
Robot Behavioral Selection Using Discrete Event Language Measure

Xi Wang Jinbo Fu Peter Lee Asok Ray
xxw117@psu.edu jbf@psu.edu cfl106@psu.edu axr2@psu.edu

Department of Mechanical Engineering
The Pennsylvania State University

University Park, PA 16802
Keywords: Discrete-Event Supervisory Control; Formal Languages; Performance Measure; Behavioral Robotics; Learning

Abstract— This paper proposes a robot behavioral µ-
selection method that maximizes a quantitative measure of
languages in the discrete-event setting. This approach com-
plementsQ-learning (also called reinforcement learning) that
has been widely used in behavioral robotics to learn primitive
behaviors. While µ-selection assigns positive and negative
weights to the marked states of a deterministic finite-state
automaton (DFSA) model of robot operations,Q-learning as-
signs reward/penalty on each transition. While the complexity
of Q-learning increases exponentially in the number of states
and actions, complexity of µ-selection is polynomial in the
number of DFSA states. The paper also presents results of
simulation experiments for a robotic scenario to demonstrate
efficacy of theµ-selection method.

I. I NTRODUCTION

Q-learning [7] is widely used for reinforcement learning
in behavior-based robotics [1] for algorithmic simplicity
and ease of transformation from a state function to an
optimal control policy. Mahadevan and Connell [3] have
used Q-learning to teach a behavior-based robot how to
push boxes around a room without getting stuck. The
mission is heuristically divided into three behaviors:finding
a box, pushing a box, andrecovering from stalled situations.
The results show that the mission decomposition method
is capable of learning faster than a method that treats the
mission as a single behavior.

A Markov decision process(MDP) is a tuple M =
(S, A, T, R), whereS is the set of states;A is the set of
actions;T : S × A × S → [0, 1] the transition probability
function; andR : S × A → R is an expected reward
function. The objective of MDPs is to find a control policy
π : S → A that maximizes the future reward with a discount
factorγ. One of the important assumptions for MDPs is that
there exists an optimal stationary and deterministic policy.
The optimal value of a states ∈ S, denoted asV ∗(s), is the
expected discounted(i.e., weighted) infinite sum of rewards
if it starts in that state and executes the optimal policy. Ifπ
denotes a complete decision policy, for every states ∈ S,
it is written

V ∗(s) = max
a

(R(s, a) + γ
∑

s′∈S

T (s, a, s′)V ∗(s′)) (1)

where R(s, a) is the expected instantaneous reward by
action a at states, T (s, a, s′) is the probability of mak-
ing a transition from states to states′ by action a. To
find the optimal control policy,Q-learning [7] is a well-
known technique. LetQ∗(s, a) be the expected discounted

reinforcement of taking actiona at states, thenV ∗(s) =
maxa Q∗(s, a). Therefore

Q∗(s, a) = R(s, a) + γ
∑

s′∈S

T (s, a, s′)max
a′

∗(s′, a′)) (2)

At each state, the best policy is to take the action with the
largestQ-value, i.e.,π∗ = arg maxa Q∗(s, a). The on-line
Q-learning update rule is

Q(s, a) = Q(s, a) + α(r + γ max
a′

Q(s′, a′)−Q(s, a)) (3)

whereα is the learning rate and the discount factorγ takes
the value0 ≤ γ < 1. In [7], it has been shown that theQ
values will converge with probability 1 toQ∗ if each action
is executed in each state an infinite number of times on an
infinite run andα is decayed appropriately.

