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Abstract - A pole-placement approach is described for piece-wise
linear systems. It is shown that if the resulting piecewise linear
control achieves local stability, it also achieves global stability.
This property holds for piece-wise linear controls whether based
on state feedback or on dynamic output feedback.  Observer based
designs and low-order controllers based on projective controls are
discussed

I. INTRODUCTION

     Systems exhibiting switching characteristics in the plant,
or containing switching characteristics in the controller are
of considerable interest. We consider a class of linear
systems with switching characteristics and show that local
stability properties induce global stability properties. As a
consequence, it suffices to concentrate on local stability in
designing globally asymptotically stable (GAS) controllers.
     The pole-placement approach [1],[2] applied to piece-
wise linear systems results in piece-wise linear  state
feedback control.  Similarly, if the pole-placement
approach is used to design the observer gain for a piece-
wise linear system, the resulting observer will have piece-
wise linear characteristics. And finally, the pole-placement
design produces, as a by-product, the point-wise (state
dependent) eigenvectors, and so allows the application of
projective controls approach [12]-[14] to design low order
dynamic output feedback controllers for nonlinear systems
[3]. By construction such controllers will be piece-wise
linear when designed for piece-wise linear systems, and
will in all cases produce a piece-wise linear closed-loop
system. Guaranteeing local stability then suffices to
guarantee global asymptotic stability.
      The class of piecewise linear systems considered here is
defined in Section 2, and the main result, the global
extension of local stability results, is presented in Section 3.
The pole-placement design, and its repercussions when
applied to piece-wise linear systems is discussed in Section
4, and  examples of state feedback design are presented  in
Section 5. Observer based design is discussed in Section 6.
Projective control design of low order controllers [3], is
reviewed in Section 7 together with the repercussions of the
approach when applied to piece-wise linear systems.  An
example of the designs of state feedback and output
feedback controls  is presented in Section 8.
__________
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2. PROBLEM FORMULATION

     Piece-wise linear systems may occur because of
switching characteristics in the system, or because linear
switching controls are used to control linear systems. Some
examples of controlled systems that fall within the category
considered here are provided below.
Example 1: Piece-wise linear system, such as
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Example 2:A system with saturation characteristics, e.g.

    

)xx()z(
ux

xxx
x)z(xx

xxx

31

4

413

312

421

−ϕ=ϕ
=

+=
+ϕ−=

+=

&

&

&

&

   (2)

in which the nonlinear characteristic is a saturation type
nonlinearity, such as defined by a linear characteristic with
a limit, ),z(satk)z( α=ϕ β or defined by a nonlinear

function, such as ).ztanh(k)z( α=ϕ
Example 3:Linear jump systems, e.g.

   

)xg(signs),xg(signs

u
1
0
0

x
000

asaaa
asaa

x

2
T
221

T
11

23222122021

1311211

γ−=γ−=
















+
















+=&              (3)

Example 4:  Quantized systems of the form
uBxAx σσ +=& (4)

where {Aσ,Bσ}={Ai,Bi}if i1i aha ≤<− , h = gTx+ω, i = 1,..,K.
      These are specific examples of systems of the following
general form
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with Example 2 well approximated by (5) during design.
       The  primary issue  is to determine state feedback and
output feedback controls to make the system GAS. There
are currently  no available methodologies to approach this
class of control problems, although special cases have been
considered, and procedures to treat subclasses of switching,
or hybrid systems possessing particular properties have



been treated (see fore example [4]-[11]). The goal here is to
combine global properties of piece-wise linear systems with
the properties  of  the pole-placement approach to produce
piece-wise linear controls, which will result in piece-wise
linear closed-loop system. Then, the homogeneity property
of piece-wise linear systems  implies that local stability
results in the global stability of the close-loop system.
State feedback controllers, full order observer based
controllers and low-order controllers based on  the
Projective controls approach[3],[12]-[14] are discussed.

3. GLOBAL EXTENSIONS OF LOCAL
PROPERTIES

     It is well known that linear system are characterized by
the superposition principle. Consider the linear time-
invariant  system BuAxx +=& ,with u = 0. Let )x,t(x 0

1  be
the response of a linear system with initial condition (IC)

1
0x , and let )x,t(x 0
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0x . Then

)x,t(x)x,t(x)xx,t(x 0
2

0
1

2
0

1
0 β+α=β+α

      Piece-wise linear system do not satisfy the
superposition principle. However, piece-wise linear
systems satisfy the homogeneity part of the superposition
principle:

Property. Let the piece-wise linear system (5) with
0=γ have the response )x,t(x 0  for the IC 0x . Then,

)x,t(x)x,t(x 0
10 α=α .

