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Abstract— The ship roll stabilization by fin control system
with actuator is considered in this paper. Assuming that there
exist uncertain parameters and uncertain external perturba-
tions in the ship roll model, a variable structure robust control
algorithm for ship roll stabilization system is presented for
a class of uncertain systems with the absence of matching
assumption in which the uncertainty is not acted within
channels implicit in the control inputs. A simulation example
illustrating the method described is included in this paper.
It is shown that it makes the designed system guarantee the
performance of robustness with respect to the perturbations
and uncertainties.

I. INTRODUCTION

Ship excessive roll motion induced by wave disturbances
would make the crew feel uncomfortable and may also
cause damage to the cargoes and equipment on board, such
that the stabilization of ship roll motion has been a goal that
people always strive to achieve. The fin stabilizer, which is
a hull stability equipment for reduction of ship rolling by
using the generating lift of the fins extended to the both
sides of a ship, was invented 60 years ago and began to be
equipped on the ship and showed good performance [1]. As
we all know, a fin stabilizer is a kind of active stabilization
system, the performance of which is effected greatly by
its control methodology. To achieve better performance,
its advanced control scheme has received considerable
attention. From 1970s, some advanced control schemes
are put into practices, such as optimal control [2], fuzzy
logic control [3], self-organizing fuzzy control [4], adaptive
LQ control [5], H∞ control [6], internal model control [7]
and etc. However, there exists nonlinearity, parametric un-
certainty and environmental disturbances in the ship roll
nonlinear system from the changing sea conditions. To
handle those problems, the author has ever proposed several
robust adaptive fuzzy control schemes [8],[9]. Therefore,
developing the control scheme with large robustness is of
much interest in the research field of fin roll stabilization
systems.

In fin roll stabilization system, the controller’s output
drives the controller components through the device which
is called as a process actuator, as shown in Fig. 1. The
actuator is composed of electrical-hydraulic system in the
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Fig. 1. Ship roll stabilization system with actuator

ship roll fin stabilization system. Generally speaking, actual
fin angle has a time-delay compared with order fin angle,
such that step response is unlikely. Generally, the actuator
can be described by use of 1-order inertia dynamical system
given by

TEα̇ + α = KEαC (1)

whereαC is order fin angle (i.e. controller’s output),α is
actual fin angle,TE is the actuator’s time constant,KE is
input gain.

As for the actuator, the smaller time constantTE is,
the less its influence on closed-loop system is. But, the
magnitude ofTE is inversely proportional to actuator’s
driving power. Hence, the decrease ofTE will definitely
increase the driving power, which is proportional to the cost
of device and its volume. So the actuator’sTE is unlikely
to be arbitrarily small and have a certain value.

Generally speaking, when the actuator’sTE is greatly less
than the controlled-process’s time constant, the actuator’s
influence may not be considered in the control system
design. But when both are similar, neglecting the fin ac-
tuator’sTE existence may not only affect the closed-loop’s
performance, but also destroy its stability. In ship’s fin roll
stabilization system design, actuator’sTE was regarded as
small value and could be negligible in the past. But, after
our research,TE can not be neglected, because inTE’s
effective range, the fin stabilizer by use of conventional
methodology may have no capacity of roll stabilization,
even aggravate ship’s roll amplitude and cause instability.
Those will be illustrated through simulation example in this
paper. If we take the fin actuator into the design consider-
ation, the active anti-rolling fin stabilizer will be actually
a mismatching uncertain system, because the initial control
system’s parametric uncertainty and external disturbanceno
longer take place in control channel. In this paper, by use
of the robust switching-function variable structure control
theory of uncertain linear system [10], a variable structure
robust controller is designed, based on fin roll stabilizer’s
mismatching uncertain model. Simulation research shows



that the adopted controller has closed-loop’s stability un-
affected by the actuator’sTE, and the performance is also
improved.

This paper is organized as follows. In section II, we will
design variable structure control for mismatching uncertain
system. Section III contains the description of mismatch-
ing uncertain system model of ship fin stabilization with
actuator. In section IV, a systematic procedure for the
synthesis of variable structure robust controller for ship’s fin
stabilization system with actuator is developed. In section
V, we demonstrate how the adaptive robust fuzzy control
scheme can be applied to the controller design for ship roll
stabilization and a container ship is used as an example
for simulation. The simulation results are described and
compared. The final section contains conclusions.

