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 Abstract– A Robocasting manufacturing process and robotic 
deposition machine are presented.  The process requires that 
the machine be able to track 3-D trajectories with high 
precision.  Iterative Learning Control (ILC) is presented as a 
viable strategy to meet these demands.  Typically, practical 
implementation of ILC requires some type of Q-filtering that 
creates an inherent tradeoff between performance and 
robustness.  This tradeoff can be minimized by using a time-
varying Q-filter that has been tailored to the system and 
reference trajectory.  A new adaptive time-frequency Q-
filtered ILC algorithm is presented to adaptively construct a 
tailored time-varying Q-filter.  Further, because the approach 
is adaptive, the performance is not limited by overly 
conservative uncertainty models.  A simulation example is 
presented to demonstrate that, when designed for a nominal 
plant, the adaptive Q-filtered ILC has performance 
comparable to that of a standard, fixed-bandwidth Q-filtered 
ILC.  When a perturbation of the plant is introduced, the 
adaptive Q-filtered ILC adapts to maintain stability, whereas 
the fixed-bandwidth Q-filtered ILC becomes unstable.  The 
adaptive algorithm is applied to the robotic deposition 
machine to demonstrate the ability of the algorithm to achieve 
high precision in this application.† 

I.  INTRODUCTION 
Robocasting [1] is a “direct write” robotic deposition 

manufacturing technique used for the construction of 
complex prototype parts with small feature sizes.  In this 
technique, a “3-D ink” [2] is extruded through a nozzle and 
deposited onto a substrate.  A robot is used to continuously 
position the nozzle in 3-D space so that the ink is deposited 
appropriately to build the part. The Robocasting technique 
is traditionally used to construct parts with feature sizes in 
the mesoscale (100 µm – 2 mm), though development of 
new inks [3] is expanding the operating range to allow for 
the construction of parts with feature sizes in the microscale 
(0.1 µm – 100 µm). 

An H-drive XYZ robot that is used to investigate 
Robocasting for meso- and micro- length scales was 
presented in [4].  A schematic of this system is shown in 
Fig. 1.  The X and Y axes of this robot are linear motors 
with lubricated ball bearing slides.  The Z axis is a rotary 
motor connected via belt to a precision ball screw. 

Nominal discrete linear models were acquired for the X 
and Y axes for a sampling period of 1 ms and given below 
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in (3) and (4).  As with all physical systems, the true system 
behavior is nonlinear.  In particular, the resonant 
frequencies are dependent upon the positions of the other 
axes, there is sliding and pre-sliding friction in the bearings, 
and motor force-ripple results in a position-dependency of 
the plant dc gain [4]. 

 
 

Fig. 1.  Schematic of robotic deposition machine. 

Linear feedback controllers were designed for each of the 
axes individually.  For the X and Y axes, the double lead 
controllers, 
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were designed to provide stability and an initial level of 
performance. 

However, as the feature sizes of parts decrease from the 
mesoscale into the microscale, the tracking error tolerances 
become very tight – maximum error should be less than 5 
µm.  Achieving this level of transient tracking performance 
with feedback controllers alone would require very high 
gain.  The repetitive nature of manufacturing, however, 
makes the process well suited to the “plug-in” Iterative 
Learning Control (ILC) strategy. 

ILC is a powerful technique that can provide high 
precision transient performance when operating on repeated 
trajectories.  In this technique, a feedforward control signal 
is developed iteratively by ‘learning’ from the system’s 
error on each iteration to improve the performance on the 
next iteration.  ILC is oftentimes referred to as a plug-in 
controller because the feedforward signal it generates can 
easily be added to an existing closed-loop controller either 
at the plant input or reference input.  In either case, the 
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discrete closed-loop feedback controlled system can be 
written as 
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where x are the system states, y is the output, u is the 
feedforward input, and w contains the reference signal and 
all disturbances which repeat each iteration.  The discrete 
time index is [ ]Nk ,0∈  and [ )∞∈ ,0i  is the iteration index.  
The A matrix contains the closed-loop dynamics and is 
therefore assumed stable. 

