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Gradient-like Behavior Analysis and Synthesis of Uncertain
Pendulum-like Systems

Ying Yang and Lin Huang

Abstract—This paper focuses on uncertain pendulum-like This property corresponds to the locking-in phenomenon
systems subject to norm-bounded parameter uncertainty inthe jn nonlinear oscillations and the locking-in problem is also

forward path and a vector-valued periodic nonlinearity in the a fundamental problem in the control theory of oscillators

feedback path, and addresses the robust gradient-like behavior 71 In thi the f d L lti
analysis and synthesis problems for such systems. Sufficient[ ]. In this paper, the frequency- domain inequalities con-

conditions for robust gradient-like behavior are derived in  dition of gradient-like behavior given by Leonov in [1]
terms of linear matrix inequalities (LMIs) and a technique for  is converted into an LMI-based criterion, which enables
the estimation of the uncertainty bound is proposed by solving ys to take account of system uncertainties and derive
a generalized eigenvalue minimization problem. The problem  taaqpack controllers to ensure the gradient-like behavior for
of robust controller synthesis is concerned with designing a - . .
feedback controller such that the resulting closed-loop system the uncertalh pen'dulum'-llke SyStem_S' The uncertain system
is gradient-like for all admissible uncertainties. It is shown under consideration will be described by a state-space
that a solution to the gradient-like control problem for the = model which contains parameter uncertainties in both the
uncertain pendulum-like system can be obtained by solving a state and input matrices. Based on the Kalman-Yakubovich-
gradient-like .control problem for an uncertainty frge system. Popov lemma connecting the frequency-domain inequality
An example is presented to demonstrate the applicability and . L . . o
validity of the proposed approach. and linear mat'nx mequahty (!_Mls), sufﬁueqt conditions
of robust gradient-like behavior for uncertain pendulum-
[. INTRODUCTION like systems are given in terms of LMIs. Meanwhile the
In recent years, frequency-domain methods have been dpbust synthesis problem is addressed by designing a static
plied successfully for investigation of stability of stationarystate feedback controller and a dynamic output feedback
sets, see [1], [2], [3] and the references therein. Dynamiontroller such that the resulting closed-loop system is
systems with multiple equilibria deserve investigation fogradient-like for all admissible uncertainties respectively. It
theoretical development as well as practical applications. Will be shown that the robust gradient-like control problem
is an essential feature of many nonlinear control systeng&n be converted into a gradient-like control problem for
to have multiple equilibria. Many important classes ofn uncertainty free pendulum-like system. With this LMI
electric and electronic systems, such as Chua’s circui@Pproach, the largest allowable magnitude of the admissible
[4] and systems of phase synchronization (phase-lockétcertainty can also be explicitty computed by solving
loops) [5] can be described by a class of dynamic systends generalized eigenvalue minimization problem which is
with finite or infinite equilibria set. In reference [1], a essentially a convex optimization problem and numerically
class of pendulum-like feedback nonlinear systems witfficient.
multiple equilibria was considered and frequency-domain In this paper, we use the following notatiors™" is the
inequalities conditions guaranteeing some global properti&§t of n x n real matrices. For a matrid, AT denotes its
of solutions such as Lagrange stability, dichotomy, Bakaelf@ansposeA® its complex conjugate transpose. The matrix
stability and gradient-like behavior have been proposediequality A > B(A > B) means thatA and B are square
While in [6], the concept of Lagrange stability definedHermitian matrices andh — B is positive (semi-)definite.
in [1] was extended to the case of controller synthesigle is Hermit operator wittHeA = A+AT.
and conditions of Lagrange stabilizability for pendulum- Il. PRELIMINARIES
like systems have been derived based on lthe sub-
optimal control theory. Since pendulum-like systems always
have an unbounded set of equilibrium points, they can- x=f(t,x) Q)

not be asymptotically stable. A natural analog of gIOba\Ilvheref ‘R, xR"— R"is continuous and locally Lipschitz

asymptotical stability for such a system is the gradient'”k%ontinuous in the second argument. Suppose that every
behavior, i.e., the convergence property of all trajectorieg.olution X(t,ty, %) Of (1) with t, > 0 andx, € R" may be
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Let us consider the ordinary differential equation



forallt>t,and alldeT. 3 There exists a positive numbgr> 0 such that
Definition 2.2: System (1) is said to be gradient-like if

