
Diagnosis of Discrete Event Systems in
Rules-based Model using First-order Linear

Temporal Logic
Z. Huang, S. Bhattacharyya V. Chandra S. Jiang R. Kumar

Department of ECE Department of Technology GM R&D Planning Department of ECE
University of Kentucky Eastern Kentucky University MC: 480-106-200 Iowa State University
Lexington, KY 40506 Richmond, KY 40475 Warren, MI, 48090 Ames, IA 50011

Abstract— We study diagnosis of discrete event systems
(DESs) modeled in the rule-based modeling formalism in-
troduced in [1], and applied in [5], [6] to model failure-
prone systems. An attractive feature of rule-based model is
it’s compactness (size is polynomial in number of signals).
A motivation for the work presented is to develop failure
diagnosis techniques that are able to exploit this compactness.
In this regard, we develop symbolic techniques for testing
diagnosability and computing a diagnoser. Diagnosability test
is shown to be an instance of 1

st order temporal logic model-
checking. An on-line algorithm for diagnoser synthesis is
obtained by using predicates and predicate transformers.
Keywords: Discrete event system, rules based model, diagnos-
ability, 1

st temporal logic model checking, on-line diagnoser,
predicates and predicate transformers

I. INTRODUCTION

Detection and isolation of failures in large, complex
systems is a crucial and challenging task. A failure is a
deviation of a system from its normal or required behavior,
such as occurrence of a failure event, or visiting a failed
state, or more generally, violating a design specification.
A stuck-close valve, decrease in the efficiency of a heat
exchanger, abnormal bias in the output of a sensor, and
leakage in pipelines are examples of events that can lead
to failures. Failure diagnosis is the process of detecting
and identifying such deviations in a system using the
information available through sensors. The problem of
failure diagnosis has received considerable attention in the
literature of reliability engineering, control, and computer
science; and a wide variety of schemes have been proposed.
Recently, it has also been studied in the framework of
discrete event systems (DESs) [10], [4], [11], [7]

In this paper, we study the failure diagnosis problem
for systems modeled in a rules based model [1], extended
to include faults [5], [6]. State variables and rules for
modifying their values are used to compactly model a DES.
The representation of a system with faults, in the rules based
modeling formalism, is polynomial in the size of signals
and faults. The compactness of this model, together with

This work was supported in part by the National Science Foundation un-
der the grants NSF-ECS-0218207, NSF-ECS-0244732 and NSF-EPNES-
0323379, and a DoD-EPSCoR grant from the Office of Naval Research
under the grant N000140110621. S. Jiang contributed to the work while
he was at the University of Kentucky.

its intuitive nature, makes it user-friendly, less error-prone,
more flexible, easily scalable, and provides canonicity of
representation for models of systems with faults. The moti-
vation of the work presented here is to develop techniques
for failure diagnosis that are able to exploit the compactness
of the model. In this regard, we develop techniques based on
1st-order linear temporal logic model-checking (for testing
diagnosability) and predicates and their transformers (for
on-line diagnoser synthesis).

We illustrate through various examples how the diagnos-
ability of DESs modeled using a rules based formalism
[1] prone to faults can be checked, and how an on-line
diagnoser for the system can be constructed.

The rest of the paper is organized as follows. In Section
2, the definitions of predicates, predicate transformers and
1st order LTL temporal logic are introduced. In Section 3,
diagnosability as a 1st order LTL temporal logic model-
checking is studied, and illustrated via an example. An
algorithm for on-line diagnoser is provided and illustrated
using an example in Section 4. Conclusion is provided in
Section 5.

II. NOTATION AND PRELIMINARIES

A. Predicates and their Transformers

A discrete event system, denoted G, is a 4-tuple G :=
(X,Σ, , X0), where X denotes the state set, Σ is the finite
event set, ⊆ X×Σ×X is the set of state transitions, and
X0 ⊆ X is the set of initial states. We use state variables to
represent the states and a finite set of conditional assignment
statements, called rules, to represent the state transitions.

