Proceeding of the 2004 American Control Conference FrM19.4
Boston, Massachusetts June 30 - July 2, 2004

Canonical Forms of Switched Linear Control Systems
Zhendong Sun

Abstract—This paper addresses the problem of finding input transformations. Based on the controllability criterion,
normal forms for switched linear systems. Based on the e decompose a switched linear control systems into sub-
recent controllability criterion, we decompose a switched \5qeg with clear structural information: the controllable

linear control systems into the controllable mode and the d d th trollabl de F trollable sindl
uncontrollable mode. For single-input controllable switched mode an € uncontroflable mode. =or controllable single-

systems, we propose a canonical form via coordinate and INput .SWitChed systems, we propose normal forms via
feedback transformations. A controllable multi-input switched  coordinate and feedback transformations. A controllable

system can be transformed to a controllable single-input one multi-input switched system can be transformed into a
by (nonregular) feedback reduction. controllable single-input one by (nonregular) feedback re-
I. INTRODUCTION duction. These results pave the way for further investigation

. . . ) of synthesis problems such as stabilization and regulation.
A switched linear control system is a hybrid control y P g

system which switches at different time instants among a Il. PRELIMINARIES

finite set of linear time-invariant subsystems. Such systemsLet M = {1,---,m} be an index set. I is a natural
may arise from several situations. First, systems of this typgumber, letk = {1,---,k} and k= {0,1,---,k — 1}. Let
can be used to model systems subject to known or unknown = [es, - - -, e,,] denote thenth order identity matrix.
abrupt parameter variations such as synchronously switchedConsider a switched linear control system given by
linear systems [10], networks with periodically varying oy cN

switchings [1], and sudden change of system structure due Z(A“BZ)M oB) = Aex(t) + Bouo (t), @)
to the failure of a component [20]. Second, when we tryvherexz € R" are the statesy, € ®F*, k =1,---,m are

to control a single process by means of multi-controllePiecewise continuous inputs,— M is the switching signal
switching, the overall system can be described by a switché@ be designed, and, and By, are real constant matrices
control system. Indeed, the multi-controller scheme pro¥ith compatible dimensions.

vides an effective mechanism to cope with highly complex In the sequel, we briefly review some existing results
systems and/or systems with large uncertainties [11], [7jvhich will be used in the later derivations.

Even for simple linear time-invariant (LTI) systems, the Let ¢(t; 20,0, u, ) denote the state trajectory at time
performance (e.g., transient response) can be improv§switched system (1) starting from{zo) = zo with inputs

through multiple controllers/compensators switching [13]¢ = [u1, -, um] @nd switching signadr.
Third, such systems arise naturally in the study of multi- The controllable set of system (1) is the set of states
rate sampled-data systems [15], [2]. which can be transferred to the origin in a finite time by

Switched linear systems have attracted increasingly mof@Propriate choices of input and switching path.
attention in the past few years. The literature grow expo-
nentially and a lot new ideas and powerful tools have bee
developed from various disciplines. The reader is referre

to [3] and [12] for surveys of recent development. nﬁs‘(tf;to’x’u’ o) = 0. The controllable set of system (1) is

In this paper, we add_ress switched Ime_a ' c_ontrc_)l SYSteNiRe’ set of states which are controllable. System (1) is said to
where both the control inputs and the switching signals arg, (completely) controllable, if its controllable setis.
design variables. While much work has been devoted to the Recall that the controllable set of matrix pdid, B) is

)

specification of the switching mechanisms by assuming thgfe minimal A-invariant subspace that contains image space
the control inputs are givea priori, there are only a few ¢ B Eor switched systen (A;, B;)ar, we have similar
literature addressed the controller design issues for switch@fliarion. To this end, denote BY(A;, B;) s the minimum
control systems. Among these, complete controllability angubspace oR™ which is invariant under all;, i € M and

observability criteria have been presented in [17], [23]51tains all image spaces &%, i ¢ M. The expression of
together with the (controllability) path-planing algorithms;,:« subspace in the system matrices is
stabilizing feedback controllers were presented in [19], [16]

for special classes of switched linear systems; and optim
control issues were addressed in [24].

