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Abstract—This paper proposes a robot behavioral u- reinforcement of taking action at states, thenV*(s) =
selection method that maximizes a quantitative measure of max, Q*(s,a). Therefore
languages in the discrete-event setting. This approach com-

plements Q-learning (also called reinforcement learning) that * _ ’ ;o
has been widely used in behavioral robotics to learn primitive @ (s, 0) = R(s,a) + Z T(s,a.s )H?X*(S @) ()
behaviors. While u-selection assigns positive and negative

weights to the marked states of a deterministic finite-state At egch state. the best policy is to take the action with the
automaton (DFSA) model of robot operations,Q-learning as- ] C * _ * i
signs reward/penalty on each transition. While the complexity largestQ)-value, i.e.,m* = argmax, Q"(s,a). The on-line

of Q-learning increases exponentially in the number of states @-l€arning update rule is
and actions, complexity of u-selection is polynomial in the
number of DFSA states. The paper also presents results of Q(s,a) = Q(s,a) +‘X(T+VH}13}XQ(5laal) —Q(s,a)) (3)
simulation experiments for a robotic scenario to demonstrate
efficacy of the u-selection method. whereq is the learning rate and the discount factotakes
. INTRODUCTION the value0 < v < 1. In [7], it has been shown that th@
Q-learning [7] is widely used for reinforcement learningvalues will converge with probability 1 tQ* if each action
in behavior-based robotics [1] for algorithmic simplicity is executed in each state an infinite number of times on an
and ease of transformation from a state function to aimfinite run anda is decayed appropriately.
optimal control policy. Mahadevan and Connell [3] have In this paper, we propose a discrete event supervisory
used Q-learning to teach a behavior-based robot how tgontrol approach for robot behavior selection in terms
push boxes around a room without getting stuck. Thef language measurg [5]. In the discrete-event setting,
mission is heuristically divided into three behavidiading behavior of physical plants is often modelled as regular
a box pushing a boxandrecovering from stalled situations languages that can be realized by deterministic finite state
The results show that the mission decomposition methalitomata (DFSA) [4]. The (regular) sublanguage of a con-
is capable of learning faster than a method that treats ttelled plant could be different under different supervisors
mission as a single behavior. that are constrained to satisfy different specifications [4].
A Markov decision proces§MDP) is a tuple M = Such a partially ordered set of sublanguages requires a
(S, A, T,R), where S is the set of statesd is the set of quantitative measure for total ordering of their respective
actions;T : S x A x S — [0, 1] the transition probability performance. The language measure [5] serves as a common
function; andR : S x A — R is an expected reward quantitative tool to compare the performance of different
function. The objective of MDPs is to find a control policy supervisors and is assigned an event ddsmatrix and
m: S — Athat maximizes the future reward with a discounta state characteristiX-vector. Event costs (i.e., elements
factor~. One of the important assumptions for MDPs is thabf the IT-matrix) based on plant states, where they are
there exists an optimal stationary and deterministic policgenerated, are physical phenomena dependent on the plant
The optimal value of a statec .S, denoted ad *(s), is the behavior, and are similar to the conditional probabilities of
expected discounted(i.e., weighted) infinite sum of rewardbe respective events. On the other hand, Xaeector is
if it starts in that state and executes the optimal policy: If chosen based on the designer’s perception of the individual
denotes a complete decision policy, for every state S, state’s impact on the system performance.
it is written The paper is organized in five sections including the
. . present section. The language measure is briefly reviewed
V*(s) :m(?X(R(S’“)+7 ZT(S’“’ SV () in section 2. Section 3 presents the language measure
s'€s parameter identification. Section 4 proposes a discrete event
where R(s,a) is the expected instantaneous reward bgupervisory (DES) control synthesis strategy. Section 5
action a at states, T'(s,a,s’) is the probability of mak- validates the synthesis algorithm through simulation on a
ing a transition from state to states’ by actiona. To mobile robotic system. The paper is concluded in Section 6
find the optimal control policy@-learning [7] is a well- with a brief discussion on comparison@tlearning method
known technique. Le®*(s, a) be the expected discountedand u-selection method.
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Il. REVIEW OF THELANGUAGE MEASURE CONCEPT L, (G;) = U L(gi,qx) = LI UL, 9

Let G; = (Q,%,0,q:,Q.n) be a DFSA model that arEQm
represents the discrete-event dynamic behavior of a physisdhere the sublanguagg(g;, ) € G; having the initial
plant. Letn denote the cardinality of the state sgf i.e., Stateg; is uniquely labeled by the terminal staig, k €
|Q| = n, andZ = {1,...,n} the index ofQ; X the (finite) Z and L(g;,q;) N L(gi,qx) = O Vi # k; and L}, =
alphabet of eventsZ* is the set of all finite-length strings U,cq+ L(gi,9) and L, = U,cq- L(g:,q) are good and
of events including the empty string § : Q x ¥ — @ bad sublanguages df,,(G;), respectively. ThenL? =
is a (possibly partial) function of state transitions afid: UqgQ L(g;,q) and L(G;) = L° UL} U L.

