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Abstract— High speed precision motion is required in
applications ranging from high performance machining
to electronic packaging. To achieve tight performance re-
quirement, careful design of the feedback and feedforward
controllers is necessary. This paper presents the feedfor-
ward controller design for a high speed positioning system
after a feedback controller has already been implemented.
We adopt the control architecture that consists of a nominal
feedforward based on the approximate inverse of the iden-
tified linear model supplemented by an additive corrective
control obtained based on iterative learning. Simulation
and experimental results are included to demonstrate the
efficacy of the proposed scheme.

I. I NTRODUCTION

High performance motion control systems require
speed and precision. To achieve this goal, feedforward
compensation as well as feedback control are needed.
Motivated by the stringent motion requirement of po-
sitioning systems commonly used in electronic manu-
facturing, we aim to improve the performance of point-
to-point motion of a positioning system by designing
a feedforward controller after a feedback controller has
already been implemented. Since only a single positioner
is considered, the system is single-input/single-output
(SISO). In the experimental setup, the angular position is
measured through the joint encoder. The data acquisition
system is capable of sample rates up to 200KHz. The
overall setup is shown in Figure 1.

We pose the control design problem as follows:

Consider a dynamical system,G, initially at
rest, with inputu and outputy. Given the de-
sired outputyd, find the inputu that minimizes
T such that|y(t)− yd| < ε for all t ≥ T
subject to the constraints

max
t

|ẏ(t)| ≤ vmax, max
t

|ÿ(t)| ≤ amax.

(1)

The velocity and acceleration constraints are imposed to
avoid internal saturation within the feedback controller
and servo amplifier. Based on our experimental testbed
and requirement in electronic manufacturing, we use
the following specification in this study,ε = 1µm, and
vmax = 2e6µm/sec,amax = 300g = 3.43e9µm/sec2.
If only the constraint is considered (ignoring the plant

Fig. 1. Positioning System Experimental Testbed

dynamics), the solution of the above problem has a
trapezoidal velocity profile. For performance illustration,
we shall use 500µm move length for all simulation and
experiment runs. With the trapezoidal profile, the settling
time is 0.8ms. Since the dynamics is not considered, we
call this the kinematic optimal solution.

For the feedforward control, we adopt the control
architecture as shown in Fig. 2. The inverse dynamics
filter F converts the desired input,ydes (generated from
trapezoidal profile; other profiles can also be used), to
the nominal command inputu∗. To generate the tracking
error for input correction, we choose the desired output
trajectory,y∗, as the output predicted by the identified
model, Gu∗ (ydes by itself is typically too aggressive,
leading to saturation). It is also possible to choose other
reference outputs, e.g., shiftedydes. Due to the lack
of a causal inverse (G is non-minimum-phase) and the
plant/model mismatch in the actual experiment (includ-
ing nonlinearities), a corrective input∆u is generated to
reduce the tracking errory − y∗.

We first apply sine sweep to the experiment to obtain
the experimental frequency response. A time domain
subspace algorithm (eigen-realization algorithm, ERA,
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Fig. 2. Overall Inverse Dynamics Based Control Architecture

[1]) is used to obtain a transfer function model consisting
of 9 zeros and 10 poles (listed in Table I) with the DC
gain 0.9665. Note the presence of a weakly damped
7KHz mode, which, if uncompensated, can cause large
amplitude oscillations (that would in turn lead to satura-
tion in the feedback controller). The gain/phase com-
parison between the experiment and model is shown
in Fig. 3. As is evident in these plots, the frequency
responses match well except near the 7KHz weakly
damped mode. The step response comparison (with a
27µm step input) is shown in Fig. 4. The oscillation is
due predominantly to the 7KHz mode.

Poles ωn/2π (KHz) ζ (%)

-1.1840E4±0.8844E4j 2.352 80.12
-0.3235E4±1.6269E4j 2.640 19.50
-0.0794E4±4.3621E4j 6.944 1.82
-1.4372E4±5.0167E4j 8.306 27.54
-0.0254E4±7.1992E4j 11.458 0.35

Zeros ωn/2π (KHz) ζ (%)

0.1249E4±3.1757j 5.058 -3.93
0.0065E4±4.2147j 6.708 -0.15
3.2706E4±5.4823j 10.160 -51.23

-0.0032E4±7.1750j 11.419 0.04
9.0389E4

TABLE I

POLES AND ZEROS OF THE IDENTIFIED MODEL

The identified model has 7 unstable zeros. Direct
inversion of this model (swapping numerator and de-
nominator polynomials in the transfer function) would
result in an unstable causal filter, preventing its imple-
mentation. We consider four alternate approaches: direct
non-causal inversion, zero phase error tracking control
(ZPETC) approximate causal inversion, and optimal
model matching. Through simulation using the identi-
fied model, we determine that the latter two methods
produce numerically sound results and can be used in
the implementation ofF in Fig. 2.