II. VARIABLE STRUCTURE ROBUST CONTROL
OF MISMATCHING UNCERTAIN SYSTEMS

A. Description of Mismatching Uncertain Systems

Consider the following system






Ẋ(t) = [A+ ∆A(σ(t))]X(t)+ [B+ ∆B(σ(t))]u(t)
+Cv(t)

X (t0) = X0
(2)

where t ∈ R+, X(t) ∈ Rn is state vector,u(t) ∈ Rm is
input vector,σ(t) ∈ Ω ⊂ Rp is the uncertainty vector of
model’s parameter,v(t) ∈ Rl is input noise vector with unit
amplitude.A and B are known system matrix and control
matrix, ∆A(σ(t)) is the uncertainty matrix,∆B(σ(t)) is
input uncertainty matrix, either of which depend on the
uncertainty parameters’ continuous function matrix.

Throughout the paper, the following assumptions are
made at first.

Assumption 1:Uncertain parameterσ(t) ∈ Ω ⊂ Rp, un-
certain input noisev(t)∈ ϒ ⊂ Rl , Ω andϒ are compact sets
that lie inRp andRp, respectively. All of them are Lebesgue
measurable.

Assumption 2:Nominal system(A,B) satisfies the sys-
tem’s controllability condition.

We introduce an orthogonal transformation matrixT̃ ∈
Rn×n, and partition (2). Furthermore,̃T satisfies the follow-
ing conditions

T̃B=

[

0
B2

]

(3)

whereB2 ∈ Rm×m.
We define

z= T̃X =

[

T
T1

]

X =

[

z1

z2

]

(4)

where z1 ∈ Rn−m, z2 ∈ Rm, and T, T1 are transformation
matrix with appropriate dimension. Then the system (2) can
be transformed into






ż1 = A11z1 +A12z2 + ∆A11z1 + ∆A12z2 +C1v(t)
ż2 = A21z1 +A22z2 +B2u+ ∆A21z1 + ∆A22z2

+∆B2u+C2v(t)
(5)

whereT̃AT̃T =

[

A11 A12

A21 A22

]

, T̃∆B =

[

0
∆B2

]

,

T̃∆AT̃T =

[

∆A11 ∆A12

∆A21 ∆A22

]

, C1 = TC, C2 = T1C.

Assumption 3:For (5), we introduce the matching condi-
tion, i.e. there exist two matrix functionsh11(·), E1(·) and
a constant matrixF1 satisfying







∆A11(σ(t)) = A12h11(σ(t))
∆A12(σ(t)) = A12E1(σ(t))
C1 = A12F1

For the second one of (5),B2 is reversible, and can
satisfy the matching condition, i.e. there are 3 matrix
functionsh21(·),h22(·),E2 (·) and a constant matrixF2 with
appropriate dimension satisfying















∆A21(s(t)) = B2h21(σ(t))
∆A22(s(t)) = B2h22(σ(t))
∆B2 = B2E2(σ(t))
C2 = B2F2

where h21(·) = B−1
2 ∆A21(·), E2 (·) = B−1

2 ∆B2(·), F2 =
B−1

2 C2. Then the system (5) can be converted into

{

ż1 = A11z1 +A12[(I +E1)z2 + η1]
ż2 = A21z1 +A22z2 +B2 [(I +E2)u+ η2]

(6)

where

η1(z1(t),z2(t),σ(t),v(t)) = h11(σ(t))z1(t)

+F1v(t)+h22(σ(t))z2(t)+F2v(t),

η2(z1(t),z2 (t) ,σ(t),v(t)) = h21(σ (t))z1(t)

+h22(σ (t))z2(t)+E2u(t)+F2v(t).

To meet the requirements of the robust control design,
we introduce the following assumption on the uncertainty’s
bound.

Assumption 4:














‖η1(z1(t),z2 (t) ,σ(t),v(t))‖ ≤ k11‖z1(t)‖
+k12‖z2 (t)‖+k13

‖η2(z1(t),z2 (t) ,σ(t),v(t))‖ ≤ k21‖z1(t)‖
+k22‖z2 (t)‖ +ku‖u(t)‖+k23

(7)

where k11 = max
σ∈Ω

‖h11(σ(t))‖, k12 = max
σ∈Ω

‖h12(σ(t))‖ <

1, k13 = max
v∈ϒ

‖F1v(t)‖, k21 = max
σ∈Ω

‖h21(σ(t))‖,

k22 = max
σ∈Ω

‖h22(σ(t))‖, k23 = max
v∈ϒ

‖F2v(t)‖ and

ku = max
σ∈Ω

‖E2(σ(t))‖ < 1.

