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Abstract— The measure of regular languages, recently in-
troduced in technical literature, has been the driving force
for quantitative analysis and synthesis of discrete-event su-
pervisory (DES) control systems dealing with finite state
automata (equivalently, regular languages). This paper extends
the signed real measure of regular languages, to a complex
measure of non-regular languages, generated bylinear context
free grammars; the concept is illustrated by an example.
The complex measure becomes equivalent to the signed real
measure if the linear context free grammar is degenerated to
a regular grammar. I. I NTRODUCTION

Finite state automata (FSA) (equivalently, regular lan-
guages) have been widely used to model and synthesize
supervisory control laws for discrete-event plants [6] [1].
The mathematical simplicity of regular languages makes
the control synthesis computationally efficient. According
to the paradigm of supervisory control, a discrete event
system (e.g., the model of a physical plant) is a language
generator whose behavior is constrained by a supervisor to
meet a given specification. The (controlled) sublanguage
of the plant behavior could be different under different
supervisors that satisfy their own respective specifications.
Such a partially ordered set of sublanguages requires a
quantitative measure for total ordering of their respective
performance. To address this issue, a signed real measure
of regular languages has been reported in literature [8] [7]
to provide a mathematical framework for quantitative com-
parison of regular languages. This measure formalizes a
procedure for design of discrete event supervisory (DES)
controllers for finite state automaton plants, as an alternative
to the procedure of Ramadge and Wonham [6]. Fu et
al. [3] [2] have reported optimal and robust control of finite
state automata based on the language measure to formalize
quantitative analysis and synthesis of DES control laws. The
approach is state-based and the language measure parame-
ters are identified from experiments on the physical process
or from simulation experiments on a deterministic finite
state automaton (DFSA) model of the plant [9]. However,
using memoryless state-based tools for supervisory control
synthesis may suffer serious shortcomings if the details of
transitions cannot be captured by finitely many states. This
problem has been partially circumvented by Petri nets that
can accommodate certain classes of non-regular languages
[5] in the Chomsky hierarchy. There is apparently no
quantitative tools for supervisory control synthesis of Petri

nets compared to what are available for finite state automata
[3] [2]. Hence, there is a need for developing quantitative
tools of supervisory control synthesis for discrete-event
systems that cannot be represented by regular languages.
Toward achieving this goal, the first step is to construct
measure(s) of non-regular languages where the state-based
approach [8] [7] may not be applicable.

This paper first shows that the measure of a regular
language proposed in [8] [7] is equivalent to that of the reg-
ular grammar, without referring to states of the automaton.
Then, the paper extends the signed real measure of regular
languages to a complex measure for the class of non-regular
languages, generated by the (deterministic)linear context
free grammar(LCFG) that is a subclass of deterministic
pushdown automata (DPDA) [4]. The main idea is to extend
the signed real measure [8] [7] to a complex measure over
the real field, where the multiplication operation of complex
numbers is different from the conventional one. In this case,
the complex space over the real field degenerates to the
union of a pair of one-dimensional real spaces instead of
being isomorphic to the two-dimensional real space. The
extended complex-valued language measure, formulated in
this paper, is potentially applicable to analysis and synthesis
of DES control laws where the plant model could be
represented by anLCFG.

This paper is organized in six sections including the
present section. Section II briefly introduces the notations
and background materials for formal languages. Section
III presents the measure of regular grammars and shows
its equivalence with that of regular languages. Section IV
extends the measure of regular grammars to that of linear
grammars. Section V presents an example to elucidate the
concept of measure for linear grammars. The paper is
summarized and concluded in Section VII.

II. CONCEPTS ANDNOTATIONS

This section introduces notations and background ma-
terials for formal languages along with definitions of key
concepts.