Q x ¥* — @ is an extension of; the statey; is the initial Now we construct a signed real measuyre 2-(G) —
state; and?,, is the set of marked state,C @Q,, C Q. R = (—o0, +00) on thes-algebrak = 24(%), Interested
Definition 2.1: The languageL(G;) generated by a readers are referred to [5] for the details of measure-
DFSA G initialized at the state; € @ is defined as: theoretic definitions and results. With the choice of this
o-algebra, every singleton set made of an event string
L(Gi) ={s € X" | 6"(qi,5) € Q} (4)  w e L(G;) is a measurable set, which qualifies itself to

have a numerical quantity based on the above state-based
decomposition ofL(G;) into L°(null), L*(positive), and
L~ (negative) sublanguages.
L(Gi) ={s€X* | (q;,5) € Qm} (5) Conceptually similar to the conditional transition proba-
Definition 2.2: For everyg; € Q, let L(g;, ¢;) denote the bility, each event is assigned a state-dependgnt cost.
set of all strings that, starting from the state terminate Definition 2.4: The event cost of the DFS&; is defined

The languag€.,,(G;) marked by the DFSAG initialized
at the statey; € @ is defined as:

at the statey;, i.e., as a (possibly partial) functioft : Q x ¥* — [0,1) such
thatvg; € Q, Vo; € X, Yw € X7,
L(gi,q;) ={s € X" | 0"(¢s,8) =q; €Q}  (6) (1) wlgi,05) = 7ij € [0,1); Y0, 7y < 1;
The setQ,,, of marked states is partitioned ing@,!, and () #lgi o] =0 if 5(%%) is undefmed 7lqi €] = 1;

Q16 Q= @, UQ,, andQf, NQ;, =0, whereQf,  (3) 7g;, 050] = 7qs, 5] 7[6(qi, o), w].

contains aligood marked states that we desire to reach, and Definition 2.5: The state transition cost of the DFS&

@, contains allbad marked states that we want to avoid,is defined as a functiom : Q@ x Q — [0,1) such that

although it may not always bg possible to completely avoidly; ¢; € Q, 7[q;, q] = > oesibla, J) Tlgi, 0] =

the bad states while attempting to reach tigeod states. andr;; = 0if {o € X:6(q;,0) = ¢j}= qf Then x n state

To characterize this, each marked state is assigned a r@alnsition cosfiI-matrix is defined accordingly.

value based on the designer’s perception of its impact on Definition 2.6: The signed real measuye of every sin-

the system performance. gleton string sef) = {w} € 2%(&) wherew € L(g;,q)
Definition 2.3: The characteristic functiony : @ — is defined asu(Q) = #[g,w]x(q). It follows that the

[~1,1] that assigns a signed real weight to state-basefigned real measure of the sublangudde;,q) € L(G;)

sublanguage€(q;, q) is defined as: is defined as
[-1,0), qeQ;, p(a0) = | D Flaww] | x(@)  (20)
Vge @, xl(q) € {0},  q¢Qn (7 weL(aia)
0,1}, qe€ Q. And the S|gned real measure of the language of a DFSA
; initialized at a statey; € Q, is defined as:

The state weighting vector, denoted b¥X =

X1 Y2 - xa|T, wherey; = x(g;) Vk, is called 1 = p = > w(L(q,q)) (11)

the X-vector. The j-th elementy; of X-vector is the q€Q

weight assigned to the corresponding terminal sgate The Ianﬂuf‘q measyre ve%tor denoted As =
In general, the marked language, (G;) consists of both  [/41 #2 - S called thep-vecto

good and bad event strings that, starting from the initidf 1S Shown in [5] that the signed real measyrgcan be
stateg;, lead toQ+ andQ;, respectively. Any event string Written as

belonging to the language’ = L(G;) — L,,(G;) leads to pi =Y ik + X (12)
one of the non-marked states belonginge- Q,,, and L° J