Here,‖Ξ‖ employs Euclidean modulus ifΞ is a vector,
and‖Ξ‖ employs matrix modulus ifΞ is a matrix. The em-

ployed modulus is‖Ξ‖= [λM(ΞTΞ)]
1
2 , whereλM(·)(λm(·))

is the matrix’s maximal or minimal eigenvalue.



B. Design of Variable Structure Robust Controller

This paper focuses on regulator problem, which is to
design a bounded control schemeu(t) driving the state
X(t) to transfer from the initial stateX0 to zero state, i.e.
lim
t→∞

X(t) = 0. According to the above orthogonal transfor-

mation, the problem is converted into that new state variable
z(t) moves from the initial statez0 to zero, i.e. lim

t→∞
z(t) = 0.

Based on system (6), a variable structure robust controller
can be designed, which follows two steps:

(1)choose sliding hyperplane function;
(2)drive the state to move to the hyperplane, keep them

staying on the hyperplane, and move asymptotically to
equilibrium along the plane.

1) Design of the robust sliding hyperplane function::
As (A,B) is controllable, (A11,A12), the matrices after
orthogonal transformation is also controllable [10]. Define
that ρ1 ∈ R, Q = QT ∈ Rn×n, and Q ≥ 0, then there exists
a real symmetric positive definite matrixP1 satisfying the
algebraic Riccati equation

AT
11P1 +P1A11−ρ1P1A12A

T
12P1 +Q1 = 0 (8)

whereρ1 andQ are specified by designer.
Choose switching function as

S(z1(t),z2 (t) ,t) = z2 (t)+
1
2

(ρ1 + γ1)AT
12P1z1 (t) (9)

which is robust because the parameterγ1 is a constant
related to the bound of uncertain items.γ1 is chosen by

γ1 ≥ (1−k12)
−1k12ρ1 + δ1 + δ2+ γ̄ (10)

whereγ̄ is the controller’s parameter specified by designer,
and

δ1 ≥ k2
11

/

(λmin(Q1)+ λmax(P1))

δ2 ≥ (1+k12)
2
/

(1+ λmax(P2))

2) Design of variable structure robust controller::Dif-
ferentiating (9) with respect to timet and substituting it into
(6), we get

Ṡ= ΦS+ Ωz1+B2 [u+ η̃2] (11)

where K = 1
2 (ρ1 + γ1)AT

12P1, Σ = A11−A12K, Φ = A22+

KA12, Ω = A21−A22K +KΣ and η̃2 = B−1
2 Kη1 + η2.

Choose control law as follows

u = uL +uN. (12)

which is combined with linear part and nonlinear part.
Ryan and Corless [11] method is used to meet the

reachable condition, which chooses a matrixΦ∗(m× m)
having eigenvalues in the left half plane. Especially, when
we define{µi : Re(µi) < 0, i = 1,2, · · ·,m}, we haveΦ∗ =
diag{µi : i = 1,2, · · ·,m}.

Choose the linear partuL as

uL = −B−1
2 [Ωz1 +(Φ−Φ∗)S] (13)

then (11) will be

Ṡ= Φ∗S+B2 [uN + η̃2] (14)

As Φ∗ is of the eigenvalues in the left half plane, there
exists a systematic positive definite matrixP2 satisfying the
Lyapunov equation

P2Φ∗ + Φ∗TP2+ Im×m = 0 (15)

Hence, the nonlinear partuN in (12) is

uN = −ρ (1−ku)
−1B−1

2 P2S
/

(‖P2S‖+ ε) (16)

whereε > 0 is specified by designer, and

ρ ≥
(

kk11+k2k12+k21+kk22+kukL1
)

‖z1‖

+(k22+kk12+kukL2)‖S‖+(k23+kk13) ,

k =
∥

∥B−1
2 K

∥

∥=
1
2

(ρ1 + γ1)
∥

∥B−1
2

∥

∥

∥

∥AT
12P1

∥

∥ ,

kL1 =
∥

∥B−1
2 Ω

∥

∥kL2 =
∥

∥B−1
2 (Φ−Φ∗)

∥

∥ .