Definition 2.1: A context free grammar (CFG) is a 4-
tupleΓ = (V, T, P, S), whereV andT are mutually disjoint
(i.e., V ∩ T = ∅) finite sets of variables and terminals,
respectively; andP is a finite set of productions by which
strings are derived from the start symbolS. Each production
in P is of the formv → α, wherev ∈ V andα ∈ (V ∪T )∗.



Remark 2.1:The language generated by a grammarΓ
consists of all strings obtained from legal (i.e., permissible)
productions beginning with the start symbol.

Definition 2.2: A regular grammar is a CFG(V, T, P, S)
where every production inP takes exactly one of the
following two alternative pairs of forms (i.e., there are either
right derivations or left derivations but not both):

{
v → αw
v → α

or
{

v → wα
v → α

(1)

wherev, w ∈ V andα ∈ T ∪{ε}; andε is the empty string.
Remark 2.2:The generated language for a deterministic

finite state automaton (DFSA) is a regular language [4].
Definition 2.3: A linear grammar is a CFG(V, T, P, S)

where every production inP takes one of the following
forms:

v → αw; v → wα; v → α (2)

wherev, w ∈ V andα ∈ T ∪ {ε}.
Remark 2.3:In view of Remark 2.1 and Definition 2.3,

the set of production rulesP in a linear grammarΓ =
(V, T, P, S) can be modified as̃Γ = (Ṽ , T, P̃ , S) by
augmenting the setV of variables asṼ ≡ V ∪ A and by
updating the set P of production rules bỹP that is given
as:
if ϕ = (v → α) ∈ P is replaced byϕ̃ = (v → aα) where
v ∈ V , α ∈ T ∪ {ε}, anda ∈ A. This is analogous to the
trim operation in regular languages [1] [6].

Remark 2.4:The modified grammar̃Γ = (Ṽ , T, P̃ , S)
is a superset of the original grammarΓ = (V, T, P, S) in
the sense that it contains the generated language ofΓ =
(V, T, P, S) and, in addition, has productions of the type
v → aw. The productionA → ε is added toP in each step
of the modification; andv → ε must exist∀v ∈ V .

Remark 2.5:Regular grammars have only right (or left)
derivations with a single variable. In contrast, linear gram-
mars include both right and left derivations with a single
variable. This is precisely what allows the linear grammars
to model a certain class of non-regular languages.

In the sequel, the termsstate and variable are used
interchangeably as they convey the similar meaning in the
present context; the same applies to the termsterminalsand
events.

III. M EASURE OFREGULAR GRAMMARS

This section first introduces the concept of regular-
grammar-based measures and then shows its equivalence
to that of recently reported state-based measure [8] [7]. In
essence, the concept of the state-based language measure
is reformulated in terms of regular grammars, followed by
construction of the measure. While detailed proofs of the
supporting theorems are given in [4], sketches of the proofs
that are necessary for developing the underlying theory are
presented here.

Theorem 3.1:If L is a regular language, then∃ a regular
grammarΓ such that eitherL = L(Γ) or L = L(Γ) ∪
{ε}. Proof: Let G = (Q, Σ, δ, qi, A) be anFSA. We

construct the grammarΓ with V = Q andT = Σ. The set
of productions is constructed as follows:

1) Add qi → srqj if δ(qi, sr) = qj ;
2) Add qi → sr if δ(qi, sr) ∈ A

whereqi, qj ∈ Q andsr ∈ Σ.
Theorem 3.2:If Γ is a regular grammar, thenL(Γ) is a

regular language.
Proof: Let Γ = (V, T, P, S) be a regular grammar. We

construct a nondeterministic finite state automatonG that
exactly accepts the languageL(Γ). Specifically, letG =
(V ∪{W}, T, δ, S, {W}) whereW is the only marked state
andδ is defined as follows:

δ(vi, sr) ≡ δ1(vi, sr) ∪ δ2(vi, sr) ∪ δ3(vi, sr) (3)

where
δ1(vi, sr) = vj , if vi → srvj ∈ P
δ2(vi, sr) = {W}, if vi → sr ∈ P

δ3(vi, sr) = φ, otherwise

Remark 3.1:It follows from Theorem 3.2 and Theorem
3.1 that a languageL is regular iff ∃ a regular grammarΓ
such that eitherL = L(Γ) or L = L(Γ) ∪ {ε}. Therefore,
∃ a regular grammar for every finite state automaton that
exactly generates the language of the regular grammar and
vice versa.
A. Formulation of Regular Grammar Measures

This section follows the same construction procedure as
in [8] [7] because there exists a one-to-one-correspondence
between the state setQ of an automaton and the variable
setV of the corresponding grammar. The same holds true
for the alphabet setΣ and the terminalT of the regular
grammar. The notion of marked states as well as that of
good and bad marked states translates naturally to this
framework. The variable setV can be partitioned into sets
of marked variablesVm and non-marked variablesV −Vm.
The setVm is further partitioned into good and bad marked
variables asV +

m andV −
m .

Definition 3.1: The languageL(Γi) generated by a con-
text free grammar (CFG) Γi initialized at statevi ∈ V is
defined as:

L(Γi) = {s ∈ Σ∗| ∃ a derivation of s from Γi} (4)
Definition 3.2: The languageLm(Γi) generated by a

CFG Γi initialized at statevi ∈ V is defined as:
Lm(Γi) = {s ∈ Σ∗|∃ a derivation ofs from Γi which
terminates on a marked variable}

Definition 3.3: For everyvi, vk ∈ V , the set of all strings
that, starting fromvi, terminate onvk is defined as the
languageL(vi, vk). That is,
L(vi, vk) = {s ∈ Σ∗| ∃ a derivation ofs from vi that
terminates onvk}

Definition 3.4: The characteristic functionχ : V →
[−1, 1] is defined in exact analogy with the state based
approach:

∀vi ∈ V, χ(vi) ∈




[−1, 0), v ∈ Vm
−

{0}, v /∈ Vm

(0, 1], v ∈ Vm
+



and it assigns a signed real weight to the sublanguages
L(vi, v).

Similar to the measure of regular languages [8] [7], the
characteristic vector is denoted as:X = [χ1 χ2 · · · χn]T ,
where χj ≡ χ(vj) ∀k, is called theX-vector. The j-
th elementχj of X-vector is the weight assigned to the
corresponding terminal statevj . Hence, theX-vector is also
called the state weighting vector.

As mentioned before, the marked languageLm(Γi) con-
sists of both good and bad event strings that, starting
from the initial statevi, lead toV +

m and V −
m respectively.

Any event string belonging to the languageL0(Γi) =
L(Γi)−Lm(Γi) terminates on one of the non-marked states
belonging toV − Vm; andL0 does not contain any one of
the good or bad strings. Based on the equivalence classes
defined in the Myhill-Nerode Theorem [4] that holds good
since we are dealing with regular languages in the guise of
regular grammars. The regular languagesL(Γi) andLm(Γi)
can be expressed as:

L(Γi) =
⋃

vk∈V

L(vi, vk) =
n⋃

k=1

L(vi, vk) (5)

Lm(Γi) =
⋃

vk∈Qm

L(vi, vk) = L+
m(Γi) ∪ L−m(Γi) (6)

where the sublanguageL(vi, vk) ⊆ Γi, having the initial
statevi, is uniquely labeled by the terminal statevk, k ∈
I and L(vi, vj) ∩ L(vi, vk) = ∅ ∀j 6= k; and L+

m ≡⋃
v∈V +

m
L(vi, v) and L−m ≡ ⋃

v∈V −m L(vi, v) are good and
bad sublanguages ofLm(Γi), respectively. Then,L0(Γi) =⋃

v/∈Vm
L(vi, v) andL(Γi) = L0(Γi) ∪ L+

m(Γi) ∪ L−m(Γi).
Now we construct a signed real measureµ : 2L(Γi) →

R ≡ (−∞,+∞) on the σ-algebra K = 2L(Γi). The
construction is exactly equivalent to that for the state-based
automata. With the choice of thisσ-algebra, every singleton
set made of an event stringω ∈ L(Γi) is a measurable
set, which qualifies itself to have a numerical quantity
based on the above decomposition ofL(Γi) into L0(null),
L+(positive), andL−(negative), respectively called null,
positive, and negative sublanguages. The event costs are
defined below.