In this paper, we propose a discrete event supervisory
control approach for robot behavior selection in terms
of language measureµ [5]. In the discrete-event setting,
behavior of physical plants is often modelled as regular
languages that can be realized by deterministic finite state
automata (DFSA) [4]. The (regular) sublanguage of a con-
trolled plant could be different under different supervisors
that are constrained to satisfy different specifications [4].
Such a partially ordered set of sublanguages requires a
quantitative measure for total ordering of their respective
performance. The language measure [5] serves as a common
quantitative tool to compare the performance of different
supervisors and is assigned an event costΠ̃-matrix and
a state characteristicX-vector. Event costs (i.e., elements
of the Π̃-matrix) based on plant states, where they are
generated, are physical phenomena dependent on the plant
behavior, and are similar to the conditional probabilities of
the respective events. On the other hand, theX-vector is
chosen based on the designer’s perception of the individual
state’s impact on the system performance.

The paper is organized in five sections including the
present section. The language measure is briefly reviewed
in Section 2. Section 3 presents the language measure
parameter identification. Section 4 proposes a discrete event
supervisory (DES) control synthesis strategy. Section 5
validates the synthesis algorithm through simulation on a
mobile robotic system. The paper is concluded in Section 6
with a brief discussion on comparison ofQ-learning method
andµ-selection method.

II. REVIEW OF THE LANGUAGE MEASURECONCEPT

Let Gi = (Q, Σ, δ, qi, Qm) be a DFSA model that
represents the discrete-event dynamic behavior of a physical
plant. Letn denote the cardinality of the state setQ, i.e.,
|Q| = n, andI ≡ {1, . . . , n} the index ofQ; Σ the (finite)
alphabet of events;Σ∗ is the set of all finite-length strings
of events including the empty stringε; δ : Q × Σ → Q
is a (possibly partial) function of state transitions andδ∗ :
Q×Σ∗ → Q is an extension ofδ; the stateqi is the initial
state; andQm is the set of marked states,∅ ⊂ Qm ⊆ Q.

Definition 2.1: The languageL(Gi) generated by a
DFSA G initialized at the stateqi ∈ Q is defined as:

L(Gi) = {s ∈ Σ∗ | δ∗(qi, s) ∈ Q} (4)

The languageLm(Gi) marked by the DFSAG initialized
at the stateqi ∈ Q is defined as:

Lm(Gi) = {s ∈ Σ∗ | δ∗(qi, s) ∈ Qm} (5)
Definition 2.2: For everyqj ∈ Q, let L(qi, qj) denote the

set of all strings that, starting from the stateqi, terminate
at the stateqj , i.e.,

L(qi, qj) = {s ∈ Σ∗ | δ∗(qi, s) = qj ∈ Q} (6)
The setQm of marked states is partitioned intoQ+

m and
Q−

m, i.e., Qm = Q+
m ∪Q−

m andQ+
m ∩Q−m = ∅, whereQ+

m

contains allgoodmarked states that we desire to reach, and
Q−

m contains allbad marked states that we want to avoid,
although it may not always be possible to completely avoid
the bad states while attempting to reach thegood states.
To characterize this, each marked state is assigned a real
value based on the designer’s perception of its impact on
the system performance.

Definition 2.3: The characteristic functionχ : Q →
[−1, 1] that assigns a signed real weight to state-based
sublanguagesL(qi, q) is defined as:

∀q ∈ Q, χ(q) ∈




[−1, 0), q ∈ Q−m
{0}, q /∈ Qm

(0, 1], q ∈ Q+
m

(7)

The state weighting vector, denoted byX =
[χ1 χ2 · · · χn]T , where χj ≡ χ(qj) ∀k, is called
the X-vector. The j-th elementχj of X-vector is the
weight assigned to the corresponding terminal stateqj .

In general, the marked languageLm(Gi) consists of both
good and bad event strings that, starting from the initial
stateqi, lead toQ+

m andQ−m respectively. Any event string
belonging to the languageL0 = L(Gi)− Lm(Gi) leads to
one of the non-marked states belonging toQ−Qm andL0

does not contain any one of the good or bad strings. Based
on the equivalence classes defined in the Myhill-Nerode
Theorem, the regular languagesL(Gi) andLm(Gi) can be
expressed as:

L(Gi) =
⋃

qk∈Q

L(qi, qk) =
n⋃

k=1

L(qi, qk) (8)

