROLLERS

Ghz computer) to synthesize as compared to the centralized
controller which took 16.2 seconds to synthesize. Note that
virtually no loss of performance results with respect to
desired position, which is demonstrated in Figures 3, 5 and
6. However the distributed design does require more control
effort than the centralized model, but it is well within limits
of the maximum permissible control. One of the additional
advantages of such a distributed control design approach is
scalability. We can clearly add additional units to the same
system without having to modify the control algorithm, or
alternatively an MOB configuration consisting of a large
number of smaller units could easily be handled possibly
allowing for greater overall flexibility in the design of such
MOBs.
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