21 17T T
every solution tends to a certain equilibrium point asnds F—H' nATLT, T3 } <0
to oo, T3 -nl
In this paper we consider the pendulum-like systems of 4o There exists a positive number> 0 such that
the form
X=Ax+B¢(z 27T
= ¢(2) @ LA T
z=Cx+D¢(2) T, —nl

Proof: The proof of the equivalence betweé&h and

nxn nxm mxn mxm _
whereA € R _’B €RTICER ’_D €R™T we S“P 2° can be found in [9]. The equivalence betwerand 3°
pose thatA, B) is controllable,(A,C) is observable ang - or 4° follows immediately from Schur complement. =

R™— R™Mis a vector valued function having the components
$:i(2) = ¢i(3) with 2= (7,2, 7zm_)T._ We assume that "
every componend; : R — R is A, periodic, satisfies a local

Lipschitz condition and possesses a finite number of zeroeslIn this section, we derive the robust analysis results
on [0,4;), and for each componenft there existsz; such for uncertain pendulum-like system to achieve gradient-
that ¢, (7)) # 0 and ¢;(z,;) # 0. Let us introduce the vector like behavior. First, we give a theorem which establishes
d=(0,---,0,4;,0,---,0) where4, is the i-th component the connection between the frequency-domain conditions
of d, then system (2) is pendulum-like with respect toof gradient-like behavior given in Lemma 2.1 and an LMI-

. ROBUST ANALYSIS

r={3Lkd;k; € Z}. Assume that based criterion.
A A Theorem 3.1:SupposeA is Hurwitz, then system (2) is
v, = / ' ¢,(2)dz // '|¢i (2)|dz iem gradient-like in the sense of Lemma 2.1 if and only if there
0 0 existP = PT > 0 and diagonal matrices, 6 >0 ande >0
and denotey = diag{V,,V,, - ,Vm}. The transfer function such that
%f gtlriw\;aelr:nt()a;r part of (2) from the inpup to the output—z { CTeC + He(PA) CT(eD+ %K)+PB ] 0 Ga)
T 1 T T 1 >
K(s) = C(A—sl)"'B—D (D'e+35Kk)C+B'P 5+D'eD+ 5 He(kD)
28 Kv 0 3b
Lemma 2.1 ([1]): Suppose K(s) is stable and there vk 25| (30)
exist diagonal matricesk = diag{ky,Ky, - ,Km}, 0 = Proof: Let
diag{d,,0,,--- ,0m} ande =diag{€;, &, - ,&m} With 6 >0 .
and e > 0 satisfying the following conditions: M — [ TCTSE CTT(SD +1§K) }
10 %He(KK(iw))—K(ioo)eK*(ioo)—620; (D £+§K)C o0+D sD+§He(KD)
2° 4ed > (KV)=. and using Lemma 2.2, we can prove the equivalence of
then system (2) is gradient-like. (3a) and conditiorl® of Lemma 2.1. Note that the upper

Definition 2.3: System (2) is said to be gradient-like inleft corner of M is positive semidefinite, it follows from
the sense of Lemma 2.1 if the gradient-like property of (2J3a) and Hurwitz stability ofA that P > 0. (3b) is directly
can be guaranteed via Lemma 2.1. derived from conditior2° of Lemma 2.1. |

Lemma 2.2 ([8]): GivenAc R™" Be R™" M =MT ¢ Remark 3.1:The significance of this theorem is that, by
R0 with det(jeol —A) # 0 for w € R and (A,B)  using Lemma 2.2 we convert the conditions of Lemma 2.1
controllable, the following two statements are equivalent:into an equivalent LMI requirement. From this LMI condi-