does not contain any one of the good or bad strings. Baselh vector form,u = Il + X whose solution is given by

on the equivalence classes defined in the Myhill-Nerode = ﬁfﬂl‘}— (13)
Theorem, the regular languagé$G;) and L,,(G;) can be I1l. L ANGUAGE MEASURE PARAMETERS
expressed as: This section focuses on identification of the parameters
n (i.e., elements) of the event cost matiik (see Definition
L(Gy) = U (¢, qr) U (¢, qr) (8) 2.4) which, in turn, allows computation of the state tran-
aeQ k=1 sition cost matrixIT (see Definition 2.5) and the language
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measureu-vector (see Definition 2.6). We propose a recurand the set, of uncontrollable events, then a supremal
sive algorithm for identification of th€I-matrix parameters controllable sublanguage stipK) C K yields maximal

under the following assumptions. permissiveness. However, increased permissiveness of the
1) All states of the DFSA plant model are visitéa- ~ controlled languagé.(S/G) may not generate better plant
finitely often; performance from the perspective of mission accomplish-

2) The underlying physical process is evolving at twgnent. This section relies on the language meagur®
different time scales. In the fast-time scale, i.e., ovefluantitatively synthesize a DES control policy. The ob-
a short time period, the system is an ergodic, discreigctive is to design a supervisor such that the closed-loop
Markov process. In the slowly-varying time scale, i.e.SystemsS/G maximizes the performance that is chosen as
over a long period, the system (possibly) behaves 48¢ measure. of the controlled plant languageé(S/G).
a non-stationary stochastic process. The pertinent assumptions for the DES control synthesis
For a slowly-varying non-stationary process, the DES'€ delineated below.
control policy can be redesigned in real time. In that case,A1 (Cost redistribution) The occurrence probabilities of
the ITI-matrix parameters should be periodically updated. controllable events in a sublanguage = L(5) C
Since the plant model is an inexact representation of the ~ L(G) are proportional to those i (G). For allg €
physical plant, there exist unmodeled dynamics to account ~ ®@s, WhereQs is the state space of the supervisor
for. This can manifest itself either as unmodeled events S, ando € Xg(q), whereXs(q) is the set of events
that may occur at each state or as unaccounted states in defined aty € Qs.
the model. LetZ} denote the set of all unmodeled events . 7alg, o]
at statek of the DFSAG; = (Q,%,4,¢;,Q.n). Let us 7slg, 0] = (15)

. Za ﬁG[Qvg]
create a new unmarked absorbing stajg, called the ) ) 2s(a) ]
dump state [4] and extend the transition functiénto Under this assumption, the sum of event costs defined at

So + (QU {gni1}) X (U (UpSY)) — (QU {gny1}) as the statey of the supervisos is equal to that of statg of

follows: the plantG, i.e.,
8(qr,0) if g €Qando €% > dslgol= Y Fclg,ol (16)
56(Qk70) = qn+1 if qr € Q ando € E}é c€Ss(q) €S6(a)

In+1 ifk=n+1ando€XUX} Lemma 4.1:(Finiteness) Given a DES pladt, there is

Therefore the residud, = 1 — Zj 7ix; denotes the only a finite number of controllers;,: € 7., whereZ, is
probability of the set of unmodeled event§ conditioned the set of controllers with cardinalityZ.| = n., such that
on the stateg;. The II-matrix is accordingly augmented for everyi € Z., L(S;) = L(S;/G) C L(G).
to obtain a stochastic matrix. Since the dump stgte; Lemma 4.1 shows that there are finitely many supervisors
is not marked, its characteristic valugg,.1) = 0. The whose generating language is a subsef.(f) given the
characteristic vector then augments X9 = [X 0]7. fact that the state space and event alphabet are both finite.
With these extensions the language measure vgetéf Theorem 4.1:(Existence) [2] Given a DES plar& =
=1 p2 - pn fns1]” =l pnga]” of the augmented (@, %, 6, qo, @), II-matrix, and X-vector, there exist
DFSA G = (Q U {gns1}, X U (UpSH), 6e, ¢i, Q) can @n optimal supervisorS* such that u(L(S*/G)) =
be expressed as: max;ez, 4(L(S;/Q)).