The notation ~v is used to denote the vector of state
variables of G. The state space X of G equals the Cartesian
product of domains of all state variables, i.e., X :=∏n

i=1 D(vi), where D(vi) is the domain of vi. By definition
D(vi) is a countable set and can be identified with the set
of natural numbers N . We use predicates for describing
various subsets of the state space. Let P(~v) denote the
collection of predicates defined using the state variable
vector ~v, i.e., if P (~v) ∈ P(~v), then it is a boolean valued
map P (~v) : X → {0, 1}. The symbols true and false are
used for denoting predicates that hold on all and none of
the states respectively. With every predicate P (~v) ∈ P(~v),

we associate a set XP ⊆ X on which P (~v) takes the value
one. Thus the collection of predicates P(~v) has a one-to-
one correspondence with the power set 2X , and the names
predicates and state-sets can be used interchangeably. We
say that the predicate P (~v) holds on X̂ ⊆ X if X̂ ⊆ XP .

State transitions map a state to another state. Such
mappings are extended to set of states or predicates in a
natural way, and are known as predicate transformers.

Next we review the rule-based model [1] (which is a
specific assignment program model [9]) for representing
a DES G described above. The initial state set of G

is specified as an initial predicate, denoted I(~v), which
implies X0 = XI . The state transitions “ ” of G is
specified using a finite set of rules, also called conditional
assignment statements, of the form:

σ : [Cσ(~v)] ⇒ [~v fσ(~v)],

where σ ∈ Σ is an event, Cσ(~v) is a predicate, called
the enabling condition or the guard, and fσ : X →
X is a map defined on the state space. If no guard is
present, then true is treated as the guard. A conditional
assignment statement of the above type is enabled if the
condition Cσ(~v) holds. An enabled assignment statement
may execute. Upon execution, new values are assigned to
the state variables according to the map fσ and a state
transition on the event σ occurs. For simplicity, we assume
that if multiple assignment statements are simultaneously
enabled, only one of them is nondeterministically executed.
This assumption may be relaxed to allow concurrency of
execution.

The substitution predicate transformer can be used to
define the forward one-step reachable, fr, predicate trans-
formers for G. fr determines the “postcondition” after the
occurrence of a state transition for a given “precondition”.

For the assignment statement σ : [Cσ(~v)] ⇒ [~v fσ(~v)]
and a condition P (~v), it is formally defined as follows:
fr(P (~v), σ) := Cσ(f−1

σ (~v)) ∧ P (f−1
σ (~v)).

For Σ̂ ⊆ Σ, we define fr(P (~v), Σ̂) :=∨
σ∈Σ̂ fr(P (~v), σ). Finally, note that fr∗(P (~v), Σ̂)

denotes the set of states which are reachable from a state
in P (~v) by execution of zero or more transitions of events
in Σ̂. Clearly, fr∗ is useful in characterizing the forward
reachability.

Given f ∈ F and P (~v) ∈ P(~v), the restriction of f to
P (~v), denoted f |P (~v), is the predicate transformer defined
as: f |P (~v)(Q(~v)) := f(P (~v)

∧
Q(~v))

∧
P (~v),∀Q(~v) ∈

P(~v).

B. 1st order LTL & model checking

Propositional linear temporal logic (PLTL) [3] is an
extension of propositional logic (PL) by the temporal logic
quantifiers/operator {X,U, F,G,B}, called next time, un-
til, eventually, always, and before, respectively.

First-order linear temporal logic (FOLTL) [3] is obtained
by taking propositional linear temporal logic and adding to
it a First order language L. That is, in addition to atomic

propositions, truth-function connectives, and temporal op-
erators we now also have predicates, functions, individual
constants, and individual variables, each interpreted over
appropriate domain.

A first order language L consists of variable symbols,
function symbols and a set of predicate symbols. The
zero-ary function symbols comprise the subset of con-
stant symbols. Similarly, the zero-ary predicate symbols
are known as the proposition symbols. We also have the
quantifier symbols ∀ and ∃, which are applied to individual
variable symbols, using the usual rules regarding scope of
quantifiers, and free and bound variables.

The semantics of FOLTL is provided by a first order
linear time structure M = (S, x, L), where S is state set,
x : N → S is an infinite state sequence, and L associates
with each state s an interpretation L(s) of all symbols at
s over a domain D such that, for each global symbol w,
L(s)(w) = L(s′)(w), for all s, s′ ∈ S.

A formula p of FOLTL is valid if and only if for every
first order linear time structure M = (S, x, L) we have
M,x |= p. The formula p is satisfiable if and only if there
exists M = (S, x, L) such that M,x |= p.

III. DIAGNOSABILITY AS 1st ORDER LTL
MODEL-CHECKING

Diagnosability is the ability to infer about past oc-
currences of unobservable failure events from a bounded
number of observed events. We let ΣF ⊆ Σ denote the
set of fault events, and M : Σ ∪ {ε} → ∆ ∪ {ε} with
M(ε) = ε denote the event observation mask. Without loss
of generality, M(σ) = ε for all σ ∈ ΣF .