Whenu∗ = Fydes is applied to the physical system,
the settling time is considerably worse than the sim-
ulation result due to the model/plant mismatch. For a
fixed desired trajectory, we apply an iterative refinement
strategy to generate a corrective input∆u. The iden-
tified linear time invariant (LTI) model is used as the

Fig. 3. Bode Plot Comparison between Experiment and Model

Fig. 4. Step Response Comparison between Experiment and Model

approximate gradient to generate a descent direction in
each iteration. This method proves to be very effective,
capable of achieving experimental performance similar
to that in simulation in only a few iterations.

The rest of this paper is organized as follows. Sec-
tion II discusses four inverse dynamics approaches for
non-minimum-phase systems and the related simulation
and experimental results. Section III presents the it-
erative refinement approach to producing a corrective
input using a model-based gradient descent algorithm.
Conclusion and future work are given in Section IV.

II. I NVERSEDYNAMICS CONTROL

If the plant model is accurate and minimum-phase
(all zeros are stable), then an obvious choice of the
feedforward filter,F , is simply its inverse. If the plant
is strictly proper (more poles than zeros), then higher
derivatives of the desired output,ydes, will need to be
used in the continuous time case, and future samples
of ydes in the discrete time case. When the model
is non-minimum-phase, its causal inverse is unstable
and therefore cannot be implemented. There are several
partial solutions to this problem:



1) Non-Causal inverse
2) Zero phase error tracking control (ZPETC)
3) Approximate causal inverse
4) Model matching

We will discuss each approach and compare their appli-
cability to our test system. The plant,G, is assumed to
be the identified model.

A. Non-Causal inverse

The non-causal inverse,F , implements theG−1 as
a non-causal filter [2]–[5]. The outputy would then
be exactlyydes for t ≥ 0. However, sinceF is non-
causal,u will be nonzero for some period beforet = 0.
In effect, this will delay the output response. Through
simulation study, we observe the following drawbacks
of this scheme:

1) The output response is delayed due to the non-
causal input. The amount of the delay is related
to the time constant of the unstable zeros. For
our experiment, the complex zeros at 6.7KHz is
particularly poorly damped (0.15%), which could
lead to long delays (which also depends on the
desired input).

2) For systems with widely separated poles and ze-
ros, the numerical errors in the non-causal input
calculation could lead to significant output track-
ing error. For our test system, we were not able
to achieve good tracking using this approach due
to this issue.

Due to these problems, this approach was not further
pursued.

B. Zero phase error tracking control

The zero phase error tracking control (ZPETC) was
proposed in [6] and later refined in [7], [8]. The basic
idea is simple: choose the input filter to achieve the zero
phase of the combined system. Specifically, letGd(z−1)
be the discretized plant (using zero-order-hold) and

Gd(z−1) =
Gdnum(z−1)
Gdden

(z−1)
=

G
(s)
dnum

(z−1)G(u)
dnum

(z−1)
Gdden

(z−1)
(2)

where G
(s)
dnum

(z−1) contains the stable zeros and

G
(u)
dnum

(z−1) contains the unstable zeros. If the input
filter F is chosen to be

F (z−1) =

(
Gdden

(z−1)

G
(s)
dnum

(z−1)G(u)
dnum

(1)

)(
G

(u)
dnum

(z)

G
(u)
dnum

(1)

)
,

(3)
then the combined transfer function is

Gd(z−1)F (z−1) =
G

(u)
dnum

(z−1)G(u)
dnum

(z)(
G

(u)
dnum

(1)
)2 , (4)

which is of zero phase. The problem of this approach
is that it is not possible to simultaneously achieve unity

gain as well (since that would require causal inversion of
a non-minimum-phase transfer function). Many subse-
quent modifications have been proposed to minimize the
deviation from the unity gain over a specified frequency
range. However, the rigid zero phase requirement limits
its broad applicability. We therefore chose not to pursue
this scheme further either.