Theorem 1:For the mismatching uncertain linear system
(2), under the condition of orthogonal transformation matrix
T̃ ∈ Rn×n and meeting Assumption 1∼4, system’s sliding
mode hyperplane (9) is globally reachable and a motion
on the hyperplane is globally ultimately bounded, and we
choose (12) as the variable structure robust control law, then
the system (2) with mismatching uncertainty is globally
practically stabilizable.

Proof: See [10].
Remark 1:The closed-loop system which is globally

practically stable means that, its track will be uniformly
ultimately bounded and converge to closed-ball regionB(r)
containing equilibrium point. The radiusr of which is spec-
ified by the controller’s parameters and can be arbitrarily
small by reasonable choice of the parametersγ̄ andε.

III. DESCRIPTION OF MISMATCHING
UNCERTAIN SYSTEM MODEL OF SHIP FIN

In this paper, uncertainties of parameters and environ-
mental disturbances are taken into consideration in ship
roll stabilization mathematical model, which are originated
from the variation of ship speed and stability height. The
following model also includes the influence of actuator
implementation device [12].






(Ixx+Jxx) θ̈ +2(Nθ0 + ∆Nθ ) θ̇ +W(h0 + ∆h)θ
= Fα +FW sinωet

(TE0 + ∆TE) α̇ + α = (KE0 + ∆KE)u
(17)

where θ , θ̇ , θ̈ denote the ship roll angle, angular
rate, and angular acceleration, respectively.Fα =
−ρ (V0 + ∆V)2 AFCLα lF α, and ρ is the density of sea
water. Nθ0 denotes ship linear damping coefficient wihch
is initial parameter value.h0 is the initial transverse
metacentric height andV0 is initial ship velocity.∆Nθ , ∆h,
∆V are the variation of the parameters resulted by ship
loaded conditions, external environment and other reasons.



FW is the external wave amplitude andωe is the externa
wave frequency met with by ship when sailing at sea.∆TE

and∆KE are the variations of time constant and input gain
of the actuator.u = αc is the controller output.

Choose state variablesX1 = θ , X2 = θ̇ andX3 = α, and
separate the uncertain items from certain items.

Ẋ (t) = [A+ ∆A(σ)]X (t)+ [B+ ∆B(σ)]u(t)+Cv(t) (18)

whereA =





0 1 0
−a1 −a2 a3

0 0 −a4



, B =





0
0
b



,

∆A(σ) =





0 0 0
∆a1 ∆a2 ∆a3

0 0 ∆a4



 , ∆B(σ) =





0
0
∆b



 ,

C =





0
c1

0



 , a1 =
Wh0

Ixx+Jxx
, a2 =

2Nθ0

Ixx+Jxx
,

a3 = −
1

(Ixx+Jxx)
ρV2

0 AF lFCLα ,

a4 =
1

TE0
, b =

KE0

TE0
, ∆a1 =

W∆h
Ixx+Jxx

,

∆a2 =a2

{(

√

1+
∆h
h0

−1

)

+
∆µθ
µθ0

+
∆µθ
µθ0

(
√

1+
∆h
h0

−1

)}

,

∆a3 = a3

(

2
∆V
V0

+

(

∆V
V0

)2
)

, ∆a4 =
∆TE

TE0 (TE0 + ∆TE)
,

∆b =
TE0∆KE −KE0∆TE

TE0 (TE0 + ∆TE)
, c1 =

FW

Ixx+Jxx
v(t) = sinωet,

µθ0 = µθ (0)
(

1+3.3V0

/

√

gL
)

,

∆µθ = µθ (0)
(

3.3∆V
/

√

gL
)

.

Equation (18) shows that uncertain matrices∆A(σ) andC
cannot be expressed linearly by use of matrixB. Therefore,
that is a standard unmatching uncertain system.

IV. DESIGN VARIABLE STRUCTURE ROBUST
CONTROLLER FOR SHIP’S FIN STABILIZATION

SYSTEM

To meet the design of variable structure robust controller,
(18) can be written in the form of the following partition
matrix






ż1 = A11z1 +A12z2 + ∆A11z1 + ∆A12z2 +C1w(t)
ż2 = A21z1 +A22z2 +B2u+ ∆A21z1 + ∆A22z2

+∆B2u+C2w(t)
(19)

wherez1 =
[

X1 X2
]T

, z2 = X3,

A11 =

[

0 1
−a1 −a2

]

, A12 =

[

0
a3

]

,

∆A11 =

[

0 0
∆a1 ∆a2

]

, ∆A12 =

[

0
∆a3

]

,

C1 =

[

0
c1

]

, A21 =
[

0 0
]

, A22 = [−a4] ,

∆A21 =
[

0 0
]

, ∆A22 = [∆a4] ,

B2 = [b] , ∆B2 = [∆b] , C2 = [0] .