10 [(jwl —A)lB] : M [(jwl —A)lB} <0 v tion, it is possible to extend the results to take account of the

<0, Vw € L :

I I parameter uncertainty in the linear part of the system and
RU{e}; derive feedback control law which renders the closed-up

2°  there exists a matri® = PT € R™" such that system gradient-like by using the efficient numerical linear

He(PA) PB matrix inequalities methods.
M [ BTP 0 } <0 As an immediate consequence, we have a more convenient
. . S . criterion as stated in the following.
The corresponding equivalence for strict inequalities holds Corollary 3.1: System (2) is gradient-like in the sense

even if (AB) |§ not contrgllable. . of Lemma 2.1 if and only if there exi? = PT > 0 and
Lemma 2.3:Let T, = T}, T,, T; be real matrices of ap- _. :
. ) . . iagonal matricex, d > 0 and ¢ > 0 such that
propriate size, then the following statements are equivalent:

1° T, +He(T,AT;) < 0,VA: ATA < A?I; CTeC+ He(PA) CT(eD+ 3k)+PB <0 (4a)
2°  There exists a positive numbgr> 0 such that (DTe+3k)C+B'P &+D'eD+ 3 He(kD)
1 2 KV
2
T, +NA°T,T + ﬁTgTTg <0 [VK 25} >0 (4b)
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Let us now consider the class of uncertain pendqum-IikSubstitutingA, B,é,lﬁ

systems described by state-space models of the form

x= (A+AA)X+ B (2)

7=Cx+D¢(2) ®)

whereAA stands for the parameter uncertainties which are

norm-bounded and of the form

AA=HFE (6)

andH € R™!, E € R™™ are known constant matrices and
F € R is an unknown matrix function satisfying
FTF <A? 7)

with A > 0 a given constant. From the definition ofin
Lemma 2.1 we know < gl, whereog < 1. In the following

sections, we assume that the system is controllable an
observable for all admissible uncertainties. Then we have

the following result:
Theorem 3.2:There exist diagonal matrices> 0,6 >

.8,k into (11) leads to
[ CTeC CT(eD+ 3K) (ab+$ )\FET
(DT£+ K)C &+DTeD+ 3He(kD) +
| (ab+$ )\fE 0 (d+ab2+bc)
T A
[anE E+HeP(A+ AHE ) PB A
BTP 0 0 <0
HTP 0 0
L (a+1)n
(13)

From (10) we haveab+ § = —1,d+ab?+bc= —1, then

(13) becomes

CTeC CT(eD+ 3k) —/MET
(DTe+3k)C S5-+DTeD+ He(kD) 0 |+
| - ME 0 —1
T A
an E E+HeP<A+ AH ) PB 2 —PH
BTP 0 0 <0
A T 0 0
L (a+1)n

0 and k such that (4) holds for the uncertain system (S);sing Schur Complement, the above inequality is equivalent
satisfying (6) if and only if there exists a scaling parametey,

n > 0 such that (4) holds with

~ |e O . kK O s (6 0
S{o a&’ K{o cJ’ 5[0 dJ ®
for the system
x=Ax+ B¢ (2)
. A& 9)
z=Cx+D¢(2)
where
A=A+ A e é—[B AH]
0 Vat+1 V(@+1)n
A C N D O
~lael o= a
anda,b,c,d satisfying
a>0
5 41l+a)
1- 02
_c+2 (10)
T 2a
b(2—c)-2

d=

Proof: Inequality (4) ho%ds for system (9) if there

exists a positive definite solutioR = PT > 0 to the linear
matrix inequality

ATAA AT . 254 1k -
ngC+A P+PTA i A(il? Z'IHPABA <0 (1)
(D'e+35K)C+B'P 6+D'eD+ 5 He(kD)

with

28 KV
[\7;2 23} >0 (12)

C'eC CT(eD+ 3K) n
(DTe+ 3k )C 6+DT£D+2He(KD)
He(PA) + 2%+ +1>

B'P

PHHTP+ (a+1)nETE PB] 0
0

(14)
By Lemma 2.3, (14) holds if and only if for arfy satisfying
(7)
CTeC+He(A+HFE)TP
(DTe+ik)C+BTP