The diagnosability of DESs is defined in [11], as follows
(without loss of generality [7], we only consider a single
“failure type”):

Definition 1: A system G is said to be diagnosable with
respect to the observation mask M and the failure event set
ΣF if

(∃n ∈ N) (∀s ∈ L(G), sf ∈ ΣF) (∀v = st ∈
L(G), ||t|| ≥ n)
⇒ (∀w ∈ L(G),M(w) = M(v)) (∃u ∈
pr({w}), uf ∈ ΣF),

where L(G) is the set of all event-traces G can execute
starting from an initial state, sf , uf ∈ Σ denote the last
events in traces s, u ∈ Σ∗ respectively, and pr({w}) ⊆ Σ∗

is the set of all prefixes of w ∈ Σ∗.
Diagnosability requires that every failure event leads to
observations distinct enough to enable identification of the
failure within a finite delay.

Using predicate and the extended rule-base model, we
perform the diagnosis test as follows.

Algorithm 1: Consider G with state variables ~v, event set
Σ, and model given by:
Initial condition: I(~v) ∈ P(~v)
Event occurrence rules:
∀σ ∈ Σ : [Cσ(~v)] ⇒ [~v fσ(~v)].
The set of fault events is denoted by ΣF ⊆ Σ, and the

events are partially observed through a event observation
mask M : Σ∪{ε} → ∆∪{ε} with M(ε) = ε, and M(σ) = ε

for each σ ∈ ΣF .

• Augment the state variables by a boolean variable, F ,
to identify whether or not a fault happened in past. The
augmented state variable is given by, ~x = (~v, F). The
augmented system model is given by,
Initial condition: I(~x) = I(~v) ∧ [F = 0]
Event occurrence rules:
∀σ ∈ ΣF : [Cσ(~v)] ⇒ [~x (fσ(~v), 1)]
∀σ 6∈ ΣF : [Cσ(~v)] ⇒ [~x (fσ(~v), F)]
Denote the set of states that are visited after a fault
has happened in past by the predicate, B(~x) =
B((~v, F)) := [F = 1].

• Perform a “masked synchronous composition” of aug-
mented G with itself to obtain the system Gd (here ~x

and ~y are used to denote the state-variables of the two
copies of the augmented G):
Initial condition: I(~x)

∧
I(~y).

Event occurrence rule:
∀(σ, σ′) ∈ [(Σ ∪ {ε})2 − {ε, ε}] s.t. M(σ) = M(σ′):
[CM(σ)(~x) ∧ CM(σ′)(~y)] ∧ [σ, σ′ 6= ε]
⇒ [(~x, ~y) (fM(σ)(~x), fM(σ′)(~y))]
[CM(σ)(~x)] ∧ [σ 6= ε, σ′ = ε]
⇒ [(~x, ~y) (fM(σ)(~x), ~y)]
[CM(σ′)(~y)] ∧ [σ = ε, σ′ 6= ε]
⇒ [(~x, ~y) (~x, fM(σ′)(~y))]

• Using 1st order linear-time temporal logic model
checking check whether there exists an “ambiguous”
cycle by model-checking the following formula in Gd:

∃ ~x0, ~y0[EGF (~x = ~x0 ∧ ~y = ~y0 ∧ B(~x0) ∧ ¬B(~y0))].

Then G is diagnosable if and only if the above formula
does not hold in Gd.

The formula to be model-checked checks the for exis-
tence of a state pair (~x0, ~y0) ∈ (X × {0, 1})2 with the
property that

• ~x0 is a “faulty” state: B(~x0) holds,
• ~y0 is a “non-faulty” state: ¬B(~y0) holds,
• (~x0, ~y0) is visited infinitely often along some state

trajectory starting from the initial condition I(~x)∧I(~y):
EGF~x = ~x0∧~y = ~y0, i.e., exists a path (E) such that
globally (G) along each state of the path, in future (F)
it holds that ~x = ~x0 and ~y = ~y0.

Whenever the above formula is satisfiable, there exists
a pair of faulty and non-faulty traces in G of arbitrary
long length that are indistinguishable, and the system is
not diagnosable. The model-checking software tools such
NuSMV [2] can be used to check the satisfiability of the
above formula in Gd.