The objective of this paper is to determine the normal ]
forms of switched linear systems under state and feedbaff1€re 3B denotes the image space bf

The author is with Hamilton Institute, National University of Ireland, L€MmMa 1:_[17] For switched linear system (1), the con-
Maynooth, Co. Kildare, Irelanghendong.sun@may.ie trollable set is precisely the subspadéA;, B;) -
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Definition 1: Statex € R" is controllable (at,), if there
ist a time instant; > ¢, a switching signas : [to,t¢] —
, and inputsuy, : [to,ty] — RP*, k € M, such that

Jiyesdn—1=0,m=1 -
?J(Am Bi)m = Z Al ADSB,. (2)

0,0y in—1€M



I1l. CANONICAL DECOMPOSITIONS Proof. The controllable subspace of system

, . . _ Ay, By is
In this section, we present canonical forms of swnche;< & Br)u
linear systems based on the controllability criterion pre- Jusesgn-1=0em=1 o
sented in the previous section. V(Ag, Br)u = Z A"t ATNSBy,
Suppose€l’ is a nonsingulan x n real matrix. By letting i0,yin—1€M
z = Tx, it follows from (1) that Jryin—1=0,m=1 A
| =Y A Anpss,
(t) = TA, T 2(t) + TBouy (). (3) i0,yin—1€M
jlv”'!jﬂ.*l:(]v'“anil
This equation describes the same system dynamics in dif- _ Z PA .. AR,
Tn—1 T ?
ferent bases of the state space. Thus the two systems are i i EM
equivalent under the coordinate transformatios: T'x.
) ) _ C+S !
For systems which are equivalent, their controllable sets = PV(Ak, Br)m = 5 = .
are also connected by the equivalence transformation in a
clear manner. Hence the theorem follows¢)

B Theorem 1 can be rewritten in state space representation.
Proposition 1: DenoteV the controllable set of systems For this sake, lety : R — S be the canonical projection.
(1) and (3), respectively. Then, we have Define a matrixi” € R™*" by

V=TV. Tx=Px®Qx, VzecR"

It is not hard to see thaf' is nonsingular. Let
Proof. Simple calculation gives

Ak = TAkTil, Bk =TBy, ke M. 7
Jiysdn—1€N e
vV = Z (TA, T~ 1)in1... It can be verified that
oy in—1EM o= | A A2 | g [ B ] poa g
(TA;, T~ S(TB;,) g 0 Az |2 7" 0o | ’
J1,dn—1€N _ R _ ~
_ C pdne1 . A whereAy 1 = Ay and By, 1 = Bj,. It follows from Theorem
= T Y AT AlSB, =TV 1 that

0, yin—1€M

As a simple implication, we have the following result. Theorem 2:Switched system (A, Bt) is equivalent
to > (Ax, Br)m. Moreover, systemd (Ay 1, Bg1)m IS
Corollary 1: The property of complete controllability is cOmpletely controllable.
invariant under any equivalence transformation. System) (A, Bi)n in triangular form (8) is said to be
By Lemma 1, the controllable set of any switched lineai? controllability canonical form.

system is a subspace @&f'. Denote the set by. Let S be

a subspace oR” such that IV. FEEDBACK EQUIVALENCE AND FEEDBACK
REDUCTION
R'=Cces, (4) By introducing regular state feedback
where the symbol®’ denotes direct sum. It is clear that wi(t) = Fya(t) + Goug(t), i € M,v; € RV, 9)
C~ % ~ R (5) whereG; is nonsingular fori € M andwv;, i € M are the

new inputs, the switched system(A;, B;) s Is turned into
where =’ stands for isomorphismy’,fs—" is the quotient space, 2_(Ai + BiFy, BiGi)u.

and [ =dim C. Let P : W" — “5 be the canonical  proposition 2: The controllable subspace is invariant un-
projection andA;, k € M the map induced m% by der any regular state feedback.
Ap: Proof. Let V andV denote the controllable subspaces of

N A;, Bi) M A; + B, F;, B;G; ively. A
AkP:PAk, kEM (6) Z( 19 z)]b[ andZ( z+ 14 ZGl)Mv respecuvey S

. (AZ‘ + BiFi)V CAV+SB;, =V,
Let B, = PBy, k € M. Then we have

L. . V is (A; + B, F;)-invariant. This means that
Theorem 1:Systemd (A, Bx) s is completely control-

lable. Y V.
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On the other hand, systein (A;, B;), can be seen as the Denote

transformed system froy (A; + B, F;, B;G;) Via state 1 Ong—2  Qng—1
feedback 0 1 Ong—3 Qg2
vi(t) = —G7 ' Fix(t) + G lug(t), i € M. Qs = :