CT(eD+ 3k)+PB 0
5+DTeD+ L He(KD)] <
By noting that (10) impliestad > a2c?, we can verify by
straightforward manipulations that (12) is equivalent to (4b).
Thus completes the proof. |

Corollary 3.2: The uncertain system (5) is gradient-like
in the sense of Lemma 2.1 if and if there exists a scaling
parametemn > 0 such that the condition in Corollary 3.1 is
satisfied for uncertainty free system (9) with the diagonal
matrices of the form (8).

Remark 3.2:The above corollary show that the gradient-
like behavior of the uncertain pendulum-like system (5) with
the parameter uncertainty form (6) can be discussed by that
of an uncertainty free pendulum-like system. This result will
play a crucial role in solving the robust synthesis problem
in this paper.

Next we consider the uncertain pendulum-like system de-
scribed by

{>_‘<: (A+DA)X+ (B+AB) ¢ (2) (15)
z=Cx+D¢(2)
whereAA and AB have the form of

[AA AB] =HF [E1 E2] (16)
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andH € R™!, E; € RI*", E, € RI*™ are known constant  Corollary 3.3: The uncertain pendulum-like system (15)

matrices andF € R™*I is an unknown matrix function with respect to (16) foF TF < —{| is gradient-like, where

satisfyingFTF < A2l with A > 0 a given constant. Then { is the global minimum of the following generalized

we have the following result: eigenvalue minimization problem with respectRe= PT >
Theorem 3.3:Suppose there exi®® = P' > 0, diagonal 0 and diagonal matrices > 0, & > 0, k and a positive

matricesk,d > 0, > 0 and a positive numben > 0 such numbern > O:

that the following linear matrix inequalities hold

mind{
CTeC CT(eD+ 3K) 0 nAE] T _nTIT. T
(DTe+1k)C 5+D'eD+iHe(kD) 0 nAE]| St [1 TB 3 ,ﬂ <0
0 0 -nl 0 e Kl
" MEZ PA) PB OPH ;nl {VK 20 ~0
S(TP) O 0 0 T = CTeC+He(PA) PB+CT(eD+ 1K)
TIHP o o ol <0 17 |B"P+(DTe+3k)C 5+DTeD+ 3He(kD)
0 0 0 0 PH]
(17a) Tzz{o T3=[E )
{25 va| 0 (17b) (19)
vk 20 IV. ROBUST SYNTHESIS

then system (15) is gradient-like. i In this section, we consider the robust synthesis problem
 Proof: By Corollary 3.1, the uncertain system (15)¢or pendulum-like systems with parameter uncertainty in
is gradient-like if there exisP > 0 and diagonal matrices (he |inear part. It is concerned with designing a feedback
K,€>0,0 >0 such that controller such that the resulting closed-loop system is

CcTeC CT(eD+ 1K) gradient-like for all admissible uncertainties. Let us first
[(DTg + %K)C 5+DTeD+ % He(KD)} + 18) consider the following uncertain pendulum-like system
HeP(A+HFE,) P(B+HFE,) X = (A+DA)X+ B, & + (B, +AB)u
T <0 1 2
(B+HFEy)'P 0 7=Cx+D,,E+D,,u
11 12 (20)
and (17b) hold. Denote y=x
M — { CTeC+ He(PA) PB+CT(eD+ 1K) } E=9(2
= |RT Te, 1 T 1
B'P+(D'e+3K)C 0+D'eD+3He(kD) wherex € R" is the stateu € RP is the control input§ € R™
then (18) can be written in the form of is the nonlinear inputz € R™ is the controlled output and
PH ¢(-) :R™— RMis a vector-valued nonlinear mappinyA
M+ He([ 0 ] F[E, Ez]) <0 and AB represent the parameter uncertainty which belongs
to certain bounded compact set. First we will show that if
According to Lemma 2.3, the above inequality holds if andhere exists a dynamic output feedback controller such that
only if there exists a positive number> 0 such that system (20) is gradient-like in the sense of Lemma 2.1,
ET 1 [PH there also exists a static state feedback controller to realize
M+nA2 [E:T] [E, B]+ a { 0 } [HTP 0] <0 the same purpose.