T Theorem 4.2:Given a DES planGG = (Q, %, 0, g0, @m),
( Iz > _ (HM+Mn+1 [61 - - 0] ) n <X> (14) T-matrix, andX-vector. Define,(q) as follows

Mn+1 Hn+1 0 : :
_ . . Y(q) ={o € X, | é(q,0) is defined in G} 7)
Since x(gn+1) = 0 and all transitions from the absorbing

state ¢,1 lead to itself, i1 = p(Lin(Gpi1)) = O. If supervisorS is the optimal supervisas*, then for every
Hence, Equation (14) reduces to that for the original plaritateg € @, such that:.(q) # 0, there is one and only one
DFSA G;. Thus, the event cost can be interpreted as tHeontrollable event enabled.

conditional probability, where the residédg = 1 — " 7 Theorem 4.1 states that out of all possible supervisors
accounts for the probability of all unmodeled events emaonstructed fromG, there exists a supervisor that max-
nating from the statey,. In our earlier work [6], a recursive imizes the language measure with respect to(II, X).

parameter estimation scheme has been proposed_ Theorem 4.2 discribes a general transition structure of the
optimal supervisorS*. In particular, at every state if*,
IV. DES CONTROL SYNTHESIS INu-MEASURE there is at most one controllable event defined.

In the conventional discrete event supervisory (DES) Intuitively, at a given state, a control synthesis algorithm
control synthesis [4], the qualitative measure of maximurshould attempt to enable only the controllable event that
permissiveness plays an important role. For example, undeads to the next state with highest performance measure
full state observation, if a specification languagé is equivalently, disabling the rest of controllable events defined
not controllable with respect to the plant automatén at that state, if any. Below we first give a recursive synthesis
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algorithm and then show that is monotonically increasing a set of events (see Table I). The DCM is designed to be

elementwise on every iteration. independent of the underlying physical process such that it
1) Initialization. TI° = II,,, then pu®=(I — I1°)~'X. provides a mechanism to interact with the CVCM. A DES
2) Recursionk-th iteration, where: > 1. controller is allowed to plug and play in DCM. The CVCM
1) For everyq € Q, find out the eventr* = consists of three blocks as shown in Figure 1: C/D, D/C,
o*(q) € Su(q) such that* = 8(¢, o) and and Continuous time contral(t). The CVCM connects to

. - Player via a TCP socket for sending and receiving formatted
p(L(S* ), %) = max u(L(S*(IT%),¢')  (18)  messages that encode sensor readings and continuous time
d'=5(q,0) commands of reference signals, respectively, at 10 Hz. The
e . : : control strategy is event-driven, in which CVCM generates
where S*(II7) is the intermediate supervisor & discrete events based on the continuous sensor data received

ki'gh iteration whose transmonTls determmebd byfrom Player. The discrete events are transmitted to DCM
II*. Let o* = [of 05 --- o], where thei-

oo in symbolic form. By receiving a particular event from
th element ino™ is the controllable eve_nt left- the DES controller, CVCM sends out a set of continuous
enablt_ed at state; of the plantG according to reference signals to Player for completion of this behavior
Equatlon 18. . to maneuver the robot accordingly. The robot continues

2) Disable the event Se};”(q) —{ o7(q)} for executing this behavior until the sensor readings trigger the
every ¢ € @ and redistribute event cost ac-

) ) . . occurrence of a new event.
cording to Equation 15. This results in a new

IT%*1-matrix which consequently produces a
new IT*+1-matrix.

DES supervisoiS(c)
in language measure

o = 11° 4 AF (19) 7> g
whereAF records the difference betwe&kF+! [ C/D ] [ D/C ]
and IT**!, consisting positive and negative {} {}

event costs corresponding to those kepted and

disabled controllable events, respectively. Continuous time controC’(¢)

3) Computep* ™! =(1 — II*1)~1X {} {}
3. Termination. IfIT**! = IT*, then stop. Sensor/actuator server Player
It should be noted that at each iteration of the recursive {} {}
algorithm, neither the number of states is increased, nor
any additional transition is added in the resulting super- P2AT simulator Stage
visor S*(IT*) with respect to the plant. Therefore,
L(S’f(l'[’f)) C L(G). Fig. 1. Pioneer 2 AT DES simulation block diagram
Theorem 4.3:(Monotonicity) The sequence p*,
k=1,2,..., generated recursively by the above algorithm The experimental scenario consists of a single robot
is monotonically increasing. performing logistic supply and combat operation in a battle