Lm(Gi) =
⋃

qk∈Qm

L(qi, qk) = L+
m ∪ L−m (9)

where the sublanguageL(qi, qk) ⊆ Gi having the initial
stateqi is uniquely labeled by the terminal stateqk, k ∈
I and L(qi, qj) ∩ L(qi, qk) = ∅ ∀j 6= k; and L+

m ≡⋃
q∈Q+

m
L(qi, q) and L−m ≡ ⋃

q∈Q−m L(qi, q) are good and
bad sublanguages ofLm(Gi), respectively. Then,L0 =⋃

q/∈Qm
L(qi, q) andL(Gi) = L0 ∪ L+

m ∪ L−m.
Now we construct a signed real measureµ : 2L(Gi) →

R ≡ (−∞,+∞) on theσ-algebraK = 2L(Gi). Interested
readers are referred to [5] for the details of measure-
theoretic definitions and results. With the choice of this
σ-algebra, every singleton set made of an event string
ω ∈ L(Gi) is a measurable set, which qualifies itself to
have a numerical quantity based on the above state-based
decomposition ofL(Gi) into L0(null), L+(positive), and
L−(negative) sublanguages.

Conceptually similar to the conditional transition proba-
bility, each event is assigned a state-dependent cost.

Definition 2.4: The event cost of the DFSAGi is defined
as a (possibly partial) functioñπ : Q × Σ∗ → [0, 1) such
that ∀qi ∈ Q, ∀σj ∈ Σ, ∀ω ∈ Σ∗,

(1) π̃[qi, σj] ≡ π̃ij ∈ [0, 1);
∑

j π̃ij < 1;
(2) π̃[qi, σj] = 0 if δ(qi, σj) is undefined; π̃[qi, ε] = 1;
(3) π̃[qi, σjω] = π̃[qi, σj] π̃[δ(qi, σj), ω].
Definition 2.5: The state transition cost of the DFSAGi

is defined as a functionπ : Q × Q → [0, 1) such that
∀qi, qj ∈ Q, π[qi, qj] =

∑
σ∈Σ:δ(qi,σ)=qj

π̃[qi, σ] ≡ πij

andπij = 0 if {σ ∈ Σ : δ(qi, σ) = qj}= ∅. Then×n state
transition costΠ-matrix is defined accordingly.

Definition 2.6: The signed real measureµ of every sin-
gleton string setΩ = {ω} ∈ 2L(Gi) where ω ∈ L(qi, q)
is defined asµ(Ω) ≡ π̃[qi, ω]χ(q). It follows that the
signed real measure of the sublanguageL(qi, q) ⊆ L(Gi)
is defined as

µ(L(qi, q)) =


 ∑

ω∈L(qi,q)

π̃[qi, ω]


χ(q) (10)

And the signed real measure of the language of a DFSA
Gi initialized at a stateqi ∈ Q, is defined as:

µi ≡ µ(L(Gi)) =
∑

q∈Q

µ(L(q, qi)) (11)

The language measure vector, denoted asµ =[µ1 µ2 · · · µn], is called theµ-vector.
It is shown in [5] that the signed real measureµi can be
written as

µi =
∑

j

πijµj + χi (12)

In vector form,µ = Πµ + X whose solution is given by

µ = (I−Π)−1X (13)
III. L ANGUAGE MEASUREPARAMETERS

This section focuses on identification of the parameters
(i.e., elements) of the event cost matrix̃Π (see Definition
2.4) which, in turn, allows computation of the state tran-
sition cost matrixΠ (see Definition 2.5) and the language

measureµ-vector (see Definition 2.6). We propose a recur-
sive algorithm for identification of thẽΠ-matrix parameters
under the following assumptions.

1) All states of the DFSA plant model are visitedin-
finitely often;

2) The underlying physical process is evolving at two
different time scales. In the fast-time scale, i.e., over
a short time period, the system is an ergodic, discrete
Markov process. In the slowly-varying time scale, i.e.,
over a long period, the system (possibly) behaves as
a non-stationary stochastic process.