HenceV C V and the proposition follows. ¢ 0o 0 - 1 Qi

As a corollary, controllability is an invariant property o 0 - 0 1
under regular state feedback. and

If we implement both coordinate and feedback transfor-
mations, the structure of the controllable part can be made T=0Q { QO2 I 0 ] .
simpler than the canonical form presented in the previous nono

subsection. To see this, we first focus on the single-input Let 7, be the first row of7’~'A4;7. Introduce coordi-

systems and then on the multi-input systems. nate transformatior = 7'z and state feedback; =
A. FEEDBACK EQUIVALENCE FOR SINGLE-INPUT —F17~'a+v1, and denote by~ (A;, B;) s the transformed
CASE system. It is clear thaB; = e¢; and the first row of4; is

zero. It follows from~,; = A;. .. that
Definition 2: Switched systen) (A4;, B;) s is said to be i i Tk

single-input, if rankBy, = 1 for somek € M andB; = 0 T A, TT 'y, =T ;.
for j £ k.

By re-indexing the subsystems, we can always assu
that B; # 0 while B; =0 for j > 2.

Suppose single-input syste (A4;, B;)as is completely AiS CSiyq, Vi€ M, € ng
controllable. LetSy = I' 4, SB;. Define recursively that o

T~y = ey, the above equation exactly states that the
n/]cjth column of A;; is e;. Similarly, from the fact that

we know that thejth column of 4; is in Enyyy for j > my.
§j=8j-1+ Z AiSj1, j=1,2,---. Hence, we arrive at the following conclusion.
ieM
Denoten; = dim Sy, for k = 1,2, ---, and letp = min{k : Theorem 3:The controllable single-input  system

R < — me We can find a basis 6" by the S (A, Bi)m is equiv_alent, via suitable coordinate and
%Iowifg }pr?)cz durTéO ' Is oft" by feedback transformations, to normal systén(A;, B;)
Firstly, lety; = A7"1B, for i = 1,-- -, no. with .
Secondly, we can find a basisg,---,7,, of S; by () B1 = e; and both the first row and theyth column

searching the set _ of A, are zero; o
(i) For all j > n; andi € M, the jth column of 4; is in
{711 Cy TYng s A2'717 T A27noa R Am'Yla R Am'Yng} 5m+1; and
from left to right. (i) For all j > 2, the k;th column of 4, is e;.
Continuing the process, suppose we have found a basisIn particular, when the system degenerates to the linear

Y1yt Yo Yms_a+1,** 5 Tng TOF Si. Then, by searching time-invariant case, the normal form becomes
the set 00 .- 0 0 1
{Vla'"77ni7A1’7ni717'"7A1’ynm"'7Am’7ni,17Am7ni} 10 -+ 00 0
from left to right for linearly independent column vectors, ' :
we can find a basis 00 --- 00 0

00 -~ 10 0

717"'7’}/1’7/0’"'77n,i71+1a"'a')/n,iv’ynﬁ-la'"a’YniJrl . i .
which is the standard normal form for controllable single-

input systems.
For a general switched system, the normal form is not
(Vs s Ymos s Py 1 1r "=y Y} unique. In fact, onlyn columns inf'll, .-, A, are fixed,
they are thek;th column of A;, for j = 2,.-.,n, together
for . , with the ngth column of A;. Other (n — 1)m columns,
By the procedure, for alj > 2, we can always express yqugh may submit to certain constraints, have free param-
7j by Aijve,; with uniquei; and k;. Forl € n, 16t & = gterg other than zero. To see this, we examine a controllable
spar{ei, - -+, ei}. DenoteQr = [y, -+, 7). second-order single-input system with two subsystems. By

As S is Aj-invariant, we denote byl;; the restriction e ahove searching procedure, the system must follows into
of Ay in Sp. Suppose the characteristic polynomial&fi  jne of the two cases:

IS (@) rank[By, A1 B1] = 2;
det(s[ — All) =8"0 4 4. 4 Qpg—1S + Qpyg - (10) (b) rank [Bl, AlBl] =1 but rank[Bl,AQBl] =2.

for Si+1-
Finally, we can find a basis
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In the former case(A;, B;) is in the standajd normal [y,---,l,—1 with [; < j, and input sequence,, - - -, u;,_,,
form for controllable single-input systems, ant is not such that the sequence defined by
necessarily in any specific form. In the latter case, the first

column A4, is fixed, 4; is constrained but the other column n b,
of A, are totally unspecified. Hence the matrices are in Me+1 = Aimy, + Biyui, (11)
form for k=1,---,n— 1 is independent.
i - { 00 ] Proof. We proceed by induction. As; # 0 hence it is
vt 0 x|’ independent. Suppose that< n — 1 andn,,---,n; have
B 0 been constructed according to (11) and are independent.
Ay = { 1 ] 5 Denote byL; the linear subspace generated/y- - -, 7.

