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Abstract—The measure of regularlanguages, recently in- nets compared to what are available for finite state automata
troduced in technical literature, has been the driving force [3] [2]. Hence, there is a need for developing quantitative
for quantitative analysis and synthesis of discrete-event su- tools of supervisory control synthesis for discrete-event

pervisory (DES) control systems dealing with finite state ¢ that b db lar |
automata (equivalently, regular languages). This paper extends SYStemSs that cannot be represented Dy regular languages.

the signed real measure of regular languages, to a complex Toward achieving this goal, the first step is to construct
measure of non-regular languages, generated dinear context measure(s) of non-regular languages where the state-based

free grammars the concept is illustrated by an example. approach [8] [7] may not be applicable.
The complex measure becomes equwalent. to the signed real  This paper first shows that the measure of a regular
measure if the linear context free grammar is degenerated to lan din 181171i ivalent to that of th _
a regular grammar. guage proposed in 811 ]_|s equivalent to that of the reg
|. INTRODUCTION ular grammar, without referring to states of the automaton.
Finite state automata (FSA) (equivalently, regular lanThen, the paper extends the signed real measure of regular
guages) have been widely used to model and synthesilamguages to a complex measure for the class of non-regular
supervisory control laws for discrete-event plants [6] [1]languages, generated by the (determinisliicdar context
The mathematical simplicity of regular languages makekee grammar(LCFG) that is a subclass of deterministic
the control synthesis computationally efficient. Accordingpushdown automata (DPDA) [4]. The main idea is to extend
to the paradigm of supervisory control, a discrete everthe signed real measure [8] [7] to a complex measure over
system (e.g., the model of a physical plant) is a languagdbe real field, where the multiplication operation of complex
generator whose behavior is constrained by a supervisor tombers is different from the conventional one. In this case,
meet a given specification. The (controlled) sublanguagée complex space over the real field degenerates to the
of the plant behavior could be different under differenunion of a pair of one-dimensional real spaces instead of
supervisors that satisfy their own respective specificationbeing isomorphic to the two-dimensional real space. The
Such a partially ordered set of sublanguages requireseatended complex-valued language measure, formulated in
quantitative measure for total ordering of their respectivéhis paper, is potentially applicable to analysis and synthesis
performance. To address this issue, a signed real measaofeDES control laws where the plant model could be
of regular languages has been reported in literature [8] [Tgpresented by ahCFG.
to provide a mathematical framework for quantitative com- This paper is organized in six sections including the
parison of regular languages. This measure formalizes pgiesent section. Section Il briefly introduces the notations
procedure for design of discrete event supervisory (DESINd background materials for formal languages. Section
controllers for finite state automaton plants, as an alternatiVi presents the measure of regular grammars and shows
to the procedure of Ramadge and Wonham [6]. Fu ets equivalence with that of regular languages. Section IV
al. [3] [2] have reported optimal and robust control of finiteextends the measure of regular grammars to that of linear
state automata based on the language measure to formafizammars. Section V presents an example to elucidate the
guantitative analysis and synthesis of DES control laws. Thgoncept of measure for linear grammars. The paper is
approach is state-based and the language measure parasunmarized and concluded in Section VII.
ters are identified from experiments on the physical process Il. CONCEPTS ANDNOTATIONS
or from simulation experiments on a deterministic finite This section introduces notations and background ma-
state automaton (DFSA) model of the plant [9]. Howeverterials for formal languages along with definitions of key
using memoryless state-based tools for supervisory contrebncepts.
synthesis may suffer serious shortcomings if the details of Definition 2.1: A context free grammar (CFG) is a 4-
transitions cannot be captured by finitely many states. Thtaplel’ = (V, T, P, S), whereV" andT are mutually disjoint
problem has been partially circumvented by Petri nets théite., V N'T = ()) finite sets of variables and terminals,
can accommodate certain classes of non-regular languagespectively; andP is a finite set of productions by which
[5] in the Chomsky hierarchy. There is apparently nastrings are derived from the start symisblEach production
quantitative tools for supervisory control synthesis of Petiin P is of the formv — «, wherev € V anda € (VUT)*.
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Remark 2.1:The language generated by a gramnhar construct the grammdr with V = @ andT = X. The set
consists of all strings obtained from legal (i.e., permissibledf productions is constructed as follows:

productions beginning with the start symbol. 1) Add ¢; — s.q; if 8(qi,s,) = qj;
Definition 2.2: A regular grammar is a CFG/, T, P, S) 2) Add ¢; — s, if §(gi,s,) € A
where every production in” takes exactly one of the where;, ¢, € Q ands, € . -
following two alternative pairs of forms (i.e., there are either Theorem 3.2:If I is a regular grammar, theh(T') is a
right derivations or left derivations but not both): regular language.
v — v — wa Proof: LetT = (V,T, P, S) be a regular grammar. We
{ v — or { v — (1) construct a nondeterministic finite state automatérnhat

exactly accepts the languadgT’). Specifically, letG =

wherev,w € V anda € T'U{e}; ande is the empty string. (v u{W},T, 6,5, {W}) whereW is the only marked state
Remark 2.2:The generated language for a deterministignds is defined as follows:

finite state automaton/{F'SA) is a regular language [4].

Definition 2.3: A linear grammar is a CFGV, T, P, S) 0(vi, sr) = 01(vi, s7) U 02(vi, 87) U d3(vi, 80)  (3)
where every production i takes one of the following where _
forms: o1(vi,s,) =w;,  if v; > s,0;€ P
v —ow; v — wa; v — o (2) So(viysp) ={W}, ifv;—s.€P

03(v4, 8p) = &, otherwise
wherev,w € V anda € T U {¢}.

Remark 2.3:In view of Remark 2.1 and Definition 2.3,
the set of production rule® in a linear grammafd' =
(V,T,P,S) can be modified ad = (V,T,P,S) by
augmenting the se¥’ of variables as/ = V U A and by
updating the set P of production rules By that is given
as:

if o= (v— «) € P is replaced byp = (v — aa) where , , i
v eV, aeTU{e), anda € A. This is analogous to the This section follows the same construction procedure as

trim operation in regular languages [1] [6]. _ ] in [8] [7] because there exists a one—to—one—correspo'ndence
Remark 2.4:The modified grammat’ = (V,T, P, ) between the state s€? o_f an automaton and the variable
is a superset of the original grammar= (V, T, P, S) in setV of the corresponding grammar. The same holds true

the sense that it contains the generated language of for the alphabet seE and the terminall’ of the regular

(V,T,P,S) and, in addition, has productions of the typegrammar. The notion of marked states as well as that of

v — aw. The pr;)ductionA _ cis added toP in each step good and bad marked states translates naturally to this

of the modification: andy — ¢ must existvv € V. framework. The variable sét can be partitioned into sets
Remark 2.5:Regular grammars have only right (or left) of marked variable$’,, and non-marked variablé$ — V.

derivations with a single variable. In contrast, linear gram] N€ SetV, is further partitioned into good and bad marked

mars include both right and left derivations with a single/ariables as/,” and V.,
Definition 3.1: The languagd.(I';) generated by a con-

variable. This is precisely what allows the linear grammars ; itialized :
to model a certain class of non-regular languages. geﬁt. "Ze grammarCCFG) T'i initialized at statev; € V' s
In the sequel, the termstate and variable are used ¢€'IN€d as:

interchangeably as they convey the similar meaning in the [(T;) = {s € ¥*| 3 a derivation of s from I';} (4)