For a slowly-varying non-stationary process, the DES
control policy can be redesigned in real time. In that case,
the Π̃-matrix parameters should be periodically updated.

Since the plant model is an inexact representation of the
physical plant, there exist unmodeled dynamics to account
for. This can manifest itself either as unmodeled events
that may occur at each state or as unaccounted states in
the model. LetΣu

k denote the set of all unmodeled events
at statek of the DFSA Gi ≡ 〈Q, Σ, δ, qi, Qm〉. Let us
create a new unmarked absorbing stateqn+1 called the
dump state [4] and extend the transition functionδ to
δe : (Q ∪ {qn+1}) × (Σ ∪ (∪kΣu

k)) → (Q ∪ {qn+1}) as
follows:

δe(qk, σ) =





δ(qk, σ) if qk ∈ Q andσ ∈ Σ
qn+1 if qk ∈ Q andσ ∈ Σu

k

qn+1 if k = n + 1 andσ ∈ Σ ∪ Σu
k

Therefore the residueθk = 1 − ∑
j π̃kj denotes the

probability of the set of unmodeled eventsΣu
k conditioned

on the stateqk. The Π-matrix is accordingly augmented
to obtain a stochastic matrix. Since the dump stateqn+1

is not marked, its characteristic valueχ(qn+1) = 0. The
characteristic vector then augments toXaug ≡ [X 0]T .
With these extensions the language measure vectorµaug

= [µ1 µ2 · · · µn µn+1]T =[µ µn+1]T of the augmented
DFSA Gaug

i ≡ (Q ∪ {qn+1}, Σ ∪ (∪kΣu
k), δe, qi, Qm) can

be expressed as:
(

µ

µn+1

)
=

(
Πµ + µn+1 [θ1 · · · θn]T

µn+1

)
+

(
X
0

)
(14)

Sinceχ(qn+1) = 0 and all transitions from the absorbing
state qn+1 lead to itself, µn+1 = µ(Lm(Gn+1)) = 0.
Hence, Equation (14) reduces to that for the original plant
DFSA Gi. Thus, the event cost can be interpreted as the
conditional probability, where the residueθk = 1−∑

j π̃kj

accounts for the probability of all unmodeled events ema-
nating from the stateqk. In our earlier work [6], a recursive
parameter estimation scheme has been proposed.

IV. DES CONTROL SYNTHESIS INµ-MEASURE

In the conventional discrete event supervisory (DES)
control synthesis [4], the qualitative measure of maximum
permissiveness plays an important role. For example, under
full state observation, if a specification languageK is
not controllable with respect to the plant automatonG

and the setΣu of uncontrollable events, then a supremal
controllable sublanguage supC(K) ⊆ K yields maximal
permissiveness. However, increased permissiveness of the
controlled languageL(S/G) may not generate better plant
performance from the perspective of mission accomplish-
ment. This section relies on the language measureµ to
quantitatively synthesize a DES control policy. The ob-
jective is to design a supervisor such that the closed-loop
systemS/G maximizes the performance that is chosen as
the measureµ of the controlled plant languageL(S/G).
The pertinent assumptions for the DES control synthesis
are delineated below.

A1 (Cost redistribution) The occurrence probabilities of
controllable events in a sublanguageK = L(S) ⊆
L(G) are proportional to those inL(G). For all q ∈
QS , whereQS is the state space of the supervisor
S, andσ ∈ ΣS(q), whereΣS(q) is the set of events
defined atq ∈ QS .