We have to choosé,, I, andu;, such that
where * stands for a real-valued number whose value
cannot be determined by the controllability property. Mev1 = Agm,, + Biyui, & Ly
Note that for any controllable single-input switched sysif this is not possible, then
tem, it is always possible to classify in the same fashion and _
then write out the corresponding normal forms. Howeverdi. M, + Bi i, € L, Vi € M, Uy € k, u;, € RV
as the system order and the number of subsystems increq_s& u; =0, we have
a detailed classification becomes more and more tedious. * '
Aiﬁllk S ,Ck,v i €M, Iy € k.

B. FEEDBACK REDUCTION FOR MULTI-INPUT CASE . . . )
In other words,L;. is A;-invariant for all: € M. At the

For controllable multi-input switched linear systems, norsame time,B;, u;, € L for all u;,. This means that
mal forms under coordinate and feedback transformationgi v SBi € L. Now thatL,, is A;-invariant and contains

can be obtained using the same method as in the previoys . p;, it must contain the controllable subspace of

subsection. In particular, Theorem 3 could be extended Bils}temZ(Ai,Bi)M as a subset. This is a contradiction
the multi-input case. However, comparing to the singlepecause the system is controllable)

input case, the normal forms are more complex and the
system structures are less clear. Since the system decompoRemark 1:The lemma is an extension of [6, Lemma 2]
sition mainly serves for addressing synthesis problems suftem linear systems to switched linear systems. Note that a
as feedback stabilization and regulation, a better way to thigy difference between this lemma and [6, Lemma 2] is that
end is to change the multi-input problem into a single-inputve does not impose thd; = &, as did in [6, Lemma 2].
problem, just as in the standard linear system theory.  This relaxation is necessary as exhibited in the following
To change a multi-input system into a single-input onegxample:
we need a nonregular linear state feedback in form r

A =

o O O
o O O

ul(t) = Fx + Gv, 1 € M,

where the gain matrixG = [Gy,---,G,,] only has a

non-zero column vector. The idea of using nonregular B, =

state feedbacks in control system design could be traced

back to the work of [8] which showed that a multi— r

input controllable linear system can always be brought to A,

a single—input controllable linear system via a nonregular

static state feedback, thus enabling an easy proof of the m

pole assignment theorem for the multi-input case. This

idea was generalized to nonlinear case in [21], [22]. Other By =

nonregular state feedback scheme could be found in the L

decoupling problem [14], model matching [9], and feedbackor this system, we havig = I3 = 1.

linearization [18], [5]. Although Lemma 2 only asserts the existence of the in-
The following lemma plays a central role in finding adependent vectors,, - - -,7,, a constructive procedure can

nonregular state feedback to change a controllable multbe formulated from the proof. Indeed, suppage: - -, nx

input switched system into a controllable single-input sysare known for somé& < n. Denote

tem.

OO PFOO OO+~ OO
o O O
o O O

Ly = spafn,- -, Mk},

Lemma 2:Suppose switched linear systém(A;, B;)

is controllable. Then, for any non-zero vectdr € _
Urenr SBk, there exist index sequences - - -,4, 1 and V] = AL, +SBy, je M.

and
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ComparingVj with £, for j = 1,---,
find ani, € M, such that

Vi & L.

m, wWe can always

Ay Ly L L,
then we can find &, such that
A, € L.
= 0. Otherwise, we have
SBi, € Lk,
hence there is a unit column vectey, such that

Bikej Z £k

In this case, let;,

In this case, let, = k andw;, =
have

e;. In either case, we

Ay, + Biyuiy, € Ly (12)

Note that the process is constructive and in this way we can

find an independent sequenge - - - , 1,,. Moreover, if (12)
holds for au;, , it must also hold for almost alt;, € R .
This is because the relation;, i, + B;,u;, C Ly iS an
algebraic constraint and hence the solutionsu(jn) form
an algebraic set iftPix.