Example 1: In order to illustrate our result, we give
a simple example which consists of a traffic monitoring
problem of a mouse in a maze. The maze, shown in
Figure 1, consists of four rooms connected by various one-
way passages, where some of them have sensors installed to

: observable

cat 1

food

2

3
mouse

0

: unobservable

Fig. 1. Mouse in a maze

detect the passing of the mouse. There is also a cat which
alway stays in room 1. The mouse is initially in room 0,
and it can visit other rooms by using one way passages, and
it never stays at one room forever. A failure occurs when
the mouse visits the room occupied by the cat. Our task
is to monitor the behavior of the mouse by observing the
sensor signals to detect whether or not a failure occurred.

The above problem can be formulated as a failure diagno-
sis problem in the rules based model setting. The system to
be diagnosed, G, has a single state variable v denoting the
location of the mouse in the maze, and it can take the values
in the set {0, 1, 2, 3}; the initial state is I(v) = [v = 0];
the event set is Σ = {o1, o2, o3, u1, u2, u3}; the event
observation mask M is given as M(ui) = ε and M(oi) = oi

for 1 ≤ i ≤ 3. The rules based model of mouse in a maze
is shown in Figure 2. Since a fault occurs when room 1 is

1) Initial condition: I(v) = [v = 0].
2) Event occurrence rules:

o1 : [v = 0] ⇒ [v 3]
o2 : [v = 3] ⇒ [v 0]
o3 : [v = 2] ⇒ [v 3]
u1 : [v = 0] ⇒ [v 1]
u2 : [v = 1] ⇒ [v 2]
u3 : [v = 3] ⇒ [v 2]

Fig. 2. Rules based model of mouse in a maze

visited, ΣF = {u1}, where note that u1 is an unobservable
event.

In order to verify diagnosability, we augment the state
variable v by the binary valued variable F to obtain ~x :=
(v, F). Next using the state variable ~y = (u,E) for the
second copy of G, we compute the masked composition
of augmented G with itself to obtain Gd. Note that the
observable events o1, o2, o3 execute synchronously, whereas
the unobservable events u1, u2, u3 occur asynchronously.

The NuSMV tool allows computation of masked syn-
chronous composition. Using the NuSMV [2] tool for
model-checking the diagnosability condition we verified
that the mouse in a maze is diagnosable. Since a rules based
model provides a compact model (in contrast, an automaton
model enumerates all the states), we hope that the symbolic

techniques developed in this paper will allow for the diag-
nosability verification of industrial size problems.

Further, we can use the diagnosability algorithm de-
veloped above together with the optimal sensor selection
algorithm given in [8] to obtain an optimal observation mask
ensuring the system diagnosability. Using this approach, we
determined that the event o3 need not be observable for the
system to remain diagnosable.

IV. ON-LINE DIAGNOSER USING PREDICATES & THEIR

TRANSFORMERS

We embark upon the on-line computation of a di-
agnoser once the system has been determined to be di-
agnosable. Again as with the test for diagnosability, we
develop symbolic methods for the on-line computation of
the diagnoser.

The diagnoser maintains two predicates: one, denoted
Ek(~x) ∈ P(~x), is an estimate of the possible states
following the occurrence of kth observable event, and the
other denoted Nk(~x) ∈ P(~x) is a subset of Ek(~x) that is
reached along trajectories that never visit a state in B(~x),
i.e., along those non-faulty trajectories where ¬B(~x) holds
invariantly.

Initially, when no observation has occurred, i.e., when
k = 0,

E0(~x) = I(~x), N0(~x) = I(~x) ∧ ¬B(~x).

Upon the occurrence of the (k+1)th observable event (k ≥
0), the pair (Ek(~x), Nk(~x)) is updated to obtain the pair
(Ek+1(~x), Nk+1(~x)). Whenever Nk(~x) is a strict subset
of Ek(~x), and Nk(~x) 6= false, it means that the system
could have executed some trajectories that visited a faulty
state in past (since Ek(~x) 6= false), and also some other
trajectories (that are indistinguishable to the former) that
never visited a faulty state in past (since Nk(~x) 6= false).
In other words, in such a case, there exists an ambiguity as
to whether or not a fault occurred in past. Such an ambiguity
does not exist if

[Ek(~x) 6= false] ∧ [Nk(~x) = false],

which means that along all trajectories the system could
have executed, a faulty state was visited in past. A fault is
reported by the diagnoser at such a point.