π̃S [q, σ] =
π̃G[q, σ]∑

σ∈ΣS(q) π̃G[q, σ]
(15)

Under this assumption, the sum of event costs defined at
the stateq of the supervisors is equal to that of stateq of
the plantG, i.e.,

∑

σ∈ΣS(q)

π̃S [q, σ] =
∑

σ∈ΣG(q)

π̃G[q, σ] (16)

Lemma 4.1:(Finiteness) Given a DES plantG, there is
only a finite number of controllersSi, i ∈ Ic, whereIc is
the set of controllers with cardinality|Ic| = nc, such that
for every i ∈ Ic, L(Si) = L(Si/G) ⊆ L(G).
Lemma 4.1 shows that there are finitely many supervisors
whose generating language is a subset ofL(G) given the
fact that the state space and event alphabet are both finite.

Theorem 4.1:(Existence) [2] Given a DES plantG =
(Q, Σ, δ, q0, Qm), Π-matrix, and X-vector, there exist
an optimal supervisorS∗ such that µ(L(S∗/G)) =
maxi∈Ic µ(L(Si/G)).

Theorem 4.2:Given a DES plantG = (Q, Σ, δ, q0, Qm),
Π-matrix, andX-vector. DefineΣc(q) as follows

Σc(q) = {σ ∈ Σc | δ(q, σ) is defined in G} (17)

If supervisorS is the optimal supervisorS∗, then for every
stateq ∈ Q, such thatΣc(q) 6= ∅, there is one and only one
controllable event enabled.
Theorem 4.1 states that out of all possible supervisors
constructed fromG, there exists a supervisor that max-
imizes the language measureµ with respect to(Π,X).
Theorem 4.2 discribes a general transition structure of the
optimal supervisorS∗. In particular, at every state inS∗,
there is at most one controllable event defined.

Intuitively, at a given state, a control synthesis algorithm
should attempt to enable only the controllable event that
leads to the next state with highest performance measureµ,
equivalently, disabling the rest of controllable events defined
at that state, if any. Below we first give a recursive synthesis

algorithm and then show thatµ is monotonically increasing
elementwise on every iteration.

1) Initialization. Π0 = Πp, thenµ0=(I −Π0)−1X.
2) Recursion.k-th iteration, wherek ≥ 1.

1) For every q ∈ Q, find out the eventσ∗ ≡
σ∗(q) ∈ Σc(q) such thatq∗ = δ(q, σ∗) and

µ(L(Sk(Π̃k), q∗) = max
σ∈Σc(q)
q′=δ(q,σ)

µ(L(Sk(Π̃k), q′) (18)

whereSk(Π̃k) is the intermediate supervisor at
k-th iteration whose transition is determined by
Π̃k. Let σ∗ = [σ∗1 σ∗2 · · · σ∗n]T , where thei-
th element inσ∗ is the controllable event left-
enabled at stateqi of the plantG according to
Equation 18.

2) Disable the event setΣc(q) − { σ∗(q)} for
every q ∈ Q and redistribute event cost ac-
cording to Equation 15. This results in a new
Π̃k+1-matrix which consequently produces a
new Πk+1-matrix.

Πk+1 = Πk + ∆k (19)

where∆k records the difference betweenΠk+1

and Πk+1, consisting positive and negative
event costs corresponding to those kepted and
disabled controllable events, respectively.

3) Computeµk+1 =(I −Πk+1)−1X
3. Termination. IfΠ̃k+1 = Π̃k, then stop.

It should be noted that at each iteration of the recursive
algorithm, neither the number of states is increased, nor
any additional transition is added in the resulting super-
visor Sk(Π̃k) with respect to the plantG. Therefore,
L(Sk(Π̃k)) ⊆ L(G).

Theorem 4.3:(Monotonicity) The sequence µk,
k = 1, 2, . . ., generated recursively by the above algorithm
is monotonically increasing.

Given the fact that every iteration in the above recursive
synthesis algorithm gives an intermediate supervisorSk

in the form of Π̃k and itsµ is monotonically increasing.
Moreover, as there are only finitely many supervisors, the
algorithm should stop in a finite number of iterations and
yield an optimal supervisorS∗ in terms of the measureµ.