The desired reference for the system to track is denoted 
by ( )kyd  and is invariant for all iterations.  The error, e, is 
then defined as 

 ( ) ( ) ( )kykyke idi −= . (6) 

A popular discrete ILC learning function is the simple PD-
type ILC [5] given by 

 ( ) ( ) ( ) ( ) ( )( )kekekkekkuku iidipii −+++=+ 11  (7) 

where kp and kd are the learning gains. 
The following assumptions are typically made for ILC 

systems: 
(i) Initial error is zero 

 ( ) iei ∀= 00  (8) 

(ii) Initial states are constant 

 ( ) ixxi ∀= 00  (9) 

(iii) w does not vary with iteration 

 ( ) ( ) ikwkwi ∀=  (10) 

It is important to note that in ILC signals exist in two 
domains:  time and iteration. Because the system in (5) is 
internally feedback stabilized, stability in the time domain 
is guaranteed as long as u is bounded.  To ensure stability 
of the ILC system in the iteration domain, we must ensure 
that (7) is stable.  That is, stability of the ILC system is 
equivalent to the existence of a u* such that 
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thus guaranteeing u is bounded.  It is well known ([6] for 
instance) that (11) will be satisfied if, and only if, 

 1<− CBkI d . (12) 

However, as pointed out in [6], learning transients are as 
important an issue as stability.  In many cases, stable 
learning laws may result in error transients that grow to 
several orders of magnitude larger than the original error.  
In most practical applications, such transients are 
unacceptable.  A method is presented in [5] for choosing 
learning gains to achieve monotonic convergence, so that 
poor learning transients can be avoided.  However, with 
plant uncertainty, it is unlikely that a set of gains which 
guarantee monotonic convergence for all possible 
perturbations can be found. 

The addition of a low-pass Q-filter [7] is one means of 
improving robustness and preventing large learning 
transients.  The filtered learning function is 

( ) ( ) ( ) ( ) ( ) ( )( )[ ]kekekkekkuqQku iidipii −+++=+ 11 (13) 

where Q(q) is the discrete Q-filter.  The Q-filter has several 
desirable properties including improved robustness, better 
transient convergence behavior, and decreased sensitivity to 
noise.  In most cases, implementation of ILC in practice 
will require some type of Q-filter. 

The tradeoff for the improved robustness properties 
provided by the Q-filter is in performance.  Whereas the 
unfiltered learning function of (7) will theoretically 
converge to zero error, the Q-filtered learning law of (13) 
will have some non-zero converged error.  Using the Z-
transform to examine (13) in the frequency domain, we get 

 ( ) ( ) ( ) ( )( ) ( )[ ]zEzkkzUzQzU idpii 11 −++=+ . (14) 

So, if Q is an ideal low-pass filter, then the ILC will only 
learn to compensate for the portion of the error whose 
frequency content is below the bandwidth of the Q-filter.  
Because Q must be chosen to satisfy stability conditions for 
the worst case uncertainty, [7], the performance will be 
limited by plant uncertainty when using a fixed bandwidth 
Q-filter. 

In this paper, an adaptive time-frequency Q-filtered 
Iterative Learning Control algorithm is presented.  An 
initial version of this algorithm was presented in [8].  This 
algorithm adaptively develops a time-varying Q-filter to 
provide high bandwidth where performance is needed and 
lower bandwidth elsewhere for improved robustness and 
noise rejection.  Because the algorithm is adaptive, 
performance is not limited by worst-case uncertainty, nor 
does it require explicit knowledge of uncertainty bounds.  
Simulations will show that the adaptive Q-filtered ILC 
algorithm achieves performance on par with the standard 
fixed-bandwidth Q-filtered ILC when operating on a 



‘nominal plant’ while simultaneously being robust to a 
larger class of perturbations. 