     This property is instrumental in establishing an
important property of  piece-wise linear systems. Let u = -
K(η)x be a well defined piece-wise linear control over Rn,
where η ∈ Rq  and  ηi = sign(hi), hi = gi

Tx, i =1,..,q, as in
(5), with γ  = 0.  Let the resulting close-loop system be

x)(Fx)](K)(B)(A[x η=ηη−η=& (6)

Theorem 1. Suppose the control u = - K(η)x , results in a
LAS closed-loop system. Then, the system is GAS.

Proof. Let x0 be in the vicinity of the origin so that the
trajectory from this initial condition converges to the origin,
i.e. x(t,x0) → 0. Since the system is LAS the implication is
that x0 can be an arbitrary point on a closed surface S
surrounding the origin. Consider now the trajectory from an
initial point 0M,Mxx̂ 00 >= . Define  the state
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Thus, z(t, 0x̂  ) = x(t,x0) , and so )x̂,t(x)t(x̂ 0= = )t(Mz
).x,t(Mx 0= Hence, the trajectory converges. Since this is

true for all x0 ∈ S, and all M >1, the system is GAS.

    The result can be generalized to 0≠γ  as in (5). To
distinguish the two cases  define the switching functions to
be  )h
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Applying u = - K(µ)x results in the closed-loop system
x)(Fx µ=& . Let it have a region of attraction A, and suppose

x0 ∈ A. There is then a closed surface S ⊆ A in Rn

encompassing the origin so that for all  x0 ∈ S trajectories
converge to the origin.

Assumption 1.  Let the control uγ = - Kγ(µ)x insure that S
is in the region of attraction of the origin for all 0 ≤ |γi |
≤ || iγ , i = 1,…,q.

Theorem 2. Suppose Assumption 1 holds, Then the closed-
loop system is GAS.

Proof: The proof follows that of Theorem 1 and uses the

fact that jjM
1

γ<γ  for M > 1. Specifically, 
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Since M > 1, then by Assumption 1, this system converges
to the origin. Therefore, repeating the steps in the proof of
Theorem 1 it again follows that if the system is LAS, it is
GAS.

     Consider now output feedback control for piece-wise
linear systems. Given the system (5) with 0=γ , with an
output y = Cx, construct a piece-wise linear observer

zGĥ),ĥ(sat,z)ˆ(Ku
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  (8)

Define the observer error, xze −= . Then
       u)](B)ˆ(B[x)](A)ˆ(A[e)HC)ˆ(A(e η−η+η−η+−η=&
and when  B is constant

x)](A)ˆ(A[e)HC)ˆ(A(e η−η+−η=&

If all state components appearing in the definition of η are
measured, then η=η̂ , and the error dynamics reduces to



e)HC)(A(e −η=&      (9)
In this case choosing  H( η ) to make (9) GAS will achieve
convergence of the observer state if the system is  point-
wise observable (dual to the definition of point-wise
controllability [2]). If the observer gain is designed using
the pole-placement approach then H(η) is piece-wise linear.
Combining this with a state feedback control that stabilizes
(5) will result in a piece-wise linear  controller and a piece-
wise linear closed-loop system. And so, with the state error
converging, and local stability implying global stability of
the closed loop system, the result is  a GAS closed-loop
system.
      Conditions under which an observer can be constructed
when not all components of the state that define η are not
measured are not known. The following results, however,
holds.

Theorem 3.  Suppose the closed-loop system

 
xGh,xgh),h(sign],...[

nq1,R,Rx,u)(Bx)(Ax
TT

iiiiq21

qn

===ηηηη=η

≤≤∈η∈η+η=&
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is LAS. Then the system is also GAS.

Proof: This follows directly from the fact that the closed-
loop system has the form ],zx[x~,x~)~(F~x~ TTT =η=& with

]ˆ[~ TT ηη=η , and is piece-wise linear.  Theorem 1 now
applies to prove the result.

Theorem 4. Suppose the closed-loop system
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is LAS for all 0 ≤ |γi | ≤ || iγ . Then it is GAS.

Proof: Follows in complete analogy from Assumption 1
and Theorem 2.

    These  results carry over to low order controllers, but are
stated separately because a different procedure is used to
develop the low order dynamic controller with required
properties. Again, assume first that .0=γ

Assumption 2. The signals h = GTx are in the set of
measured outputs of the system.

Theorem  3’. Suppose there exists a low order controller of
the form
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with z ∈ Rp , p < n-r, which makes the closed-loop system
(1) and (11) LAS. Then the system is also GAS.

Assumption 1’.  Let the control (11) with h = GTx - γ
insure there is a closed region S containing the origin is in
the region for all 0 ≤ |γi | ≤ iγ , i = 1,…,q.

Theorem 4’.  Suppose Assumptions 1’ and 2 hold, and
there exists a controller
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which makes the closed-loop system (6) with controller
(12) LAS for all 0 ≤ |γi | ≤ || iγ . Then the system is GAS.