Definition 3.5: The event cost of the regular grammar
Γi is defined as:̃π : Σ∗ × V → [0, 1] such that∀vi ∈ V ,
∀σj ∈ Σ, ∀S ∈ Σ∗,

(1) π̃[σj , vi] ≡ π̃ij ∈ [0, 1);
∑

j π̃ij < 1;
(2) π̃[σj , vi] = 0 if @vi → σjvk ∈ P , whereP is the set

of production rules; andπ̃[ε, vi] = 1;
(3) π̃[σjω, vi] = π̃[σj , vi] π̃[ω, vk], vi → σjvk ∈ P .
Definition 3.6: The state transition cost of the regular

grammarΓi is defined as:π : V × V → [0, 1) such that
∀vi, vj ∈ V , π[vi, vj ] =

∑
σ∈Σ:∃vi→σvj∈P π̃[σ, vi] ≡ πij

and πij = 0 if {σ ∈ Σ : vi → σvj} ∩ P= ∅. The n × n
state transition costΠ-matrix is defined as:

Π=




π11 π12 . . . π1n

π21 π22 . . . π2n

...
...

. ..
...

πn1 πn2 . . . πnn




Remark 3.2:The variable-based definition (3.5)and
state-based definition [8] [7] of the event cost function
are exactly equivalent and so are definitions of the state
transition cost. Therefore, the sameΠ-matrix will be
obtained if the variables are interpreted as states.

Definition 3.7: The signed real measureµ of every sin-
gleton string setS = {s} ∈ 2L(Γi) wheres ∈ L(vi, v) is
defined asµ(S) ≡ π̃(s, vi)χ(v). The signed real measure
of the sublanguageL(vi, v) ⊆ L(Γi) is defined as

µ(L(vi, v)) =


 ∑

s∈L(vi,v)

π̃[s, vi]


 χ(v) (7)

The signed real measure of the language of a regular
grammarΓi initialized at a statevi ∈ V , is defined as:

µi ≡ µ(L(Γi)) =
∑

v∈Γ

µ(L(v, vi)) (8)

The language measure vector, denoted as:
µ = [µ1 µ2 · · · µn], is called theµ-vector.

Based on the reasoning of the state based approach, it
follows that:

µi =
∑

j

πijµj + χi (9)

In vector form,µ = Πµ + X whose solution is given by:

µ = (I−Π)−1X (10)

Remark 3.3:The matrixΠ is a contraction operator and
hence (I − Π) is invertible. So, theµ-vector in Equation
(9) is uniquely defined.

IV. L ANGUAGE MEASURE FORL INEAR GRAMMARS

This section extends the concept of language measure
to linear grammars that are a generalization of regular
grammars [4]. This is accomplished by introducing the
notion of event planefrom the perspective that there exists
a specific direction in which an event may occur in a linear
grammar.

Definition 4.1: The event mappingη : Σ → Z is a
function that maps the event alphabet into the set of integers.
Let Σ = {σ1, · · · , σk, · · · , σm}, then

η(σk) = k (11)
The event planecan be viewed as the complex plane

itself on which the trajectory of the discrete-event system
is reconstructed as the strings are generated. The transitions
S → σkvi and S → viσk transfer the state located at the
origin 0, 0, to (η(σk), 0) and(0, η(σk)), respectively. Thus,
there exists two possible directions in which the same event
σk may cause transition from the same statevi. For a regular
grammar, events always occur along a direction that may
be either the real axis or the imaginary axis, depending on



how the representation of a right regular or a left regular.
This concept is further clarified by using the notion of the
event plane.