The rest of the paper is organized as follows.  Section II 
presents the adaptive Q-filter algorithm.  A simulation 
example is presented in Section III.  In Section IV the 
algorithm is applied to the robotic deposition machine 
described above and results are presented.  Conclusions are 
presented in Section V. 

II.  ADAPTIVE TIME-FREQUENCY FILTERED ILC 
As mentioned in the introduction, the choice of 

bandwidth for the Q-filter results in a tradeoff between 
stability and performance.  By using a time-varying Q-
filter, this tradeoff can be made at each time instant 
resulting in an overall improvement in both performance 
and robustness versus that of a fixed-bandwidth Q-filter.  It 
is the goal of the adaptive Q-filter method to develop a 
time-varying bandwidth profile from which the Q-filter will 
be generated to achieve the simultaneous improvement in 
performance and robustness.  It is assumed that the learning 
parameters, kp and kd, have been selected a priori by the 
designer.  These parameters remain fixed and are not 
modified by the adaptive algorithm. 

The Q-filter can be selected as any causal low-pass filter, 
though in many cases it is advantageous to use a filter of 
the form 

( )
( )

01

0
1

1

22 ααα
αααα

+++
+++++

=
−−

−

L

LL

m

m
m

m
m

m
m qqq

qQ  (15) 

because of its zero-phase property.  Note that the filter is 
non-causal, but that this is not problematic because the 
filtering occurs on data which is one iteration old.  One 
possible choice for filter coefficients is that of the Gaussian 
filter such that 
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This filter has the advantage that σ can be related to the 
bandwidth by approximating the filter in continuous time.  
In continuous time, the Gaussian filter has the form 
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The magnitude of the frequency response can be found by 
solving the convolution with a sinusoid of constant 
frequency as in, 
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Solving for the frequency, ω, at which ( ) 2
1=ωG , the 

“half-power” bandwidth, Ω, is found as, 
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So, using (16) and (19), the Q-filter coefficients for any 
arbitrary bandwidth, Ω, can be efficiently calculated. 

To determine the time-varying frequency content of the 
tracking error, the Wigner-Ville time-frequency (t-f) 
distribution [9] is used.  The discrete, truncated t-f 
distribution for a real signal is given as 
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and yields an energy distribution of the signal, e, 
simultaneously in time, i, and frequency, ω.  Defining the 
auto-correlation of e as 

 ( ) ( ) ( )τττ +−= kekeRk  (21) 

 and scaling ω simplifies (20) to 
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Holding the time, k fixed, (22) is simply the Fourier 
Transform of the auto-correlation.  Therefore, the 
distribution can be efficiently calculated at each time 
instant using Fast Fourier Transform methods [10]. 

For example, given the example error signal shown in 
Fig. 2, the t-f distribution is calculated using (22) with 
N=256 samples and plotted over the time-frequency plane 
as shown in Fig. 2.  To estimate the frequency content of 
the signal, a level set a distance, c, from, and parallel to, the 
time-frequency plane is used.  A bounding function, F(k), is 
defined from the intersection of the level set and the t-f 
distribution as 
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The level set is shown in Fig. 3 and the bounding function 
is plotted against time in Fig. 4.  The bounding function 
provides a very useful interpretation of the frequency 
content of the signal and is the primary adaptation 
mechanism in the algorithm. 

Selection of the level set height, c, is important for 
correct interpretation of the t-f distribution.  The goal is to 
pick a level set height that provides a meaningful frequency 
distribution.  The utility of a specific level set height will 
vary as the energy in e varies.  Therefore, it is best to scale 
the level set height, c, with respect to the energy level of the 
distribution.  For instance, the level set height in Fig. 3 is 
10% of the peak energy value in the distribution.  
Additionally, it is important to note that when there is noise 
in the system, the noise will appear in the t-f distribution.  It 
is desirable only to learn the deterministic error in the 
system and so the level set should always be kept above the 
level of noise.   Generally, noise will have low energy and 
high frequency, so examination of high-frequency peaks in 
the t-f distribution of a typical error signal can provide an 
estimate for the noise level. 
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Fig. 2.  Example error signal. 