Remark 3.1:It follows from Theorem 3.2 and TheoFem
3.1 that a languagé is regular iff 3 a regular grammar’
such that eithef. = L(T") or L = L(T") U {¢}. Therefore,
3 a regular grammar for every finite state automaton that
exactly generates the language of the regular grammar and
vice versa.
A. Formulation of Regular Grammar Measures

present context; the same applies to the taemminalsand Definition 3.2: The languageL,,(I";) generated by a
events CFG@G T; initialized at statey; € V is defined as:
I1l. M EASURE OFREGULAR GRAMMARS L.,(T;) = {s € ¥*|3 a derivation ofs from T'; which

This section first introduces the concept of regularierminates on a marked variabje ,
efinition 3.3: For everyv;, v, € V, the set of all strings

grammar-based measures and then shows its equivalenc@ ’ ’ ' -
to that of recently reported state-based measure [8] [7]. i§al: starting fromu;, terminate onvy, is defined as the
essence, the concept of the state-based language mead@figuagel (vi, vy). That is, o

is reformulated in terms of regular grammars, followed by- (Vi vk) = {s € X[ 3 a derivation ofs from v; that
construction of the measure. While detailed proofs of th&minates orv.} o .

supporting theorems are given in [4], sketches of the proofs D€finition 3.4: The characteristic functiony : V' —
that are necessary for developing the underlying theory atél’l] is defined in exact analogy with the state based

presented here. approach:

Theorem 3.1:If L is a regular language, théha regular [-1,0), veV,~
grammarl' such that eithet. = L(I') or L = L(I') U Yo, €V, x(vi) € ¢ {0}, vV
{e}. Proof: Let G = (Q,%,4,q;, A) be anF'SA. We 0,1, wveV,"
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and it assigns a signed real weight to the sublanguages 1 M2 --- Tin

L(viv ’U). = 721 22 e Ton
Similar to the measure of regular languages [8] [7], the - : :
characteristic vector is denoted &:= [y1 x2 - xal’, Tl Tna - Tonm
where x; = x(v;) Vk, is called theX-vector. The j- Remark 3.2:The variable-based definition (3.5)and

th elementy; of X-vector is the weight assigned to thestate-based definition [8] [7] of the event cost function
corresponding terminal state. Hence, theX-vector is also are exactly equivalent and so are definitions of the state
called the state weighting vector. transition cost. Therefore, the sanié-matrix will be

As mentioned before, the marked langudgg(T';) con- obtained if the variables are interpreted as states.
sists of both good and bad event strings that, starting Definition 3.7: The signed real measuye of every sin-
from the initial statev;, lead toV,; and V,; respectively. gleton string setS = {s} € 25(") wheres € L(v;,v) is
Any event string belonging to the languade(I';) = defined asu(S) = 7(s,v;)x(v). The signed real measure
L(T;)—L,,(T;) terminates on one of the non-marked statesf the sublanguagé (v;,v) C L(I';) is defined as
belonging toV’ — V,,,; and L does not contain any one of
the good or bad strings. Based on the equivalence classes o - '
defined in the Myhill-Nerode Theorem [4] that holds good ulL (v, v)) = Z s, vl | x(v) ()

since we are dealing with regular languages in the guise of s€L{us)
regular grammars. The regular languad€s;) andL,,, (T;) The signed real measure of the language of a regular
can be expressed as: grammarl’; initialized at a state; € V, is defined as:
n pi = p(L(T3)) = Y p(L(v, ;) 8)
LTy) = |J L(vi,on) = | Lvi,ve) (5) vel'
vk €V k=1 The language  measure  vector, denoted as:
@ = [p1 po -+ ugl, is called thep-vector.
Lin(T;) = U L(vi,op) = LE (T ULL(Ty)  (6) Based on the reasoning of the state based approach, it
follows that:
VEEQm
=Y T+ X )
where the sublanguagg(v;,v;) C T';, having the initial J

statev;, is uniquely labeled by the terminal statg,k € |n vector form,p = I + X whose solution is given by:

7 and L(v;,v;) N L(v;,v,) = 0 Vj # k; and L, = .