Let us denote an event asσ if it occurs along the real
axis and asiσ if it occurs along the imaginary axis; let
the alphabet of real events be namedΣ and the alphabet of
imaginary events asiΣ. Note thatΣ and iΣ are disjoints
finite sets of identical cardinality. However, eachσj ∈ Σ is
uniquely identified with the specificiσj ∈ iΣ.

A. Linear Grammar Measure Construction

Several concepts need to be clarified before embarking
on the construction of a measure. In finite state machines,
a stateqj may be reached from a stateqi through different
paths. In analogy, there may exist multiple paths between
two states of a linear grammar. Whereas a particular string
uniquely determines a path of a given automaton, a string
may be generated by different paths in linear grammars.

Definition 4.2: The path mapping function℘ : Σ∪ iΣ →
Σ generates a string of real events by first concatenating all
the real events followed by reverse concatenation of the real
events corresponding to the remaining imaginary events.
For example, a path mapping is:℘(σjσkiσ`σpiσqσr) =
σjσkσpσrσqσ`.

It follows from Definition (4.2) that, given a pathω in
the language, the generated string is obtained by the path
mapping℘(ω). The objective is to construct a measure of
the set of all such paths rather than the measure of strings.
This is necessary for a general form of the Myhill-Nerode
theorem to hold, which is central to the construction of the
linear grammar measure.

Let Υ ≡ {x : x = a + ib and a ∈ [0, 1], b ∈ [0, 1]},
i.e., Υ is the closed unit square on the complex planeC.
Let a binary operator? : C × C → C be defined as:(a +
ib) ? (c + id) = ac + ibd ∀a, b, c, d ∈ R. The identity for
this operator is1 + i since∀z ∈ C, z ? (1 + i) = z and if
z = a+ ib with a 6= 0 andb 6= 0, then∃ z−1 ∈ C such that
z ? z−1 = (1 + i). Specifically, if z = a + ib with a 6= 0
andb 6= 0, thenz−1 = 1

a + i 1
b .

The operator? can be extended as:? : Cn×m×Cm×l →
Cn×l as follows: ifA ∈ Cn×m, B ∈ Cm×l, thenA ? B =
C ∈ Cn×l in the sense thatcij = Σn

k=1aik ? bkj . Further, if
A = Ar + iAim and B = Br + iBim where the pairs
(Ar, Br) and (Aim, Bim) denote the real and imaginary
parts of the matricesA andB, respectively, it follows that
A ? B = ArBr + iAimBim.

The identity for the above? operation is(1 + i)I where
I is the standard identity matrix of dimensionn × n. Let
us denote the identity for the? operation by:

I = (1 + i)I (12)

whereA ? I = I ?A = A ∀A ∈ Cn×n.
Remark 4.1:The inverse of a matrixA ∈ Cn×n under

the? operation, is given as:A§ = (Ar + iAim)§ = Ar
−1 +

iAim
−1 that is different from the standard inverseA−1.

Notice that both real (Ar) and imaginary (Aim) parts of

the matrixA must be individually invertible in the usual
sense for existence ofA§.

In view of the ? operator, definitions of the language
measure parameters,χ, π̃ andπ, are generalized as follows:

Definition 4.3: The characteristic functionχ : V → Υ is
defined∀v ∈ V as:

χ(v) =





k(1 + i) with k ∈ [−1, 0) if v ∈ Vm
−

k(1 + i) with k = 0 if v /∈ Vm

k(1 + i) with k ∈ (0, 1] if v ∈ Vm
+

(13)

The characteristic valueχ assigns a complex weight to
a languageL(v, u) that, starting at the variablev, ends at
the variableu. A real weight, in the range of -1 to +1,
is assigned to each state as it was done in the case of
real grammars, and then this weight is made complex by
multiplying (in the usual sense) with1 + i. Each event can
occur either along the real axis or along the imaginary axis
on the event plane. The events are defined to be elements
of the set{1, i} × Σ. An eventσ ∈ Σ is denoted asiσ
if it occurs along the imaginary axis. Real occurrences
are denoted just byσ similar to what was done for real
grammars.