V. EXPERIMENT VALIDATION

This section presents a robotic simulation test bed that
has been validated by real experiments. The control system
architecture is shown in Figure 1. Player/Stage1 is employed
in the test bed. A Pioneer 2 AT robot model equipped with
sonar, laser range finder, vision camera, gripper, and battery
is used in the simulation experiments. The DES control
module (DCM) communicates with the robot’s continuous
varying control module(CVCM) by sending and receiving

1Player/Stage is developed at University of Southern
California under GNU Public License. It is available at
http://playerstage.sourceforge.net/

a set of events (see Table I). The DCM is designed to be
independent of the underlying physical process such that it
provides a mechanism to interact with the CVCM. A DES
controller is allowed to plug and play in DCM. The CVCM
consists of three blocks as shown in Figure 1: C/D, D/C,
and Continuous time controlC(t). The CVCM connects to
Player via a TCP socket for sending and receiving formatted
messages that encode sensor readings and continuous time
commands of reference signals, respectively, at 10 Hz. The
control strategy is event-driven, in which CVCM generates
discrete events based on the continuous sensor data received
from Player. The discrete events are transmitted to DCM
in symbolic form. By receiving a particular event from
the DES controller, CVCM sends out a set of continuous
reference signals to Player for completion of this behavior
to maneuver the robot accordingly. The robot continues
executing this behavior until the sensor readings trigger the
occurrence of a new event.

in language measureµ

Continuous time controlC(t)

C/D D/C

P2AT simulator Stage

Sensor/actuator server Player

DES supervisorS(σ)

Fig. 1. Pioneer 2 AT DES simulation block diagram

The experimental scenario consists of a single robot
performing logistic supply and combat operation in a battle
field. There are two friendly units and one enemy, which are
at stationary locations in the field. The robot does not have
prior knowledge of the environment. When a “start mission”
signal is received, the robot randomly searches for a red or
green unit. When finding a unit, the robot can either proceed
to supply or ignore the unit and keep on searching. It may
also encounter an enemy during the course of searching.
The robot may decide either to avoid or to fight the enemy.
In both cases, there are chances that the robot may fail to
supply or lose the fight.

A gripper failure is modelled to signify the robot’s
failure to complete the task of supplying units. However,
fighting with enemy is still possible. In addition, during the
mission, the battery consumption rate changes according to
the robot’s current actions. For example, the robot’s power
consumption is higher during the fight with the enemy than
supplying the units. The robot needs to return to its base
to be recharged before the battery voltage drops below a
certain level, or the robot is considered to be lost. After each

TABLE I

L IST OF DISCRETE EVENTS

Σ Description Σ Description
σ1 start mission σ12 win the fight
σ2 search σ13 loose the fight
σ3 find blue unit σ14 battery power medium
σ4 find pink unit σ15 battery power low
σ5 find enemy σ16 battery power dead
σ6 proceed to supply σ17 detected gripper fault
σ7 ignore unit σ18 abort mission
σ8 fight enemy σ19 return
σ9 avoid enemy σ20 ignore anormly
σ10 finish supply σ21 return successfully
σ11 fail supply

successful return to the base, the robot is reset to normal
conditions including full battery charge and normal gripper
status. If the robot is incapacitated either due to battery over-
drainage or damage in a battle, the “death toll” is increased
by one. In both cases, the mission is automatically restarted
with a new robot.

Due to the independence of the robot operation, battery
consumption, and occurrence of gripper failures, we model
the entire interaction between robot and environment by
three independent submodels, as shown in Figure 2 and
Figure 3. The blue-colored and red-colored states aregood
marked states inQ+

m and bad marked states inQ−
m, re-

spectively. Then the models are composed by synchronous
composition operator to generate the integrated plant model
G = G1‖G2‖G3.