Given the fact that every iteration in the above recursivéield. There are two friendly units and one enemy, which are
synthesis algorithm gives an intermediate superviSér at stationary locations in the field. The robot does not have
in the form of IT* and its ; is monotonically increasing. prior knowledge of the environment. When a “start mission”
Moreover, as there are only finitely many supervisors, thgignal is received, the robot randomly searches for a red or
algorithm should stop in a finite number of iterations and@reen unit. When finding a unit, the robot can either proceed
yield an optimal supervisa§* in terms of the measurg.  to supply or ignore the unit and keep on searching. It may
also encounter an enemy during the course of searching.
V. EXPERIMENT VALIDATION The robot may decide either to avoid or to fight the enemy.
This section presents a robotic simulation test bed that both cases, there are chances that the robot may fail to
has been validated by real experiments. The control systesnpply or lose the fight.
architecture is shown in Figure 1. Player/Staigeemployed A gripper failure is modelled to signify the robot's
in the test bed. A Pioneer 2 AT robot model equipped withailure to complete the task of supplying units. However,
sonar, laser range finder, vision camera, gripper, and batteffyyhting with enemy is still possible. In addition, during the
is used in the simulation experiments. The DES contrahission, the battery consumption rate changes according to
module (DCM) communicates with the robot's continuoushe robot’s current actions. For example, the robot’s power
varying control module(CVCM) by sending and receivingconsumption is higher during the fight with the enemy than
N _ o supplying the units. The robot needs to return to its base
Player/Stage is developed at University of  Southern
California under GNU Public License. It is available at to be reCharged before the battery VOItage drops below a
http://playerstage.sourceforge.net/ certain level, or the robot is considered to be lost. After each
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TABLE |

LIST OF DISCRETE EVENTS

o1/ 018\020 15

’71\\, 020

”@181 20
021

o
[ X [ Description [ ¥ [ Description | Cl “ o /<> H
o1 | start mission o12 | win the fight /K
oo | search 013 | loose the fight
o3 | find blue unit 014 | battery power medium (b) G- ©G;
o4 | find pink unit o015 | battery power low ) ) ] ]
o5 | find enemy o1 | battery power dead Fig. 3. Battery failure model and gripper failure model
o¢ | proceed to supply| oi17 | detected gripper fault SABLE Il
o7 | ignore unit o1s | abort mission
os flgh'[ enemy 19 return ITERATION OF 1t SYNTHESIS
| I 0 T 2 3 4
o9 ?vplﬁ enerr|1y 020 |grgore anormlyf ; H 7 ‘ o ‘ w ‘ I ‘ I H
710 | INISh SUPPT 021 | EAUMN SUCCESSIUTY [0.5466] 0.8635] 0.8657 ] 0.8662] 0.8662 ]
o11 | fail supply

successful return to the base, the robot is reset to normg equally distributed. A vast majority of the plant states
conditions including full battery charge and normal grippere unmarked; consequently, the corresponding elements,
status. If the robot is incapacitated either due to battery ovef. ; =1, ..., of the characteristic vector are zero. Negative
drainage or damage in a battle, the “death toll” is increasegharacteristic valueg; are assigned to the bad marked
by one. In both cases, the mission is automatically restarteghtes. For example, the states in which the robot is dead
with a new robot. due to either losing the battle to the enemy or running out of
Due to the independence of the robot operation, battepyattery is assigned the most negative value of -1. Similarly,
consumption, and occurrence of gripper failures, we modglositive values are assigned to good states. For example,
the entire interaction between robot and environment bye state in which the robot wins a battle is assigned 0.5
three independent submodels, as shown in Figure 2 apdq the state of successfully providing supplies is assigned
Figure 3. The blue-colored and red-colored statesgam 3. Using the recursive algorithm presented in Section 4,
marked states irQ;;, and bad marked states irQ;,, re-  an optimal superviso8* is synthesized. The optimal DES
spectively. Then the models are composed by synchronoggntrol algorithm converges at the fourth iteration, as listed
composition operator to generate the integrated plant modglTaple 1. For the purpose of performance comparison, two
G = G1[|G2||Gs. supervisors under the following specifications are designed.

search at ay 112‘1 obstacle ahead at . 112‘3
1 1 1

find goal w/ target at A TG g

0.5k 0.5

probability
o
o1

L SEE—

b ]
D o 9 20, 200

0
0 fZé)O 400 600 800 0 200h 40? 600
n alargetatql, TE,S reach goal ath,Tts

1 1 1

i |
[P

JlJuLU\ﬂMM, L
0 0
0 2?? 400 600 800 0 . 200
lost tar

0
getatq,, T, |, avoid succeégﬁl\y% %9, 1@(10(?15 oavo%oaastggpe atﬁé’;’, 7'580012
1 1 1