According to the assumption, the uncertain items are
written into matching form

∆A11 = A12h11 = A12
[

∆a1
/

a3 ∆a2
/

a3
]

,

h11 =
[

∆a1
/

a3 ∆a2
/

a3
]

,

∆A12 = A12h12 = A12
[

∆a3
/

a3
]

,

h12 = ∆a3
/

a3, C1 = A12F1 = A12
[

c1
/

a3
]

,

F1 = c1
/

a3, ∆A21 = B2h21, h21 =
[

0 0
]

,

∆A22 = B2h22 = B2
[

∆a4
/

b
]

, h22 = ∆a4
/

b,

∆B2 = B2E = B2
[

∆b
/

b
]

, E = ∆b
/

b

C2 = B2F2 = B2
[

c2
/

b
]

, F2 = 0.

Chooseρ1 = 1
/

λα , Q1 = diag
[

λθ λp
]

, whereλα , λθ
andλp are the system’s parameters and usually are explicitly
given. Then solve algebraic Riccati equation (8) and we get

P1 =

[

k1
11 k1

12
k1

21 k1
22

]

wherek1
11 = a1k1

22+a2k1
21+k1

21k
1
22a

2
3

/

λα

k1
21 = k1

12 = 2
−a1+

√

a2
1 +a3λθ

/

λα

a2
3

/

λα

k1
22 = 2

−a2+
√

a2
2−2a1+k

a2
3

/

λα

k = 2
√

a2
1 +a2

3λθ
/

λp+a2
3λp
/

λα

Uncertain bound of system’s parametersk11, k12, k21, k22,
ku, and environmental disturbancesk13, k23 are given by



















k11 = max
∆V,∆h

{
∣

∣∆a1
/

a3
∣

∣

∣

∣∆a2
/

a3
∣

∣

}

k12 = max
∆V,∆h

(∣

∣∆a3
/

a3
∣

∣

)

k13 = max
∆V,∆h,v(t)

(∣

∣c1
/

a3
∣

∣

)

(20)















k21 = k23 = 0
k22 = max

∆TE

(
∣

∣∆a4
/

b
∣

∣

)

ku = max
∆TE ,∆KE

(∣

∣∆b
/

b
∣

∣

)

(21)

Robust slide mode hyperplane is

S= z3 +
[

k1 k2
]

z1 = x3 +k1x1 +k2x2 (22)



where

k1 = γ−1
E1

(

1+ λαk2
11

/

λmin (Q1)+ λα (1+k12)
2

+λα γ̄)
(

−a1 +
√

a2
1+a3λθ

/

λα

)/

a3

,

k2 = γ−1
E1

(

1+ λαk2
11

/

λmin (Q1)+ λα (1+k12)
2

+ λα γ̄)(−a2+ β)
/

a3

,

β =

√

a2
2−2a1+2

√

a2
1 +a2

3λθ
/

λp +a2
3λp
/

λα .

If Φ∗ =−1, P2 = 1
/

2 can be obtained from (15). Hence,
variable structure robust controller for ship’s fin stabilization
system is

u = −b−1 [φ1x1 + φ2x2 +(k2a3−a4−1)S

+ρ (1−ku)
−1S

/

(|S|+ ε)
] (23)

whereφ1 = k1 (a4−a1−a3k1),

φ2 = k1 +k2(a4−a2−a3k2) ,

ρ = a1 (|x1|+ |x2|)+a2 |S|+a3,

a1 = kk11+k2k12+kk22+kukL1,

a2 = k22+kk12+kukL2a3 = kk13,

k = (|k1|+ |k2|)
/

|b|kL1 = (|φ1|+ |φ2|)
/

|b|,

kL2 = |k2a3−a4−1|
/

|b|.