Algorithm 2:

• Initiation step:
E0(~x) = I(~x)
N0(~x) = I(~x)

∧
¬B(~x)

• Iteration step:
Upon (k + 1)th observation δ ∈ M(Σ) − {ε}:
Ek+1(~x) = frM−1(δ)[fr∗

M−1(ε)∩Σ(Ek(~x))]

Nk+1(~x) =
(fr|¬B(~x))M−1(δ)[(fr|¬B(~x))∗

M−1(ε)∩Σ(Nk(~x))]
Declare a fault if:
[Ek+1(~x) 6= false] ∧ [Nk+1(~x) = false].

In the iteration step, Ek+1(~x) is computed using a
reachability computation starting from Ek(~x) on sequences

of unobservable events in M−1(ε)∩Σ followed by a single
event in M−1(δ) (since the (k+1)th observation of δ results
from the execution of a sequence of unobservable events
in M−1(ε) ∩ Σ followed by the execution of an event in
M−1(δ)). Nk+1(~x) is computed in a similar way except the
forward reachability predicate transformer fr is replaced by
it’s restriction to ¬B(~x), i.e., by (fr|¬B(~x)).

Remark 1: The computation of Nk(~x) may alternatively
be performed by considering the fault-free subsystem in
which the guard condition for each faulty event in ΣF has
been set to FALSE. Then Nk(~x) for the system with faults
is the same as Ek(~x) of the fault-free system:

N0(~v) = fr∗M−1(ε)∩ΣI(~v);

Nk+1(~v) = frM−1(δk)[fr∗M−1(ε)∩Σ(Nk(~v))],

where δk ∈ M(Σ) − {ε} denotes the kth observation.
We illustrate the above algorithm for on-line computation

of the diagnoser using the example of mouse in a maze
given earlier.

Example 2: Refer to the example of Section III. We can
compute the diagnoser as follows:

• k = 0: Since I(~x) = [v = F = 0] and B(~x) = [F =
1], we set

E0(~x) = [v = F = 0], N0(~x) = [v = F = 0].

• k = 1: There are three observable events o1, o2, o3 ∈
Σ. If the first observation is o1, then

E1(~x) = [v = 3, F = 0], N1(~x) = [v = 3, F = 0].

If the first observation is o2, then

E1(~x) = false, N1(~x) = false.

(This means o1 as first observation is not possible.) If
the first observation is o3, then

E1(~x) = [v = 3, F = 1], N1(~x) = false.

This means that a fault has occurred sometimes in past.
• k = 2: Suppose the first observation (k = 1) is o1. If

the next observation is o1, then

E2(~x) = false, N2(~x) = false.

(This means the observation sequence o1o1 is not
possible.) If the next observation is o2, then

E2(~x) = [v = 0, F = 0] = E0(~x),

N2(~x) = [v = 0, F = 0] = N0(~x).

If the next observation is o3, then

E2(~x) = [v = 3, F = 0], N2(~x) = [v = 3, F = 0].

Next suppose the first observation (k = 1) is o2.
Then since E1(~x) = N1(~x) = false, it follows that
E2(~x) = N2(~x) = false.

Finally suppose the first observation (k = 1) is o3. If
the next observation is o1, then

E2(~x) = false, N2(~x) = false.

(This means the observation sequence o3o1 is not
possible.) If the next observation is o2, then

E2(~x) = [v = 0, F = 1], N2(~x) = false.

If the next observation is o3, then

E2(~x) = [v = 3, F = 1], N2(~x) = false.

In both the above cases, we know that a fault has
occurred in past.

• k = 3: After two observations the only predicate
pair that is not “re-visited” is the one following the
observation sequence o3o2:

E2(~x) = [v = 0, F = 1], N2(~x) = false.

So we examine this predicate pair. If the next obser-
vation is o1, then

E3(~x) = [v = 3, F = 1], N3(~x) = false.

If the next observation is o2, then

E3(~x) = false, N3(~x) = false.

(This means the observation sequence o3o2o2 is not
possible.) If the next observation is o3, then

E3(~x) = [v = 3, F = 1], N3(~x) = false.

Thus the third iteration step does not introduce a
predicate pair that has never been “visited” before, and
so there is no need to iterate further. (Said another way,
further iterations will yield a predicate pair that has
already been computed above.)