4. POLE-PLACEMENT DESIGN OF LOCALLY
STABILIZING CONTROLS

       Properties of the resulting closed-loop system will hold
if one can design candidate controls that will maintain the
piece-wise linear property of the closed-loop system. For
state feedback controls the following approach supplies a
constructive procedure.

Theorem 7. Suppose u = - K(x)x is a pole-placement
control with arbitrary desired eigenvalues that are piece-
wise constant (e.g. function of only η) in  each region of
the partition induced by the switching manifolds. Then the
resulting system  is GAS if it is LAS.
Proof: Let },...,,{ k

n
k
2

k
1 λλλ  be the piece-wise constant

desired eigenvalues in region πk of the partition induced by
the switching manifolds. Let ak be the vector of coefficients
of the corresponding characteristic polynomial in region k,
let α(η) = )](....)([ 1n1 ηαηα − be the coefficients of the
open-loop characteristic polynomial of  A(η), and let
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The pole-placement control is then defined by
x)(M)(S)]()(a[x)x(Ku 11 −− ηηηα−η−=−= . (14)

The result  is now a direct consequence of  Theorem 1 and
the fact that by  construction the control is piece-wise linear



and results in a piece-wise linear closed-loop system which
has the properties required in Theorem 1.
       It is observed that the partition  introduced for the
piecewise constant desired eigenvalues need not coincide
with the partition induced by the piecewise linear system.
       No assumption is made on the nature of the control  for
a given initial condition. The stabilizing control itself may
remain a switching control, or there may be periods of time
when it enters a sliding regime. On the other hand if a given
control does not stabilize the system divergence could
occur with a switching regime accompanied by an infinite,
but denumerable, number of switches, or in the sliding
regime, when  trajectories can diverge along the sliding
manifold. The payoff is that if a modified control is sought
to insure stability it is sufficient to show local stability to
deduce global stability of the system.  In practice, it is quite
simple to detect local stability, or instability via
simulations. We have found it easy to construct state
feedback controls that locally stabilize piece-wise linear
systems in the many examples that have been considered
when the piece-wise linear system was controllable [2].
However, the question of the necessary and/or sufficient
conditions under which this can be achieved when point-
wise stabilizability [2]  is lost along the sliding manifolds is
open, and needs further study.

5. EXAMPLES OF STATE FEEDBACK DESIGN

       Implications of these results will be illustrated on  the
3rd  order system of the type in Example 3,  Section 2,  with
parameters ,1a,2a,1a,1a 21131211 =−==−= 1a220 −= ,

)saa)s(a(1a,1a 222122022223221 +===  and with
switching functions  s1=sign(h1), s2 = sign(h2) where

312321 xxh,xxh +=+=    (15)
The SR of this system is characterized by the  open-loop
characteristic polynomial
  s]saa)s(aa[s))s(aa(s)s( 1122122211

2
22211

3 −++−=φ ,  (16)

leading to 1122122212201110 saa]saa[a,0 −+=α=α , and
]saaa 2221220112 −−−=α . Thus,
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Then,  from (4), K(η) = [k1  k2  k3] where k3 = a2 - α2 and
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Choosing, for example, the constant eigenvalues {-3,-4,-
5}results in LAS, and thus GAS, behavior. A typical
response is shown in Figure 1, with part of the response,
after the large transient, blown-up in Figure 2. From the
time histories of  s1, s2, shown in Figure 2, high frequency
switching occurs around h2 = 0 for t ∈ [1.75,2.15] sec, and
around h1 = 0 for t∈[3.4,5] sec. Note that 12 ss24Mdet −−= ,
implying det M ≠ 0,  and so the system is  controllable [2].

   
           Fig. 1. Response with state feedback

     
      Fig.2. Response contains both  switching and
                 sliding modes

      It is noted that a modified system  characterized by the
data ,1a,2a,1a,1a 21131211 =−===  ,1a,1a 221220 ==  a220 = 1,

,1a,1a 23221 ==   with 322321 xxh,xxh +=−= , is not
open-loop stable for any of the possible instance of A(s1,s2).
However, 12 ss24Mdet −−=  still holds, and the system is
controllable. The sufficient condition for controllability for
the general case of Example 3 is
     |aa||aaa||aa)aa(aa| 2

23121323221231311220
2
1321 +>−+ ,

and it was simple to find stabilizing control laws whenever
this condition was satisfied.



6. OBSERVER BASED OUTPUT FEEDBACK
DESIGN

      The system described by
     1a,1a,1a,1a,2a,1a,1a 2322122021131211 ====−=== (17)
with

322321 xxh,xxh +=−= (18)
will be used here to illustrate the design of observer based
controls for piece-wise linear systems, assuming the second
state is measured, y = x2, (thus, not all the states appearing
in the definition of the switching characteristics are
measured). This implies that η≠η̂  because the estimate of
the switching nonlinearities }ŝ,ŝ{ 21  are different from the
actual switching nonlinearities }s,s{ 21 . The observer
based closed-loop system is, thus, described by (8) , and
was implemented by performing a pole-placement design
on the pair {AT,CT} while choosing an observer spectrum
{-3,-5,-8}. Combining the observer design with the state
feedback pole-placement design, with desired spectrum {1,
-2,-3}, resulted in a GAS piece-wise linear system.