Definition 4.4: The event cost of the LCFGΓ is defined
as a functioñπ : ({1, i} × Σ)∗×V → Υ such that∀vk, v` ∈
V , ∀σj ∈ Σ, ∀ω ∈ ({1, i} × Σ)∗,

(1) π̃[σj , vk] ≡ Re(π̃kj) ∈ [0, 1);
∑

j Re(π̃kj) < 1;
(2) π̃[iσj , vk] ≡ Im(π̃kj) ∈ [0, 1);

∑
j Im(π̃ij) < 1;

(3) π̃[σj , vk] = i if @vk → σjv` ∈ P ;
(4) π̃[iσj , vk] = 1 if @vk → v`σj ∈ P ;
(5) π̃[ε, v`] = 1 + i;
(6) π̃[τω, vk] = π̃[τ, vk] ? π̃[ω, v`]

whereτ ∈ {1, i} × Σ; ω ∈ ({1, i} × Σ)∗; and
vk → τvl if τ ≡ σ andvk → v`τ if τ ≡ iσ

Definition 4.5: The state transition cost of the LCFGΓ is
defined as a functionπ : V ×V → Υ such that∀vk, vj ∈ V ,

π[vk, vj ] =
∑

σ`∈Σ:
∃vk→σ`vj∈P

Re(π̃[σ`, vk]) + i
∑

σ`∈Σ:
∃vk→vjσ`∈P

Im(π̃[k, l])

≡ πkj (14)

and πkj = 0 if {σ ∈ Σ : vk → σvj or σ ∈ Σ : vk →
vjσ} ∩ P= ∅. The n × n complex-valued state transition
costΠ-matrix is defined as:

Π=




π11 π12 . . . π1n

π21 π22 . . . π2n

...
...

. ..
...

πn1 πn2 . . . πnn




Definition 4.6: Let Γk be a linear grammar, initialized
at a statevk ∈ V . The complex measureµ of every
singleton string setΩ = {ω} ∈ 2L(Γk) is defined as:
µ(Ω) ≡ π̃(ω, vk) ? χ(v). Then, the complex measure of
the sublanguageL(vk, v) ⊆ L(Γk) of all strings terminated
at the statev ∈ V is defined as:

µ(L(vk, v)) =


 ∑

ω∈L(vk,v)

π̃[ω, vk]


 ? χ(v) (15)



Complex measure of the language of the linear grammar
Γk is defined as:

µk ≡ µ(L(Γk)) =
∑

v∈Γ

µ(L(vk, v)) (16)

The language measure vector, denoted asµ =
[µ1 µ2 · · · µn]T , is called theµ-vector.

B. Computation of theµ-Vector

This subsection presents a procedure to formulate the
complex measure of paths in the languageL(Γk).

Lk =
(
∪jσ

j
k Lj

)
∪k εk

where the null eventεk is defined as

εk =
{

ε if self loop at vi

∅ otherwise

The above expression formalizes the fact that the set of
paths from a statevk is exactly equal to the union of the
sets of paths obtained by looking at the first event and then
considering all possible legal paths thereafter. Hence, if the
first event isσ` and the current state changes tovj , then
the set of all paths thereafter is exactly equal toLj . The
expression is structurally identical to that given forDFSA
in [8] with the understanding that the eventσ j

` can be either
real or imaginary. Hence,

µ(Lk) = µ

( (
∪jσ

j
k Lj

)
∪k εk

)

= µ
(
∪jσ

j
k Lj

)
+ µ(εk)

=
∑

j

µ
(
σ j

k Lj

)
+ χ(vk)

=
∑

j

µ
(
σ j

k

)
? µ(Lj) + χ(vk)