Uyev+ L(vi,v) and Ly, = U, ¢y~ L(vi,v) are good and p=1-IH"X (10)

bad sublanguages df, (I';), respectively. ThenL%(I';) = Remark 3.3:The matrixII is a contraction operator and

Usgv,, L(vi,v) and L(T';) = L) U LE(T3) U Lo (Ti). - hence { — T0) is invertible. So, theu-vector in Equation
Now we construct a signed real measuyre 20 — (9) is uniquely defined.

R = (—o0,+0o0) on the o-algebra K = 2L, The

construction is exactly equivalent to that for the state-based!V: L ANGUAGE MEASURE FORLINEAR GRAMMARS

automata. With the choice of thisalgebra, every singleton  This section extends the concept of language measure

set made of an event string € L(I';) is a measurable to linear grammars that are a generalization of regular

set, which qualifies itself to have a numerical quantityyrammars [4]. This is accomplished by introducing the

based on the above decomposition/df’;) into L°(null), notion of event plangrom the perspective that there exists

L*(positive), and L~ (negative), respectively called null, a specific direction in which an event may occur in a linear

positive, and negative sublanguages. The event costs gr@ammar.

defined below. Definition 4.1: The event mapping; : ¥ — Z is a
Definition 3.5: The event cost of the regular grammarfunction that maps the event alphabet into the set of integers.

I'; is defined as# : ¥* x V — [0,1] such thatvy; € V, LetX = {0y, -, 0%, -+ ,0m}, then

Vo; € ¥, VS € ¥¥,

n(ok) =k (11)
(1) 7loj,vi] =iy €10,1); 32,7y <1 The event planecan be viewed as the complex plane
(2) #[oj,vi] =0if Pv; — oju, € P, whereP is the set jtself on which the trajectory of the discrete-event system
of production rules; and[e, v;] = 1; is reconstructed as the strings are generated. The transitions
) 7lojw, vi] = 7oy, vi] Tlw, vi], vi — ojv € P S — oxv; and S — v;oy, transfer the state located at the

Definition 3.6: The state transition cost of the regularorigin 0,0, to (n(c),0) and (0, (o)), respectively. Thus,
grammarl’; is defined asw : V x V — [0,1) such that there exists two possible directions in which the same event
Yo, v; € V, wvi,v5] = Y oesia0,—ouep Tl 0] = Ty o may cause transition from the same staté-or a regular
andr;; = 0if {o € ¥ :v; — ov;} N P=0. Then x n grammar, events always occur along a direction that may
state transition codfI-matrix is defined as: be either the real axis or the imaginary axis, depending on
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how the representation of a right regular or a left regulathe matrix A must be individually invertible in the usual

This concept is further clarified by using the notion of thesense for existence odf.

event plane. In view of the x operator, definitions of the language
Let us denote an event asif it occurs along the real measure parameterg, 7 andr, are generalized as follows:

axis and asio if it occurs along the imaginary axis; let  Definition 4.3: The characteristic functiog : V — T is

the alphabet of real events be nanténd the alphabet of definedvv € V' as:

imaginary events asx. Note thatYX and:X are disjoints

- S o . k(1 +1i) with k € [-1,0) i Vi~
finite sets of identical cardinality. However, eaghe ¥ is . (1+ Z.) we E[ ) l.f ve

. . o~ ) - ) x(v) =< k(1+41i) with k=0 ifveg Vi,  (13)
uniquely identified with the specifier; € 3. k(1 +4) with ke (0,1]  if ve Vit

The characteristic valug assigns a complex weight to
a languagel (v, u) that, starting at the variable, ends at
"He variableu. A real weight, in the range of -1 to +1,
R assigned to each state as it was done in the case of

paths. In analogy, there may exist multiple paths betwe eal grammars, and then this weight is made complex by

two states of a linear grammar. Whereas a particular strierplUItiIOIying (in the usual sense) with-+ i. Each event can
9 ' P Ncur either along the real axis or along the imaginary axis

i . "h the event plane. The events are defined to be elements
may be generated by different paths in linear grammars. ¢ o set{1,i} x ¥. An evento ¢ ¥ is denoted aso