800
.8

0.5 0.5

probability
o
o

(@G,

0.5 0.5~

probability
o
o1

Fig. 2. Robot behavioral model

Hﬂ,\\f

0
200 400 600 800 0
Number of events

0
200 400 600 800 0
Number of events

200 400 600 800
Number of events

After eliminating the inaccessible states, the discrete- %
event model of the plant automatéhconsists of 139 states
and 21 events, as listed in Table I. The event cost matrix
II is then identified by Monte Carlo simulation over 1200
missions according to the parameter identification procedure Controller S; specifications
presented in Section 3 and convergence of selected non-1) Avoid enemy if battery is not below medium;
zero elements ifl-matrix is demonstrated in Figure 4. For 2) Abort all operation when the battery power is low;
those states that have more than one controllable events3) If there is a gripper failure, do not supply a discovered
defined, the probabilities of occurrence are assumed to  unit or abort supply if the supply is on-going.

Fig. 4. Some non-zero elements Idfmatrix
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TABLE Il
SIMULATION STATISTICS OF 400 MISSIONS

I tems | ¢ | 5 | 5% [ 5
150 134 137 482
proceed 1_,0 supply 134 108 367 556
# of units found | 345606 | 32.84% [ 37.33% | 86.69%
finish supply 112 88 97 362
win enemy 37 33 22 69
fight enemy 65 70 68 167
unit Tost 26 19 14 48
Im -0.6751| -0.6646 | -1.1126| 2.8560
S0 i -20.25| -19.45| -27.3[ 45.25

Controller Sy specifications

1) Abort operation if battery is not below medium;
2) Abort all operation if a gripper failure is detected

The (non-optimal) DES controllers$; and S;, have
109 and 54 states, respectively, and 400 missions
simulated for the open loop plant and each of the i
DES controllers: optimal supervis@#*, S; and S,. The

statistics of the simulation results are summarized in Ta-
ble 11l that shows the plant yields higher performance under

S* than underS; and Sy or the null supervisor (i.e., the
unsupervised plant). During the 400 missiofs, decides

cummulative performancg

30F

— Open Loop
—— Controller 1
—— Controller 2
—— Optimal Cortroller

1 1 I
150 200 250

number of missions

I
300 360 400

450

Fig. 5. Cummulative performance comparison of all controllers

TABLE IV

COMPARISON OFQ-LEARNING AND p-SELECTION

to proceed to supplyor 482 times, three times more than |

S1 or Ss. In addition, the probability of deciding foroceed

to supplywhen the robot sees a unit is much higher than

S1 or S;. However, the price of this decision is that the
robot is likely to drain out the battery energy and therefore|

may risk being immobile in the middle of the mission.
S* also decides to fight much more times (167) than any

other supervisor since the reward to win a battle is larg

(x = 0.5). Certainly, the number of robot loss undgt is
also higher (48) than that for other supervisors becaiise

has to expose the robot more often to the enemy attack t
win the battles. On the averag®; outperformsS; and Ss

[ Ttems Q-learning u-selection |
Modeling M= (S,A,T,R) | ¢=.%.640, Qm)
Control policy MDP
Objective argmax, Q" (s,a) | max,cpq p(s)
Transition required required
probability T(s,a,s’) 7(q, o)
Reward on transition on state

(s, a) x(a)
Discount factor”y yes(ad hOC) no
Learning rate (X yes(ad hOC) no
Online adaption (6, 5)-thresh0|d,
to dynamic recursive redesign
|_environment

¥ Model exponential in polynomial in

complexity S and A

in measurg: = (I —II)~!X that are the theoretical values.
This superior performance &f* is further justified by the

experimental comparison of cumulative performance of thg
three supervisors and null supervisor over 400 missions, as

shown in Figure 5. The large oscillations are due to the loss

of the robot due to drained battery or loss of the battle. [y
VI. SUMMARY AND CONCLUSIONS [2]

This paper presents optimal supervisory control of robot
behavior based on the discrete-event language measurés]

[5]. A recursive supervisor synthesis algorithm is provide
as an extension of the earlier work of Fu et al. [2]. Th

results of simulation experiments validates that a DES con-
troller, designed by the recursive synthesis algorithm, indedd
maximizes the,-measure and has the best performance with
respect to two other supervisors, designed in conventioniél

way, and the null supervisor (i.e., the unsupervised plant).

The paper compares the proposed language megs)ire (7

based approach of DES control with tfelearning method.
Conceptually, a weight is assigned to each transitioin
learning whereas a weight is assigned to each stage in
selection. A summary of comparison betwe@dearning

4]

nd u-selection is given in table V.
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