=
∑

j

πkj ? µ(Lj) + χ(vk)

The first three steps in above equation follow from the
fact that if the first symbol for two paths is different, then
the paths cannot be identical. However, the strings generated
may still be the same. The fourth step follows from property
(6) of the π̃ function in Definition 4.4. The final step
trivially follows from the definition of the measure in 4.6.
In vector form, the complex measureµ is given by:

µ(L) = Π ? µ + X = (I −Π)§ ? X

=
(

(I− ReΠ) + i(I− ImΠ)
)§

? X

= (I− ReΠ)−1ReX + i(I− ImΠ)−1ImX

whereRe and Im refer to the real and imaginary parts
of the matrices, respectively; and existence of the matrix
inverses is guaranteed by the following conditions:∑

j

Re(π̃kj) < 1;
∑

j

Im(π̃kj) < 1 ∀k.

A simple example is presented in the next section to
illustrate how the complexµ is computed for anLCFG.

V. EXAMPLE

Let a languageL generate all strings of the typeanbn :
n ∈ N over the alphabetΣ = {a, b}. The non-regular
languageL can be generated by the grammar:v1 → av1b|ε
that can be rewritten as:v1 → av2; and v2 → v1b. The
resultingπ̃ matrix is of the form:

Π̃=

[
p 0
0 iq

]

The parametersp and q can be identified from the experi-
mental time series data of the system dynamics [9]. TheΠ
matrix is then obtained as:

ReΠ=

[
0 p
0 0

]
and ImΠ=

[
0 0
q 0

]
.

Assigning characteristic values (i.e., weights) of the two
statesv1 andv2 to beχ1 andχ2 respectively, the complex
measure vector is evaluated as:

µ(L) =

{
(χ1 + pχ2) + iχ1

χ2 + i(χ2 + qχ1)

}

VI. CONTROL UNDEREVENT UNOBSERVABILITY

This section presents future work on extension of state-
based optimal and robust control [3] [2] that is achieved
by selectively disabling controllable events to maximize the
measure of the controlled plant language under the restric-
tion of all events being observable. It might be possible
to eliminate this restriction by making the state transitions
due to unobservable events as imaginary. However, with
this modification, the generated language may become
nonregular with a linear grammar. A detailed exposition
follows.

Let the plant be modelled as a DFSAG =
(Q, Σ, δ, q1, A). The corresponding regular grammar is ob-
tained asΓ(q1, V, T, P ) with V = Q and T = Σ by
Theorem 3.1. Further letΩ ⊂ Σ be the set of unobservable
events, i.e.,Ω ≡ {σ ∈ Σ : α is unobservable}. The set of
production rules is then modified as follows:

∀qi, qj ∈ Q ∀(qi → srqj) ∈ P , if sr ∈ Ω
then replace(qi → srqj) by (qi → qjsr)

In accordance with Section IV, this modification implies
that the unobservable events lead to imaginary transitions.
The modified set of production rules has both left and right
derivations and hence the modified grammar is linear. Let
us denote this operation ascoloring the regular grammar,
which defines the mapping asCol : REG × Ω → LIN ,
where REG is the set of regular grammars and LIN is the
set of deterministic linear grammars. The properties of the
mappingCol are as follows:

1) Col is well defined which follows from the algorith-
mic definition of the mapping;

2) Ω = ∅ ⇒ Col(Γr,Ω) = Γr i.e. Col is identity if
there are no unobservable events;

3) Col is one to one. Injectivity follows trivially from the
algorithmic definition. HoweverCol is not surjective.



Next the notion of ordered set operations on strings is
introduced.

Definition 6.1: Ordered difference of two stringss1 and
s2 is the first string with the symbols occurring in the second
one deleted. Thus it is a mappingÄ : Σ? × Σ? → Σ?