Definition 4.2: The path mapping functiop : X Ui — if it occurs along the imaginary axis. Real occurrences

3 generates a string of real events by first concatenating %I}e denoted just by similar to what was done for real
the real events followed by reverse concatenation of the re Jammars

events corresponding to thg remaining imaginary event 'Definitio'n 4.4: The event cost of the LCFG is defined
For example, a path mapping ii(c;0kioeopi0q0r) = 5q 3 fynctior - ({1,i} x £)*xV — T such that/vy,, v, €

0j0LOp0rT40¢. _ . *

It follows from Definition (4.2) that, given a path in v, VU{ €2 Vw_e ({1:2} xZ), _ ~ _

the language, the generated string is obtained by the pat}gl) ”[‘_Tj’”k] iRe(ﬂfj) €0, 1)*_ 2 Re(”’jﬂ') < 1*_

mappingp(w). The objective is to construct a measure of ( ioj, o] = Im(7x;) € [0,1); 325 Tm(7i;) <1
(

A. Linear Grammar Measure Construction

Several concepts need to be clarified before embarki
on the construction of a measure. In finite state machin
a stateg; may be reached from a stage through different

the set of all such paths rather than the measure of strings! 93> v =4 if B, — oju € Py _
This is necessary for a general form of the Myhill-Nerode ioj, vi] = 1if oy — veo; € P;

2) @
3) 7[
4) 7
theorem to hold, which is central to the construction of the (5) 7le,ve] =1+

linear grammar measure.

Let Y ={z: 2z =a+ibanda € [0,1],b € [0,1]},
i.e.,, T is the closed unit square on the complex plane
Let a binary operatok : C' x C — C be defined asfa +
ib) * (¢ +id) = ac + ibd Va,b,c,d € R. The identity for
this operator isl + i sinceVz € C,z % (1 +4) = z and if
2z = a+ibwith a # 0 andb # 0, then3 z~! € C such that
zxz~1 = (1 +14). Specifically, if 2 = a + ib with a # 0
andb # 0, thenz=! = 1 4+,

The operatox can be extended as: C™*™ x C™*! —
C™x! as follows: if A € C™*™, B € C™*! then A B =
C € C™*!in the sense that;; = %7_, a;;, x by;. Further, if
A = A, +iA;, and B = B, + iB;,, where the pairs

(A,, B,) and (A;,,, B;»») denote the real and imaginary

parts of the matricegl and BB, respectively, it follows that
AxB=A.B, +1A;,Bim.

The identity for the above operation is(1 + ¢)I where
1 is the standard identity matrix of dimensienx n. Let
us denote the identity for the operation by:

I =1+

wheredx ¥ = 7« A=A VAe(C"™ ",

Remark 4.1:The inverse of a matrixd € C™*" under
the « operation, is given asd® = (A, +iAm,)f = A, 71 +
iA;, ! that is different from the standard inversé .
Notice that both real 4,) and imaginary 4;,,) parts of

12)

T[rw, vi] = T[T, v] * T[w, v
wherer € {1,i} x 3; w € ({1,i} x X)*; and
v, — T if T=0 andv, — vt if T=i0
Definition 4.5: The state transition cost of the LCHGs
defined as a function : V' xV — T such that/vy,v; € V,

mlog,v;] = Z Re(fr[w,vk])—i—iz

opEX: opE:
Jvp—opv; EP Jvg—vjor€P

I (#[k, 1))

(14)

Tkj

andmy; =0if {o € ¥ : v, — ovj0roc € ¥ : vy, —
vjo} N P= (. Then x n complex-valued state transition
costII-matrix is defined as:

11 712 Tin

21 T22 T2n
II=

Tnl  Tn2 Tinn

Definition 4.6: Let I';, be a linear grammar, initialized
at a statev, € V. The complex measure of every
singleton string sef) = {w} € 2L0%) is defined as:
w(Q) = 7(w,vg) * x(v). Then, the complex measure of
the sublanguagé (vi,v) C L(T'x) of all strings terminated
at the statey € V' is defined as:

D

w€EL(vg,v)

p(L(vg,v)) = lw, vi] | *x(v) (15)
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Complex measure of the language of the linear grammar V. EXAMPLE

I’} is defined as: Let a languagd. generate all strings of the typg'b™ :
e = p(L(Ty)) = ZN(L(”kv”)) (16) n € N over the alphabet = {a,b}. The non-regular
vel languageL can be generated by the grammar:— avqble
The language measure vector, denoted as = that can be rewritten asy — avy; andwvy — wvib. The
(11 po -+ pn]7, is called thep-vector. resulting7 matrix is of the form:
B. Computation of thegs-Vector Ti= {p 0 }
This subsection presents a procedure to formulate the 0 iq
complex measure of paths in the langudgé';,). The parameterp and ¢ can be identified from the experi-
, mental time series data of the system dynamics [9]. The
Ly = (UjUkJLJ) Uk €k matrix is then obtained as:
where the null event;, is defined as Rell= [ 8 18 } and TmIl= [ 0 8 }

e = { e if self loop at v;
() otherwise Assigning characteristic values (i.e., weights) of the two
The above expression formalizes the fact that the set &tatesv; andv, to bex; andx. respectively, the complex
paths from a state; is exactly equal to the union of the measure vector is evaluated as:
sets pf pgths obtain(_ed by looking at the first event and.then | a+pxe) +in
considering all possible legal paths thereafter. Hence, if the (L) = x2 4 i(x2 + qx1)
first event iso, and the current state changesg then

the set of all paths thereafter is exactly equalltp The VI. CONTROL UNDEREVENT UNOBSERVABILITY
expression is structurally identical to that given f0r"'S A This section presents future work on extension of state-
in [8] with the understanding that the evenf can be either based optimal and robust control [3] [2] that is achieved
real or imaginary. Hence, by selectively disabling controllable events to maximize the
. measure of the controlled plant language under the restric-
w(Ly) = M< (Uj%ij) Uk 5k> tion of all events being observable. It might be possible
4 to eliminate this restriction by making the state transitions
= W (Uj0k7Lj> + pler) due to unobservable events as imaginary. However, with
. i this modification, the generated language may become
N ;“(U’“ Ls) +x(vr) nonregular with a linear grammar. A detailed exposition
; follows.
- Z“(Uk ) * L)+ x(r) Let the plant be modelled as a DFSA =
! (Q,%,0,q1,A). The corresponding regular grammar is ob-
= ) mj * p(Ly) + x(ve) tained as['(qi,V,T,P) with V = Q and T = ¥ by
J Theorem 3.1. Further l&® C X be the set of unobservable

The first three steps in above equation follow from thevents, i.e.f) = {o € X : a is unobservable}. The set of
fact that if the first symbol for two paths is different, thenproduction rules is then modified as follows:
the pat'hs cannot be identical. However, the strings generated Yai,q5 € Q V(g — srq;) € P, if s, € Q
may still be the same. The fourth step follows from property ‘ ‘ A ,
. o _— s then replace(¢; — s,q;) by (¢; — g;s;)
(6) of the 7 function in Definition 4.4. The final step

trivially follows from the definition of the measure in 4.6. In accordance with Section IV, this modification implies
In vector form, the complex measufeis given by: that the unobservable events lead to imaginary transitions.