 Figure 3. Observer based output feedback
                               Response

     The response from the initial condition x0 = {20,-20,0}
is shown in Figure 3. The significantly larger transient  than
with state feedback control for this initial condition is a
combined effect of the observer   initial conditions being
set to zero and the effect of unsynchronized switching in
the system and the observer.

7. LOW ORDER CONTROLLER DESIGN  BY
PROJECTIVE CONTROLS

     The Projective control approach can be used to design
an output feedback controller of low order. Consider (5),
with 0=γ ,  and suppose there is a controller of the form

        
,zGĥ),ĥ(satˆ),ˆ(Kz)ˆ(Nu

y)ˆ(Dz)ˆ(Hz
T

dd ==ηη−η−=

η+η=&
(19)

with ĥ qR∈ , which makes the closed-loop system LAS.
Then, it is clear from above constructions that the system
will also be GAS. The  question is how to identify
controllers which will make the system LAS. In the case of
observer based output feedback control one can assume z to
be an estimate of the state, while in the case of low order
controller there is no such natural relation with the state.
When Assumption 2 is made, z = x, and the projective
control idea [12]-[14] can be used to develop candidate
controllers.
      Possibility to extend the   Projective controls approach
to nonlinear systems based on the pole-placement approach
is described in [3]. To develop a controller using the
Projective controls approach,  assume a state feedback
control given by (14) has been determined. The projective
controller can then be constructed as follows. Let y ∈ Rr, r
≥ q, and let y contain all components of h = GTx - γ (and so

η=η̂ ).  Let the resulting closed-loop system given by (6)
represent the reference dynamics, let Xr(η) be r real
eigenvectors of the reference dynamics associated with r
eigenvalues collected into Λr, and let Xp(η) be additional p
eigenvectors of the reference dynamics, associated with Λp,
where p is the dimension of the low order controller in (19),
and r+p≤ n. Define
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The set of p-dimensional controllers which retain
{Λr,Xr(η)} and {Λp,Xp(η)}  in the point-wise spectrum of
the resulting closed-loop system is then given by (19) with
the matrices {H(η),D(η),Nd(η),Kd(η)} parameterized by
the free parameter matrix P ∈ Rpxr as
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The residual dynamics characterized by point-wise
eigenvalues of the matrix
       rrr0

T
re C~PB~APCAYBYVAYA +=+= (22)

implying that the residual eigenvalues are functions of  η .
Here Y ∈ R(n-r)xn satisfies CY = 0. The residual dynamics
supplies the remaining point-wise eigenvalues of the
closed-loop system, and so the freedom in P is initially used
to achieve a point-wise closed-loop spectrum with all
eigenvalues having negative real parts for all {x,z}.
     For the considered third ordered system, if p = 1 the
residual dynamics is of first order , rB~  is a scalar variable,



P = [p1 p2] , and CAYC~r =  [ ]T21 0a= , implying a single
residual eigenvalue, λ3 = λ3(η). The approach was applied
to the system defined by (3), (17), (18) and a reference
dynamics associated with the desired spectrum {-1,-2,-3}.
In accordance with Assumption 2 it is assumed that the
states x2 and x3 are measured, and so 3221 xy,xy == .
For this system a first order dynamic controller was used
(static controllers can not stabilize the system). The details
of the design (the analytical expressions for the controller
matrices, and for the residual dynamics Are) can be found in
[15]. Choosing

       [ ]1)B~(sign50P,3,
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a locally stable closed-loop system was obtained, which is
then by Theorem  5 also GAS. The response from x0 = {20,
-20, 0} is shown in Figure 4. Also shown are the responses
when the state feedback control (s) is used, and when the
observer based control (o) is used. (Zero initial condition
were used in the observer and projective controller.)

   Figure 4. Response with the projective control,
                   State, and observer based feedback

8. CONCLUSION

      While  the described approach per se does not guarantee
that a design characterized by some desired closed-loop
spectrum, and observer spectrum, or with a particular
choice of the free  parameters in the Projective controller
will guarantee GAS behavior, if one finds a controller that
guarantees the system is LAS it will then also be GAS. The
pole-placement based approach, thus,  provides a promising
avenue for the design of controls for  piece-wise linear
systems using state feedback or  output based feedback.
Experience has shown that the approach is also applicable
to systems in which there exist saturation characteristics,
which are approximated by switching characteristics. This,
and other extensions , are being pursued.
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