Definition 6.2: Ordered intersection of a strings1 and a
subsetK of the alphabetΣ is the strings1 with the symbols
occurring inK deleted. Formally it is a mappingÄ : Σ?×
K ⊂ Σ → Σ?. Note that the same symbol is used to denote
both ordered difference and ordered intersection since the
case will be definitely clear from context.

Definition 6.3: Reversal of a strings1 is a string s2

which is justs1 read right to left. Formally it is a mapping
(¦)r : Σ? → Σ?

Definition 6.4: Observed component of a stringσ de-
noted byð(σ) is defined as:ð(σ) = σ Ä Ω.

Physically, the observed component of a string generated
by a regular grammar with a nonempty set of unobservable
events is simply the string that is observed, which is
different from the actual generated string.ð is therefore
a formal mappingð : Σ? → Σ? for a givenΩ and note for
an emptyΩ, ð is the identity map.

In both regular and linear grammars, there is exactly one
variable and one terminal on the right hand side of each
production rule. Trivial exceptions that may occur is taken
care of by thetrim operation described in Remark 2.3.
This implies that, at any given time step, the derivation
consists of a string of terminals and exactly one variable.
If we denote the derivation at thekth step by sk, then
for a regular grammarsk = σ1 . . . σkqi by successively
application of production rules to the derivations, where
σj ∈ Σ andqi ∈ Q. In this case, an object consists of string
fragments and a single variable. The variable is replaced
in the successive step in accordance with the production
rulesP ; such derivations are calledlivestrings. For linear
grammars, the expression forsk is more involved in the
sense that the variable is no longer restricted to be located
at the end. This induces a mapcolΩ : ΣΓr → ΣCol(Γr)

whereΣ?
Γr andΣ?

Col(Γr) are the sets of all possible live
strings forΓr and Col(Γr, Ω) respectively. Specifically, if
colΩ(sk) = σk then sk is a live string for Γr and σk

is a live string forCol(Γr, Ω). To calculateσk explicitly
one first determines the unique sequence of events that
leads to the live stringsk. The sequence of events remains
the same inCol(Γ,Ω), but the unobservable transitions
are now imaginary. This sequence andCol determine the
corresponding live stringσk. Consequently,sk and σk in
the last expression is related to the observed component
of the live string. The variable represents thegeneration
point in a string (i.e., the point at which new symbols
are written), it physically denotes the point of current
observation. The substring to the left of the variable is the
observed component of the generated string and the one to
the right is the sequential set of the unobservable events
occurring in the system up to the current step.

Pertinent results are summarized below as two theorems,

whose proofs are not presented here due to space limita-
tions.

Theorem 6.1:colΩ(sk) = [ð(sk)][sk ÄΣ][(sk Äð(sk))r]
where[¦][¦] denotes concatenation.

Theorem 6.2:A system is observable if and only if
colΩ ≡ identity ∀ sk ∈ Σ?

Col(Γr,Ω).

VII. SUMMARY AND CONCLUSIONS

The major motivation for the work reported in this paper
is discrete event supervisory (DES) control of complex
dynamical systems that cannot be represented by regu-
lar languages (equivalently, finite state automata). Toward
achieving this goal, the paper presents a quantitative mea-
sure of non-regular languages, generated bylinear context
free grammars (LCFG)which belong to the low end of
Chomsky hierarchy [4]. It shows that the measure of regular
languages proposed in [8] [7] can be obtained by its
generating regular grammar, without referring to states of
the automaton. Then, the paper extends the signed real
measure to a complex measure for the class of non-regular
languages, generated byLCFG. The extended language
measure is potentially applicable to quantitative analysis and
synthesis of DES control systems where the plant model of
a complex dynamical system is not restricted to be a finite
state machine. The paper has also discussed the issues of
quantitative synthesis of optimal and robust control policies
under partial observation.

Future research in this area includes generalization of
the measure to a wider class of context free grammars and
beyond, with specific interest in Petri nets. In addition, the
issue of measuring paths rather than strings needs to be
explored in more details.
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