C. Approximate causal inverse

Instead of zero phase, we can try to maintain unity
gain by choosingF as

F (z−1) =
Gdden

(z−1)

G
(s)
dnum

(z−1)G(u)
dnum

(z)
. (5)

The gain of the combined systemGdF is now unity
for all frequencies, but there is a phase lag, as seen in
the Bode plot in Fig. 5 (the slight gain variation is due
to errors in numerical computation). The commanded
inputs and corresponding outputs for the move length
500µm is shown in Fig. 6–Fig. 7. The settling time for
500µm move is 0.86ms, only 7.5% degradation of the
kinematic optimal of 0.80ms.

Fig. 5. Bode Plot of Overall Transfer Function for the Approximate
Causal Inverse Case

Fig. 6. Command Input: Approximate Causal Inverse Case

D. Model matching

The basic idea of the model matching approach [9],
[10] is to find F to minimize the worst case frequency
domain gain deviation from a desired combined transfer
function W (chosen based on the frequency content in
ydes):

F = arg min
F∈RH∞

‖GF −W‖H∞
. (6)



Fig. 7. Output Response: Approximate Causal Inverse Case

When G is non-minimum-phase, choosingW = 1 for
all frequencies would cause numerical difficulty as the
optimization will try to approach an infeasible solution
(namely F = G−1). However, withW chosen to be
close to unity for the frequency range of interests, a
feasible solution may be found.

Once F is found from (6), we can also implement
FW−1, which is in general non-causal, so that the com-
bined transfer function is closer to unity. However, this
tends to accentuate the mismatch in the high frequency,
leading to poorer tracking performance.

To illustrate this approach, we

W (s) =
(

2π · 7000
s + 2π7000

)4

. (7)

Increasing the cut-off frequency and the order of the
low pass filter increases the speed of the response and
reduces the effect of high frequency modes. However, it
also introduces greater phase lag, causing longer delay
in the response. The resulting Bode plot comparison
betweenGF andW is shown in Fig. 8. The correspond-
ing commanded inputs and their shifted version (with
the shift given by the difference between the settling
times of the simulated output and the desired output)
are shown in Fig. 9. The simulated output (assuming
perfect model knowledge), shifted output, and desired
output are shown in Fig. 10. The settling time is 0.86ms,
the same as in the approximate causal inverse case.

The open loop poles ofG are all contained in the
zeros ofF , and the stable zeros and stable images of the
unstable zeros ofG are contained in the polesF . Some
additional faster poles and zeros are also present due to
the H∞ optimization to give additional high frequency
roll-off. However, up to about 7KHz,F is very similar
to the approximate stable causal inverse filter. Note that
the outputs are close to the shifted trapezoidal profile.
Therefore, if appropriate preview length (i.e., time shift)
of the desired input is applied, the kinematic optimal
profile can be obtained.

E. Experimental Performance

In Fig. 11, the simulation result is compared with
the experimental response. The experimental responses

Fig. 8. Bode Plot Comparison

Fig. 9. Command Input Comparison

clearly lag behind the model predicted responses; this
model/experiment discrepancy is especially pronounced
near the completion of the movement (at around 490µm)
when the velocity is near zero. Since the largest mis-
match occurs at low velocity, a possible cause is
Coulomb friction, which is not modeled.

III. I TERATIVE REFINEMENT

The input filter F designed based on the nominal
model performs less than satisfactory on the experiment
due to the mismatch between the model and the physical
system. We next apply the iterative refinement approach
to update of the input based on the output tracking error.
Using the complete trajectory tracking error to iteratively
update the command input is known as iterative learning
control (ILC). This concept was originally introduced
in [11] for robot tracking control. Most ILC algorithms
(proportional, Newton, Secant) updates the input at time
t based on the previous input and tracking error also at

Fig. 10. Output Comparison



Fig. 11. Output Comparison

time t [12], [13]. In [14], [15], the input is updated based
on the gradient of the complete trajectory tracking error
with respect to the input. Similar idea is also proposed
in a ILC general setting in [16]. For this study, we
apply the gradient descent approach with the nominal
LTI model, G, as the approximate gradient. We will
show that provided that the modeling error is sufficiently
small, the algorithm will converge.

The basic algorithm is summarized below:
Algorithm 1: Giveny∗ := {y∗(ti) : i ∈ 0, 1, . . . , N}

and u∗ := {u∗(ti) : i ∈ 0, 1, . . . , N}. Setu = u∗.