 
Fig. 3  Time-frequency distribution and level set. 
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Fig. 4.  Bounding function, F(i). 

To aid in determining whether or not the adaptation is 
improving performance, the Short Time Error Norm 
(STEN) for the ith iteration, defined as 
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is used.  The STEN will be used in the adaptation to 
determine if changes in the bandwidth are improving the 
error local to a specific time, t.  The STEN will also be used 
to scale the bounding function so that time instants with 
large STEN are emphasized in the adaptation. 

We make one additional observation that it may not be 
desirable to update the Q-filter bandwidth each iteration 
because the adaptation can become confounded with 
convergence transients.  Therefore, the ILC update, (13), 
and the Q-filter bandwidth adaptation should be separated 

into two iteration scales – fast and slow.  The ILC update 
will continue to occur each iteration (fast dynamics), as 
denoted by i, the iteration index.  A new subscript, j=p*i, 
where Np∈  is the iteration-scale separation, will index 
the slow dynamics of the filter adaptation. 

It is now possible to state the Q-filter bandwidth 
adaptation law as (25) where Ω is the Q-filter bandwidth, L 
is a low-pass filter, and F and S are defined as before as the 
bounding function, (23), and STEN, (24), respectively.  
Together, F and S determine the magnitude change in the 
bandwidth, Ω.  The argument in the signum function 
determines whether the bandwidth should be increased or 
decreased based on the previous performance.  For 
instance, if on the previous update the bandwidth was 
increased and resulted in an increase in STEN, then the 
next update will decrease the bandwidth.  The bandwidth is 
filtered by the low-pass filter, L, similar to Q in (15) so that 
the bandwidth profile is smooth to prevent discrete jumps 
in the feedforward signal. 

III.  SIMULATION EXAMPLE 
A simulation example will be used to demonstrate the 

advantages of the adaptive Q-filtered ILC algorithm over 
the fixed-bandwidth Q-filtered ILC.  Each algorithm will be 
designed for a nominal plant and performance will be 
compared for that plant and a perturbation to that plant.  
The nominal plant is a 2nd order underdamped system with 
a 10 Hz bandwidth given by 
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The perturbed plant includes a multiplicative resonance at 
30 Hz and is given by 
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Fig. 5 shows a frequency plot of the two plants.  The PD 
gains for both systems are selected as kp=.21 and kd=30.6.  
For the fixed Q-filter ILC, a bandwidth of 40 Hz is 
selected.  For the adaptive Q-filtered ILC, an initial 
bandwidth of 10 Hz is selected.  The iteration-scale 
separation parameter, p, is chosen as 20 to ensure that the 
ILC has converged before the filter bandwidth is updated.  
Because the simulation will not include noise, the minimum 
t-f level set height is selected relatively low as 1e-5.  The 
STEN window width is selected as, NS=100 and the Ω is 
filtered with the Gaussian filter L having a bandwidth of 10 
Hz. 

The algorithms are tested on the reference trajectory 
shown in Fig. 6.  The reference is generated using smooth 
sigmoids, though large accelerations are used at the corners 
to test the performance of the two algorithms. 
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Fig. 5.  Nominal and perturbed plants. 
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The maximum error for each algorithm with the nominal 
plant, (26), are plotted against one another for the first 150 
iterations in Fig. 7.  For the nominal plant, both algorithms 
converge with similar performance.  The converged Q-filter 
bandwidth profile for the adaptive Q-filtered ILC is shown 
in Fig. 8.  The algorithm has clearly identified the high 
acceleration portions of the reference as having high-
frequency content and increased the Q-filter bandwidth 
only at these locations. 
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Fig. 7.  Max error convergence for nominal plant. 
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Fig. 8.  Converged Q-filter bandwidth for the adaptive algorithm. 