V. SIMULATION EXAMPLE

The parameters in ship roll motion equation is obtained
using the method in (17). Then the matrices in (18) is shown
as

A11 =

[

0 1
−0.0106 −0.1117

]

,

A12 =

[

0
−0.043

]

, A21 =
[

0 0
]

,

A22 = [0.5] , B2 = [0.5] ,

C1 =
[

0 0.006
]T

, C2 = 0.

According to the assumptions introduced for the simula-
tion, the bounds of uncertain parameters in (21) and (22)
are obtained, namely







k11 = 2.6
k12 = 0.66
k13 = 0.135







k21 = k23 = 0
k22 = 0.45
ku = 0

Chooseρ1 = 1
/

λα , Q1 = diag
[

λθ λp
]

, whereλα =
0.24, λθ = 0.5 andλp = 55. Then the sliding mode hyper-
plane is written as

S= x3−109.42x1−175.99x2

From (23), the robust variable structure control law of
ship’s fin roll stabilization system is expressed as

u =− (81.96x1+1697.6x2+8.6658S

+ρ(x,S)S/(|S|+0.15))

whereρ (x,S) = 17578(|x1|+ |x2|)+339.53|S|+69.35.
At the design speed and with the specified metacentric

height, the time responses of ship’s roll angle under the
action of fin roll stabilizer and its control angle are shown in
Fig. 2 and Fig. 3, respectively. As we can see, the proposed
method achieves better performance of roll rejection, and
the range of the fin’s control angle is satisfactory.
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Fig. 2. Time response of ship’s roll angle under the control of anti-rolling
fin system
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Fig. 3. Time response of fin’s control angle



TABLE I

COMPARING THE PERFORMANCE OF CONTROLLER PROPOSED IN THIS PAPER WITH LQG AND CONTINUOUS ROBUST CONTROL LAWS

Average ampli-
tude(degree) of rolling
angle

Average ampli-
tude(degree) fin’s
control angle

Time constantTE(sec.) of the fin’s actu-
ator when the system becomes unstable

LQG control law 0.62 11 1.9
Continuous robust control law 0.1 11 1.8
Variable structure robust control
law

0.12 11.5 The system is still stable even whenTE ≥
4

To manifest the effect of the actuator’s time constant on
the closed-loop system’s performance, according to the con-
ventional design, another two kinds of control algorithms
are also discussed under the negligence of theTE’s effect.

(1)Conventional LQG control law
Based on the quadratic performance criterion, the al-

gorithm is designed, and takes no account of parametric
uncertainty and external disturbances.

(2)Continuous robust control law
The law takes into consideration parametric uncertainty

and external disturbances, and is designed according to the
method shown in [13].

The simulation results of the adopted control law, which
consider both the time constantTE and uncertainty, is
compared with the above two algorithms, as shown in Table
I. In Table I’s first two columns, we choose initial speed
V0 = 7.71 m / sec, andTE = 1. In column 3, the minimal
TE , that is, the threshold value from stability to instability,
is found out, via increasingTE step by step.

From Table I, we can find that the performance of the
3 kinds of control laws are similar, whenTE = 1. Simu-
lation research of the LQG controller and the continuous
robust controller shows that, the system become unstable
when TE ≈ 2. The system’s instability means that, fin roll
stabilizer not only cannot reject rolling but also increaseits
amplitude, which is quite dangerous. We think thatTE ≈ 2
is a general time constant, because the smaller the time
constantTE is, the larger the actuator’s power and volume
needs to be, so as to be unacceptable in practice except
military vessel. Hence, the use of the aforementioned LQG
controller and continuous robust controller is dangerous
sometimes, which should attract our attention. The variable
structure robust control law, proposed in this paper, can
guarantee that the system is still stable, even whenTE ≥ 4.
TE = 4 is a very mild requirement to shipbuilding industry.
Therefore, the variable structure robust control algorithm is
of practical applicability in the future.

VI. CONCLUSIONS

The variable structure robust control law of fin roll
stabilization system is designed with consideration of the
actuator’s effect, and show salient robustness and practical
applicability in the future. However, the influence of the
system’s nonlinearties are still rather large, especiallyin
strong waves and with large rolling angle motion, as is not

discussed in this paper. If we see fin roll stabilizer as a non-
linear uncertain system, and takes account of the effect of
its actuator’s time constant, it will be a typical generalized
matching uncertain system. The variable structure robust
control design of this kind of fin roll stabilization system
can utilize the methodology proposed in [13] by author. This
paper doesn’t tackle this problem, and further research in
this respect will be continued.
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