The modified set of production rules has both left and right
— — _ §
ml) = Hxp+X=(s-1I) *X§ derivations and hence the modified grammar is linear. Let
_ I — RelD) + i(I — ImII X us denote this operation asloring the regular grammar,
<( eIl +i( " )) * which defines the mapping aSol : REG x Q — LIN,
= (I —ReIl) 'ReX + i(I — ImIT) " 'ImX where REG is the set of regular grammars and LIN is the

- . . set of deterministic linear grammars. The properties of the
whereRe andIm refer to the real and imaginary parts.mappingCoI are as follows:

of the matrices, respectively; and existence of the matrix i . _ :
inverses is guaranteed by the following conditions: 1 C(_)I IS V\.'e.". defined which f.OHOWS from the algorith-
mic definition of the mapping;

> Re(r) <1; Y Im(fe) <1 V. 2) Q=2 = Col(T,,Q) =T, ie Colis identity if
J J there are no unobservable events;
A simple example is presented in the next section to 3) Colis one to one. Injectivity follows trivially from the
illustrate how the complex is computed for an.CFG. algorithmic definition. Howeve€ol is not surjective.
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Next the notion of ordered set operations on strings iwhose proofs are not presented here due to space limita-
introduced. tions.
Definition 6.1: Ordered difference of two strings and Theorem 6.1:colq(5;) = [0(5k)][Sk © Z][(S5x ©0(5k))"]
s9 Is the first string with the symbols occurring in the seconavhere.][.] denotes concatenation.
one deleted. Thus it is a mapping: ¥* x ¥* — ¥* Theorem 6.2:A system is observable if and only if
Definition 6.2: Ordered intersection of a string and a colq = identity V 3 € ?CUZ(FWQ).
subsetK of the alphabek is the strings; with the symbols
occurring inK deleted. Formally it is a mapping : ¥* x
K C ¥ — ¥*. Note that the same symbol is used to denote The major motivation for the work reported in this paper
both ordered difference and ordered intersection since tfife discrete event supervisory (DES) control of complex
case will be definitely clear from context. dynamical systems that cannot be represented by regu-
Definition 6.3: Reversal of a strings; is a strings, lar languages (equivalently, finite state automata). Toward
which is justs; read right to left. Formally it is a mapping achieving this goal, the paper presents a quantitative mea-

VIl. SUMMARY AND CONCLUSIONS

BLED RS 3 sure of non-regular languages, generateditiyar context
Definition 6.4: Observed component of a string de- free grammars (LCFG)which belong to the low end of
noted byd(o) is defined asb(c) = o © Q. Chomsky hierarchy [4]. It shows that the measure of regular

Physically, the observed component of a string generaté@guages proposed in [8] [7] can be obtained by its
by a regular grammar with a nonempty set of unobservab@€enerating regular grammar, without referring to states of
events is simply the string that is observed, which i¢he automaton. Then, the paper extends the signed real
different from the actual generated strin.is therefore Measure to a complex measure for the class of non-regular
a formal mapping) : ©* — X* for a givenQ and note for languages, generated HyCFG. The extended language
an empty(2, d is the identity map. measure is potentially applicable to quantitative analysis and

In both regular and linear grammars, there is exactly ongynthesis of DES control systems where the plant model of
variable and one terminal on the right hand side of each complex dynamical system is not restricted to be a finite
production rule. Trivial exceptions that may occur is takergtate machine. The paper has also discussed the issues of
care of by thetrim operation described in Remark 2.3.quantitative synthesis of optimal and robust control policies
This implies that, at any given time step, the derivatiotinder partial observation.

consists of a string of terminals and exactly one variable. Future research in this area includes generalization of
If we denote the derivation at the' step bys,, then the measure to a wider class of context free grammars and

for a regular grammag, = o1...0,¢; by successively beyond, with specific interest in Petri nets. In addition, the
application of production rules to the derivations, wheréssue of measuring paths rather than strings needs to be
oj € ¥ andg; € Q. In this case, an object consists of stringexplored in more details.

fragments and a single variable. The variable is replaced REFERENCES
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the last expression is related to the observed component no. 18, 1800-1808. _
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L . . . of discrete event supervisory control systerpplied Mathematical
point in a string (.c., the point at which new symbols  \odeling (2004), in press.
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the right is the sequential set of the unobservable events
occurring in the system up to the current step.

Pertinent results are summarized below as two theorems,
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