(a)G1

1 2

15 11

7

3 4

5

6

9

8

16

17
10

13

14

12

σ3

σ2

σ4

σ7

σ6

σ6

σ8

σ5

σ12

σ13

σ10

σ9

σ11

σ19

σ19

σ19

σ19

σ18

σ18

σ1

σ18
σ18

σ16

σ16σ16

σ16

σ16

σ2

σ2

σ10

σ11

σ18

σ2

σ2

σ18

σ19

σ16

σ18

σ21

σ21

Fig. 2. Robot behavioral model

After eliminating the inaccessible states, the discrete-
event model of the plant automatonG consists of 139 states
and 21 events, as listed in Table I. The event cost matrix
Π̃ is then identified by Monte Carlo simulation over 1200
missions according to the parameter identification procedure
presented in Section 3 and convergence of selected non-
zero elements iñΠ-matrix is demonstrated in Figure 4. For
those states that have more than one controllable events
defined, the probabilities of occurrence are assumed to

(c) G3

6

5

2 4
2

1

9

3

σ16

σ14
σ18, σ20σ18, σ20

σ21

σ17

σ21

σ21

(b) G2

σ15 σ18, σ20

Fig. 3. Battery failure model and gripper failure model

TABLE II

ITERATION OF µ SYNTHESIS

µ0 µ1 µ2 µ3 µ4

0.5466 0.8635 0.8657 0.8662 0.8662

be equally distributed. A vast majority of the plant states
are unmarked; consequently, the corresponding elements,
χi, i = 1, . . ., of the characteristic vector are zero. Negative
characteristic values,χi are assigned to the bad marked
states. For example, the states in which the robot is dead
due to either losing the battle to the enemy or running out of
battery is assigned the most negative value of -1. Similarly,
positive values are assigned to good states. For example,
the state in which the robot wins a battle is assigned 0.5
and the state of successfully providing supplies is assigned
0.3. Using the recursive algorithm presented in Section 4,
an optimal supervisorS∗ is synthesized. The optimal DES
control algorithm converges at the fourth iteration, as listed
in Table II. For the purpose of performance comparison, two
supervisors under the following specifications are designed.

0 200 400 600 800
0

0.5

1

search at q
1
, π

2,1

pr
ob

ab
ili

ty

0 200 400 600 800
0

0.5

1

obstacle ahead at q
1
, π

2,3

0 200 400 600 800
0

0.5

1

find goal w/ target at q
1
, π

2,5

0 200 400 600 800
0

0.5

1

find a target at q
1
, π

2,6

pr
ob

ab
ili

ty

0 200 400 600 800
0

0.5

1

reach goal at q
4
, π

5,8

0 200 400 600 800
0

0.5

1

ready to grab at q
4
, π

5,9

0 200 400 600 800
0

0.5

1

lost target at q
4
, π

5, 12

Number of events

pr
ob

ab
ili

ty

0 200 400 600 800
0

0.5

1

avoid successfully at q
9
, π

10,15

Number of events
0 200 400 600 800

0

0.5

1

avoid obstacle at q
9
, π

10,16

Number of events

Fig. 4. Some non-zero elements ofΠ̃-matrix

ControllerS1 specifications

1) Avoid enemy if battery is not below medium;
2) Abort all operation when the battery power is low;
3) If there is a gripper failure, do not supply a discovered

unit or abort supply if the supply is on-going.

TABLE III

SIMULATION STATISTICS OF 400 MISSIONS

Items G S1 S2 S∗

proceed to supply
of units found

150
434

134
408

137
367

482
556

34.56% 32.84% 37.33% 86.69%
finish supply 112 88 97 362

win enemy
fight enemy

37
65

33
70

22
68

69
167

unit lost 26 19 14 48
µ -0.6751 -0.6646 -1.1126 2.8560∑400

i=0 µi -20.25 -19.45 -27.3 45.25

ControllerS2 specifications

1) Abort operation if battery is not below medium;
2) Abort all operation if a gripper failure is detected.