Theorem 4.1:For uncertain pendulum-like system (20),

it can be easily proved that the above inequality is equivalefft there exists a dynamic output feedback controkg(s)

to (17a). Thus the uncertain system (15) is gradient-llle. such that the resulting closed-loop system is gradient-like
Remark 3.3:The above result show that assessingh the sense of Lemma 2.1 for all admissible uncertain-

gradient-like behavior of the uncertain pendulum-like systies, there must exists a static state feedback controller

tem (15) satisfying (16) can be carried out by solving twahat achieves the same result as well. Furthermore, if the
LMIs which is essentially a convex optimization problemdynamic output feedback controller is

and numerically efficient. )
From the above results, we can also derive the following X = AKX+ Bix 1)
gradient-like conditions based on the determination of the u=Cx +Dyx

largest allowable magnitude of the admissible uncertaint

which will not destabilize the system. The significance OgndP Is the positive definite solution to (4) corresponding
this result is that it provides a basis to evaluate the qualit&? the closed-loop system of (20) with (21) , denote

of the design and presents an efficient way to access the

-1_|Qpn Q
robustness of a feedback system in engineering practice. Q=P = {Qli Q;;
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then the state feedback controller is if and only if for somen > 0 this controller achieves the
T o1 same property for the scaled system
K=D,+CQ1Q1;

Proof: Denote A= A+ AA and B= B+ AB. The X = AX+ B,& +'|3V2u

closed-loop system of (20) with (21) is 5 — Cxt- 6115 I 512u

o (24)
X =Ax+B<E 22) y=X
2=Cx.+Dy& E=¢(2
wherex = [x"  xI]T and where
A A ~ _ A
A— |AtBDc BG| g_ |B A=A+ _HE, B =[B H}
A_[ B, AJ’B_[O ’ Vari vt [Tt @aton |
C— = A ~ C
C=|C+Dy,D, DG — —
[ 12P¢  D1C] B,=B,+ HE,, C= [ﬁEJ’ (25)

: . . S v(a+1

According to Corollary 3.1, system (22) is gradient-like if (a+1)n

exist a positive definite matriR > 0 and diagonal matrices 611: {Dll 0] , 612: { Dy, }
K,0 > 0,& > 0 such that 0 bl VIE,

CTeCa He(PK) PI§+6T(£D + 1K) with the diagonal matrices such that (4) holds for the closed-
~ 11" 2 0 .
[ETPJF (D& + %K)C 54 D115D11+ % He(KDll)] < loop system having the forms of
(23a) s_[e 0] _[k 0] 5_[6 0O
2£KVO 23b |0 all’ 10 cl|’ |0 dl
vk 25| (23b)

wherea, b, c,d satisfying (10).
Multiplying diag(Ef,l) on the left and right of (23a) and In the following, we will consider the output feedback

substitutingQ, A, B,C we have controller synthesizing to achieve gradient-like behavior for
o o A pendulum-like systems with parameter uncertainty. Let us
[ C eC+He[(A+BD,)Q,; +BGQy,) consider the following uncertain system
B] +(DI,e+1k)C :
1+ (D118 + 3K) x= (A+D0A)x+ B, & +(B,+AB)u
iT )
B, +C' (D]¢ + 3K ] 0 7=C,x+Dy;& + DU (26)
0+Dy;6Dy; + 3 He(kDyy) y=Cx+ Dy, &
where _ . whereAA, AB satisfying (16).
C=(C+Dy,D,)Qq; +D;1,G Q12 Theorem 4.3:There exists a linear dynamic output feed-