1) Apply u to the physical system and obtain the
output sequencey := {y(ti) : i ∈ 0, 1, . . . , N}.

2) Updateu by adding a corrective term

∆u = −αG∗(y − y∗) (8)

whereG∗ is the adjoint ofG.
3) Iterate until

∥∥y − y∗
∥∥ or ‖∆u‖ becomes suffi-

ciently small.

The key step in the above algorithm is the update
equation (8). The adjoint of the LTI model,G∗(s), is
defined asG∗(s) = GT (−s) = G(−s) since the plant
is SISO. The plant is stable, soG(−s) is completely
unstable (all poles in open right half plane), and may be
considered as a non-causal filter. Letg(t) be the impulse
response ofG(s) and thereforeg1(t) := g(−t) is the
impulse response ofG(−s). SinceG(−s) is non-causal,
g1(t) = 0 for all t > 0.

To justify the use of the gradient algorithm, Algo-
rithm 1, consider the evolution of the output tracking
error function in each iteration. Suppose the actual
physical system is

y = G0(u), (9)

where the system is initially at rest andG0 is possibly
nonlinear. Let the output tracking error be

J =
1
2

∥∥G0(u)− y∗
∥∥2

, (10)

where y and u are the output and input sequences
stacked up as vectors. For∆u sufficiently small, the

change ofJ over one iteration is

∆J = (G0(u)− y∗)T ∂G0

∂u
∆u. (11)

Note the ∂G0
∂u is the physical system linearized aboutu

(the complete input trajectory). Let∆G := ∂G0
∂u − G

with G the LTI model. It follows from (8) that if

‖∆G(∆u)‖ ≤ γ∆G ‖∆u‖+ β∆G, (12)

andG is full rank, thenJ would converge to a residue set
with a bound proportional toβ∆G. The update constant
α in (8) determines the rate of convergence; it cannot be
chosen too large, otherwise the first order approximation
in (11) would not be valid.

When Algorithm 1 is applied to the experiment with
u∗ from the inverse dynamics approach (stable causal
inverse; model matching result is similar), the tracking
error is within 1µm after only a few iterations, as shown
in Fig. 12 for trackingy∗ = Gu∗. The model based
settling time 0.86ms is now achieved experimentally. In
the input comparisons shown in Fig. 13, the modified
input signal is similar to the model based input, but
the transient and steady state behaviors are changed to
correct for the output tracking error.

Fig. 12. Experimental Response after 7 Iterations

Fig. 13. Input Comparison: Iterative Refinement vs. Model Based
Causal Inverse

It is also possible to directly apply the iterative
refinement to the experiment without using model based
inverse dynamics (i.e., start with zero initial control).
The best case that we have obtained involves desired
trajectories generated by the half sinusoidal acceleration
profile (a slower motion profile than the trapezoid). In



Fig. 14 the desired outputs are tracked almost exactly
after 7 iterations (but the settling time is now slower,
to about 0.95ms). As seen in Fig. 15, the oscillation
in the input now disappears since the input is no
longer conditioned by the initial control that contains
the oscillation from the inverse dynamics approach. The
smoother sinusoidal profile has also contributed to the
reduction of oscillation.

Fig. 14. Experimental Output: Iterative Refinement with Zero Initial
Input and Sinusoidal Motion Profile

Fig. 15. Command Input: Iterative Refinement with Zero Initial Input
and Sinusoidal Motion Profile

To summarize, as seen from the experimental results,
the identified LTI systemG is not good enough for
a direct inverse dynamics approach, but performs very
well in generating a gradient direction for iterative re-
finement. The best results were obtained using sinusoidal
desired motion profile and zero initial control for the
iteration.

IV. CONCLUSION

Feedforward control design for a high performance
positioning system is considered in this paper. When the
model based inverse dynamics based input is applied to
the experiment, large discrepancy between experimental
response and predicted output is observed. We then
apply the gradient based iterative refinement using the
identified model as the approximate gradient. Excellent
tracking performance is obtained using this approach.
The best case obtained involves starting with the zero
initial control and using sinusoidal motion profile as the
reference output. To avoid the batch iteration nature of

the iterative refinement approach, we will next try to
use an FIR filter with adaptive coefficients to generate

the corrective input (similar to the adaptive least mean
square filter).
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