The (non-optimal) DES controllers,S1 and S2, have
109 and 54 states, respectively, and 400 missions were
simulated for the open loop plant and each of the three
DES controllers: optimal supervisorS∗, S1 and S2. The
statistics of the simulation results are summarized in Ta-
ble III that shows the plant yields higher performance under
S∗ than underS1 and S2 or the null supervisor (i.e., the
unsupervised plant). During the 400 missions,S∗ decides
to proceed to supplyfor 482 times, three times more than
S1 or S2. In addition, the probability of deciding toproceed
to supplywhen the robot sees a unit is much higher than
S1 or S2. However, the price of this decision is that the
robot is likely to drain out the battery energy and therefore
may risk being immobile in the middle of the mission.
S∗ also decides to fight much more times (167) than any
other supervisor since the reward to win a battle is large
(χ = 0.5). Certainly, the number of robot loss underS∗ is
also higher (48) than that for other supervisors becauseS∗

has to expose the robot more often to the enemy attack to
win the battles. On the average,S∗ outperformsS1 andS2

in measureµ = (I−Π)−1X that are the theoretical values.
This superior performance ofS∗ is further justified by the
experimental comparison of cumulative performance of the
three supervisors and null supervisor over 400 missions, as
shown in Figure 5. The large oscillations are due to the loss
of the robot due to drained battery or loss of the battle.

VI. SUMMARY AND CONCLUSIONS

This paper presents optimal supervisory control of robot
behavior based on the discrete-event language measureµ
[5]. A recursive supervisor synthesis algorithm is provided
as an extension of the earlier work of Fu et al. [2]. The
results of simulation experiments validates that a DES con-
troller, designed by the recursive synthesis algorithm, indeed
maximizes theµ-measure and has the best performance with
respect to two other supervisors, designed in conventional
way, and the null supervisor (i.e., the unsupervised plant).

The paper compares the proposed language measure (µ)-
based approach of DES control with theQ-learning method.
Conceptually, a weight is assigned to each transition inQ-
learning whereas a weight is assigned to each state inµ-
selection. A summary of comparison betweenQ-learning

number of missions

cu
m

m
ul

at
iv

e
pe

rf
or

m
an

ceµ
Fig. 5. Cummulative performance comparison of all controllers

TABLE IV

COMPARISON OFQ-LEARNING AND µ-SELECTION

Items Q-learning µ-selection

Modeling M = (S, A, T, R) G = (Q, Σ, δ, q0, Qm)

Control policy MDP DES
Objective arg maxa Q∗(s, a) maxs∈L(G) µ(s)
Transition required required
probability T (s, a, s′) π̃(q, σ)
Reward on transition on state

r(s, a) χ(q)
Discount factorγ yes(ad hoc) no
Learning rateα yes(ad hoc) no
Online adaption (ε, δ)-threshold,
to dynamic recursive redesign
environment
Model exponential in polynomial in
complexity S andA Q

andµ-selection is given in table IV.

REFERENCES

[1] R. C. Arkin, Behavior-based robotics, MIT Press, 1998.
[2] A. Ray J. Fu and C.M. Lagoa,Unconstrained optimal control of

regular languages, IEEE Conference on Decision and Control, Las
Vegas, Nevada (2002).

[3] S. Mahadevan and J. Connell,Automatic programming of behavior-
based robots using reinforcement learning.

[4] P. J. Ramadge and W. M. Wonham,Supervisory control of a class of
discrete event processes, SIAM J. Control and Optimization25 (1987),
no. 1, 206–230.

[5] X. Wang and A. Ray,Signed real measure of regular languages,
Proceedings of the 2002 American Control Conference5 (2002),
3937–3942.

[6] X. Wang, A. Ray, and K. Amol,Online identification of language
measure parameters for discrete event supervisory control, Proc. of
42th IEEE Conf. on Decision and Control (2003).

[7] Christopher J. C. H. Watkins and Peter Dayan,Q-learning, Machine
Learning8 (1992), no. 3, 279–292.

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrM17.6
	Page0: 5126
	Page1: 5127
	Page2: 5128
	Page3: 5129
	Page4: 5130
	Page5: 5131