In this case, the on-line computation of the three steps
considered above yields a off-line diagnoser that can be
represented as an automaton as shown in Figure 3. In

o1

o2

o3

o2

o3

o2 o1 o3

o1

o2

o1 o2 o3

o3

o1

, ,

N1(x)=false

N2(x)=false

E2(x)=[v=0,F=1]

N1(x)=false

E1(x)=false

E0(x)=[v=F=0]
N0(x)=[v=F=0]

E1(x)=[v=3,F=0]
N1(x)=[v=3,F=0]

E1(x)=[v=3,F=1]

Fig. 3. Diagnoser for mouse in a maze

Figure 3, when there is a transition from a predicate pair

[E(~x) 6= false] ∧ [N(~x) 6= false] to the predicate pair
[E(~x) 6= false]∧[N(~x) = false], a fault is reported by the
diagnoser. Further since the predicate pair [E(~x) = false]∧
[N(~x) = false] represents an impossibility, the diagnoser
can be reduced by restricting it to those predicate pairs that
are of the type [E(~x) 6= false] ∧ [N(~x) 6= false]. This
restricted diagnoser is shown in Figure 4. Any observation
sequence that leads to being outside the restricted diagnoser
automaton indicates that a fault must have occurred in past.

o2

o3

o1

E1(x)=[v=3,F=0]
N1(x)=[v=3,F=0]

E1(x)=[v=F=0]

N1(x)=[v=F=0]

Fig. 4. The reduced diagnoser for mouse in a maze

V. CONCLUSION

The rules based modeling formalism of [1] has been
used to models discrete event systems prone to failures.
Stuck-signal faults, and system/equipment faults can be
easily modeled in the rules based modeling formalism.
Symbolic computation based algorithms for checking the
diagnosability of DESs using 1st order model-checking
and for on-line diagnoser synthesis using predicates and
predicate transformers have been developed. The advan-
tage of using rule-based model is it’s compactness since
it uses state-variables to represent states. The number of
rules in the rule-based model is polynomial in number of
state variables. Symbolic methods allow for failure analysis
without exhaustively performing a reachability of the entire
state space. Plus, software tools such as NuSMV exist
for performing 1st-order model-checking for systems with
finite/bounded state-space.

REFERENCES

[1] V. Chandra and R. Kumar. A event occurrence rules based compact
modeling formalism for a class of discrete event systems. Mathe-
matical and Computer Modeling of Dynamical Systems, 8(1):49–73,
2002.

[2] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, and
M. Pistore. NuSMV 2: An opensourse tool for symbolic model
checking. In Proccedings of International Conference on Computer-
Aided Verification, Copenhagen, Denmark, July 2002.

[3] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science. Elsevier Science
Publishers, 1990.

[4] L. E. Holloway and S. Chand. Distributed fault monitoring in
manufacturing systems using concurrent discrete-event observations.
Integrated Computer-Aided Engineering, 3(4):244–254, 1996.

[5] Z. Hunag, V. Chandra, S. Jiang, and R. Kumar. Modeling discrete
event systems with faults using a rules-based modeling formalism.
In Proccedings of IEEE Conference on Decision and Control, pages
4012–4017, Las Vegas, NV, December 2002.

[6] Z. Hunag, V. Chandra, S. Jiang, and R. Kumar. Modeling discrete
event systems with faults using a rules-based modeling formal-
ism. Mathematical and Computer Modeling of Dynamical Systems,
9(3):233–254, 2003.

[7] S. Jiang, Z. Huang, V. Chandra, and R. Kumar. A polynomial
time algorithm for diagnosability of discrete event systems. IEEE
Transactions on Automatic Control, 46(8):1318–1321, 2001.

[8] S. Jiang, R. Kumar, and H. E. Garcia. Optimal sensor selection for
discrete event systems under partial observation. IEEE Transactions
on Automatic Control, 48(3):369–381, 2003.

[9] R. Kumar, V. K. Garg, and S. I. Marcus. Predicates and predicate
transformers for supervisory control of discrete event systems. IEEE
Transactions on Automatic Control, 38(2):232–247, February 1993.

[10] F. Lin. Diagnosability of discrete event systems and its applica-
tions. Discrete Event Dynamic Systems: Theory and Applications,
4(1):197–212, 1994.

[11] M. Sampath, R. Sengupta, S. Lafortune, K. Sinaamohideen, and
D. Teneketzis. Diagonsability of discrete event systems. IEEE
Transactions on Automatic Control, 40(9):1555–1575, September
1995.

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrM17.4
	Page0: 5114
	Page1: 5115
	Page2: 5116
	Page3: 5117
	Page4: 5118
	Page5: 5119