Both algorithms are now applied to the perturbed plant, 
(27).  The maximum error on each iteration for both 
algorithms are again plotted against one another in Fig. 9.  
In this case, the adaptive Q-filtered ILC algorithm 
converges to a low error whereas the fixed-bandwidth Q-
filtered ILC is unstable demonstrating the enhanced 
robustness of the adaptive algorithm.  The bandwidth of the 
fixed-bandwidth Q-filtered ILC could be lowered to 30 Hz 
to maintain stability for the perturbed plant in (27).  
However, in doing so, the maximum error for the nominal 
plant (Fig. 7) increases by more than 50% which 
demonstrates how worst-case uncertainty limits the 
performance of the fixed-bandwidth Q-filter. 
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Fig. 9.  Max error convergence for perturbed plant. 

IV.  APPLICATION TO THE ROBOTIC DEPOSITION MACHINE 
The adaptive Q-filtered ILC algorithm is now applied to 

the robotic deposition machine described in Section I.  In 
this case, the ILC feedforward signal will be added to the 
feedback control signal.  The transfer function from ILC 
input to plant output is therefore 
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for the X axis and similarly for the y axis.  Simulations 
using the nominal plant models are used to select the PD 
gains of kpX=1.68, kdX=115.9, kpY=2.32, and kdY=43.3 to 
provide a reasonable tradeoff between convergence rate and 
aggressiveness of the learning. 

The initial Q-filter bandwidth used for each axis is 5 Hz, 
which is known to be quite stable.  The other parameters 
are chosen similarly to those used in the simulation.  The 
iteration-scale separation parameter, p, is chosen as 15.  
The STEN window width is chosen as 100 and the Ω 
profile is filtered by L having a bandwidth of 5 Hz.  
Because of the noise present in the physical system, the 
minimum t-f level set is set to 1e-4. 

To test the performance of the adaptive Q-filtered ILC 
algorithm on the X and Y axes of the robotic deposition 
machine, the trajectory for a simple lattice is used.  The 
lattice row spacings are 250 µm and the trajectory is shown 
in Fig. 10.  The trajectory is constructed using smooth 
sigmoids like those used in the simulation example of 



Section III.  The velocity is 1 mm/s and acceleration at the 
corners is 250 mm/s2.  

The maximum and RMS errors for each iteration are 
shown in Fig. 11.  The vertical gridlines mark the iterations 
where the Q-filter bandwidth profile was updated.  After 4 
filter updates, the adaptive Q-filtered ILC has converged 
with maximum errors less than 5 µm.  The converged 
contour tracking error at each point on the trajectory is 
shown in Fig. 10 via the color shading of the trajectory.  
The maximum contour error here is 3 µm which is even 
better than the individual axis errors. 

Using the adaptive algorithm, a lattice with 4 times as 
many rows and columns as the one in Fig. 10 is built using 
BaTiO3 ink [3] and a deposition nozzle diameter of 100 µm.  
After convergence of the Q-filter, the part is deposited.  The 
constructed part is shown in Fig. 12. 
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Fig. 10.  Converged 2D contour error. 
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Fig. 11.  Maximum and RMS error convergence. 

V.  CONCLUSIONS 
A new adaptive Q-filtered ILC algorithm has been 

presented.  By incorporating a time-varying Q-filter rather 
than a fixed-bandwidth Q-filter, a better tradeoff between 
performance and robustness can be made.  By tailoring the 
time-varying Q-filter based on time-frequency properties of 
the error signal, performance is improved.  By examining 
changes in STEN, the adaptive Q-filtered ILC algorithm is 
able to maintain robustness by reducing Q-filter bandwidth 

when instabilities grow.  Further, by adaptively tailoring 
the time-varying Q-filter, the adaptive algorithm is not 
limited by worst-case uncertainty models when true 
perturbations are much less.  A simulation example using a 
nominal plant and a slightly perturbed plant was used to 
highlight these advantages. 

The adaptive Q-filtered ILC algorithm was applied to a 
robotic deposition manufacturing machine.  Experimental 
results show that the algorithm was indeed quite stable for 
the system and capable of achieving very high precision in 
a real manufacturing process. 

 
Fig. 12.  Photo of constructed part. 
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