By means of Lemma 2, we obtain the main result in this

subsection.

Theorem 4:Any controllable multi-input system can be
reduced to a controllable single-input system via a nonreg- L

ular state feedback.

Proof. Choose a non-zero vectérfrom U;c,$B;. By
Lemma 2, we can construct a badis;,---,n,} of R”
satisfying formula (11). Let gain matricds, i € M satisfy,
otherwise arbitrary, thak;, n;,, = u;, fork=1,--- ,n—1.
Note that the choice of such; is always possible since,
are independent. Eaojf), can be expressed by

Nk = (Af-cj JFBRJFK,') e (Am JFBmFm)b

for somej andk; € M. This implies that each,, is in the
controllable subspace of system(A; + B;F;,b)y. As a
consequence, systen (A4; + B;F;,b)y is controllable.

Supposeb € 3B;. Letb; =bandb, = 0,1 # 5. It can
be seen that the smgle mput systom(A; + B, F;, bi) v

Corollary 2: Suppose multi-input syster (A4;, B;) u
is controllable. Let matricesd; € RP¢ be such that
[B1G1, -, BnGy] has only one non-zero column. Then,
for almost all F; € ®Pi*", i € M, the single-input system
> (A; + B;F;, B;G;) is also controllable.

Another corollary can be obtained by combining Theo-
rems 3 and 4.

Corollary 3: Any controllable multi-input switched sys-
tem can be reduced to a controllable single-input normal
form via proper coordinate and (nonregular) feedback input
transformations.

Example 1:Suppose we have a multi-input system
>_(Ai, Bi)a with

1 -3 0 0 -1
-2 0 0 0 2
A = 2 -1 .01 =21,
0 0 10 0
2 -1 .0 0 -2
1 1
0 2
B, = 0 0 |;
0 0
[ 1.0
Ay = 0,
[0
0
By = 1
0
0
Let
G1:|:g-):|a
Gy = 0,
and
0 00 00O
Fl_[10000]’
F, = [10000].

It can be verified that the single-input systemm(A4; +
B,F;, B;G;); is controllable. By applying the searching

also controllable. By introducing nonregular state feedbao‘lkfoce‘dure as in the previous subsection, we have

Uj = Fj{E—‘rGj’l}j,
Fkl'v k 7& j7

= b, the original multi-input

U =

where G; satisfies B;G

system) (A4;, B;) s is changed into the single-input system

> (A; + B;F;, b)) which is controllable.

From the proof, and the discussion before the theorerand

we in fact can draw a stronger conclusion as follows.

11 -4 0 O
02 0 00
=00 0 1 0],
00 0 01
1 0 0 0 O
Q2 = Is.
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Let T = @Qqdiag [Q2, Is] = Q1. Let F| be the first line of
matrix T—1(A; + B, F;)T. Denote

(1]
Ay = T YA +B )T -T'BG\F|
= T'AT+T'B(F\T -G F)), 2
B, = T 'BGy,
and and (3]
AQ = T_I(A2 —|— BQFQ)T, [4]
BQ = TﬁlBQGQ.
The systend_(4;, B;)s is in the normal form (Cf. Theorem %]
3) with
00 0 0 0 &
- 10 0 0 O [7]
A4, = 01 0 0 0],
0 0 -8 0 1 8]
|00 0 10
1 [9]
B 0
Bl = 0 )
0 [10]
0
) [11]
and
00 0 00 [12]
B 00 0 00O
11 -4 0 0
00 0 0O
_ - [14]
By = 0.
[15]
This normal form is the reduced system from the original
system via coordinate change (16]
=T 'a, [17]
and input transformation
[18]
(U5} = (F1 - GlFllTil)I + lel,
uy = Fox + Govg. (19
V. CONCLUSION [20]

In this paper, a framework for finding normal forms[21]
has been developed for switched linear systems where
both the switching signal and the control input are desig ]
variables. We proved that, each switched linear system can
be changed via an equivalent coordinate transformation into
the canonical controllability form with clear structural infor-[23]
mation. For single-input controllable systems, we presented
normal forms which extend the standard controllability24]
normal form of linear time-invariant systems. For multi-
input controllable systems, we showed that they could be
reduced to single-input controllable systems via nonregular
state feedbacks. These results are generalizations of the
well-known results from standard linear system theory.
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