back controllerK(s) such that the system (26) is gradient-
like in the sense of Lemma 2.1 for all admissible uncertain-
ties if and only if for somen > O this controller achieve
[(C+ D;,K)Te(C+D;,K)  (C+Dy,K)T(eDy;+ 3K) } the same property for the following scaled system
(D1€+ 3K)(C+Dy,K)  6+Dj;eDy; + 3He(kDyy)
N {(A+ BK)TY +Y(A+BK) YB
BIY 0

Multiplying diag(QIf,l) on the left and right of the above
inequality and denotinyy = QIll we have

X = Ax+B,& +B,u
} <0 z=C;x+Dy;& +Dj,u @7)

Note that the above inequality with (23b) guarantees the y=Cx+[Dy 08

gradie_nt—like behavior of the_ closed-loop system correynere matriced, |§17|§27§l75117 512 are given in (25) and
sponding to the system (20) with the state feedhaekkx  the diagonal matrices such that (4) holds for the closed-loop

X — (AJFQK)XJFBlE system have the form of
2= (C+D;,K)x+Dy4¢ ~ e O . |k O s [0 0
£=lo al]" o o' 270 ai
Thus completes the theorem. ]

In view of Theorem 4.1, we develop the following wherea,b,c,d satisfying (10).
conditions for the existence of a static state feedblidck
such that system (20) satisfying (16) is gradient-like. V. NUMERICAL EXAMPLE
Theorem 4.2:Consider the uncertain system (20) satisfy-
ing (16), then there exists a state feedback contralteikKx
such that the resulting closed-loop system is gradient-like = [63 20] B [8] c
in the sense of Lemma 2.1 for all admissible uncertainties * = | 32 o |’ |o|’

Consider an uncertain pendulum-like system with
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The uncertainties are given as multiple equilibria can be investigated as well as synthesiz-
1 0 1 0 1 ing corresponding feedback controller to ensure those global
1=l om-lo A e

0 1 0 - 1

with FTF <1 and the nonlinear feedbaék= sinz. Solving
the linear matrix inequalities in Theorem 3.3 by using LMI [1]
Toolbox [10], we get

9444 5314
P= {5314 19466} , £€=11658, 6 =1017725

Kk = 71003, n = 3015821

Thus the system is gradient-like for all admissible un-[4]
certainty. Solve the generalized eigenvalue problem corre-
sponding to (19), we get the largest allowable uncertaintys
bound || = 1.5666 From Corollary 3.3, this result guar-
antees that the uncertain pendulum-like system will be ro-
bustly gradient-like foivF,FTF < 1.5668. This estimation [g]
can be verified by Figure 1 where the numerical experiment
results of the system with twenty randomly generated initiall”
value Xy, @, and F(||F|| = 1.2516 are given. The result
presented in Figure 1 where all af converge to0 and

¢ converges ta2km(k = —1,0,1) shows that the systems (6]
perturbed by thos€ are all gradient-like. This observation [g]
coincides with Theorem 3.3 and Corollary 3.3 and confirms
the robust gradient-like behavior of the system. [10]

(2]
(3]

Simulation Results

5
Time(s)
Fig. 1. Simulation for||F|| = 1.2516

VI. CONCLUSION

In this paper, the LMI conditions of robust gradient-like
behavior and the controller existence conditions guaran-
teeing the gradient-like behavior for a class of uncertain
nonlinear systems with multiple equilibria have been first
summarized. Using the Kalman-Yakubovich-Popov lemma
in terms of linear matrix inequality as the analytical
framework, early work performed by Leonov for nominal
pendulum-like systems is extended to take account of sys-
tem uncertainties and derive feedback control law which
renders the closed-up system gradient-like. Under this LMI-
based framework, other global properties of systems with

properties. These will be the subjects of further study.
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