
Automatic Synthesis of Multiple Place Resource Models with Petri Nets

Luca Ferrarini, Senior Member, IEEE, and Luigi Piroddi
Dipartimento di Elettronica e Informazione

Politecnico di Milano
Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)
{ferrarin,piroddi}@elet.polimi.it

Abstract −−−− The paper focuses on the correct representation of
shared resources in Petri net models of automated manufac-
turing systems, in the presence of concurrent independent
operations, such as assembly and disassembly ones. In par-
ticular, an original multiple-place model is specifically derived
and a constructive algorithm is proposed for the automatic
synthesis of the resource model. The algorithm computes the
number of resource places for each resource, as well as their
connections to the recipes’ transitions. Proper necessary condi-
tions of “well-definiteness” are introduced for the partial
models that are incrementally defined by the user.

I. INTRODUCTION
The recent years have witnessed a considerable effort in

the development of Petri net based formal design method-
ologies for the modeling and control of automated manufac-
turing systems [1-7]. Particularly worth mentioning are the
works [5-6], where a classic top-down approach for the spe-
cification of operations and recipes is complemented with
an incremental approach for the inclusion of constraints and
resources. Bottom-up approaches, based on the merging or
aggregation of sub-nets, have also been considered. Typi-
cally, strongly connected state machines are employed in
these approaches, see e.g. the Resource Control Nets devel-
oped in [1, 4] and the Elementary Control Tasks of [7].

In all these methodologies, system resources are usually
represented with single places, with one or more tokens [4,
5, 8]. More specifically, the resource allocation is repre-
sented by arcs directed from the resource place to the begin
transitions of the corresponding operations, while arcs
directed from the end transitions of operations to the re-
source place are used to describe the resource release.
Though adequate in many situations, such a modeling
scheme presents some limitations in the case of complex
concurrent operations. Consider for example a Petri net
model representing the synchronization between two opera-
tions o1 and o2, followed by a third operation o3 (Fig. 1.a).
The three operations require the use of the same resource r1
and o1 and o2 can be executed independently. A typical
single place resource model would look as the one in
Fig. 1.b, where k is the marking of the resource place and α,
β, γ are the arcs’ weights. The net of Fig. 1.b is easily
shown to be not live, regardless of the values of α, β, γ and
k (assume that α ≤ β; then a repeated execution of o1 will
eventually result in a deadlock state). To avoid this, either
the representation of o1 and o2 has to be simplified, e.g.
representing them as a unique joint operation, or further
constraints must be introduced in the model to impose a

correct behavior of the resource allocation mechanism, e.g.
forcing an actuation order for o1 and o2.

o3

o1 o2

r1 k

o1 o2 α
β

γo3

 (a) (b)
Fig. 1 Resource allocation example

This example is representative of relevant modeling pro-
blems, such as complex assembly/disassembly operations
involving different parts from separate independent proc-
esses, common in manufacturing systems. The present paper
introduces a modeling technique for the representation of
shared resources, which extends the classical scheme previ-
ously recalled, and allows the modeling of complex resour-
ce allocation mechanisms. Multiple places may be required
to model a single resource. A constructive algorithm is pro-
posed (Sect. III) for the automatic synthesis of a correct
resource model. In order to reject unfeasible requests, the
concept of well-defined resource model is introduced (Sect.
IV). Briefly, the algorithm ensures that given a correctly
defined recipe, each added resource constraint (considered
individually) preserves the net’s basic properties. Notice
that this guarantees only the representation correctness of
the allocation/release mechanism for each resource, while it
does not automatically avoid deadlocks resulting from
circular wait conditions involving two or more resources.
For the last purpose, the application of a deadlock preven-
tion algorithm is mandatory. An FMS example is finally
discussed in Sect. V to validate the approach.

II. MODELING OF OPERATIONS AND RECIPES
Let SO = {o1, o2, ..., oNO} be the set of NO operations per-

formed by the process to be modeled. Each operation must
use at least one of the Nr resources in the set Sr = {r1, r2, ...,
rNr}. For each resource, the number of available units (re-
source capacity) is also specified. Some resources may be
shared among different operations, giving rise to possible
deadlock situations. Notice that a resource may be used by
consecutive operations, without intermediate release. To
specify complete production tasks, involving several, suita-
bly connected and synchronized operations, a set SR = {R1,
R2, ..., RNR} of NR recipes is also introduced. Only recipes
without recirculating paths are considered in the present

work. A formal definition of these specifications will be
developed in the following using Petri nets (PN) (see e.g.
the review paper [9] for details on PN’s). The PN model for
Rj will be denoted NRj.

Similarly to what is done in [3], each operation oi used in
the recipe Rj is modeled with an operation place (OP) poij

(marked when operation oi is in execution), a begin ope-
ration transition (BOT) tboij and ki end operation transitions
(EOT) te1oij, ..., tekioij (see Fig. 2). Extension to multiple
BOT’s is straightforward. Sequential connections are real-
ized by means of connection places (CP), which model the
intermediate state in a sequence of two operations, as de-
picted in Fig. 3. Connection places are introduced to pre-
serve the one-transition-one-event paradigm, though the
resulting models can be shown to be completely equivalent
to classical ones with operation and resource places only.
To account for the “beginning” and “end” of recipe Rj, a
begin recipe transition (BRT) tbRj and kj end recipe transi-
tions (ERT) te1Rj, ..., tekjRj must be added to the recipe model
(see Fig. 4). Places in Fig. 4 are also CP’s.

tboij

te1oij tek1oij
...

poij

tekoij

tbomj

tbRj

tbomj

temoij

tekRj

 Fig. 2 OP Fig. 3 CP Fig. 4 BRT and ERT

The above modeling rules represent mere constraints for
the representation of connection structures, and do not gua-
rantee the correctness of the recipe model. For this reason, a
“well-definiteness” condition must be introduced for the
recipe model. For this purpose, with reference to a recipe
model NRj, consider the augmented net NRj’, obtained by
adding an augmentation place (AP) p0j, as shown in Fig. 5.

tbRj

tek1Rj

...

...
tekjRj

p0j

Fig. 5 Augmented recipe model

Definition 1 — Well-defined recipe model
A recipe model NRj is said to be well-defined if its aug-

mented version NRj’ is live and safe. �

Lemma 1 — Let NRj be a well-defined recipe model.
Then, its augmented version NRj’ is reversible.

�

Proof. Initially, only tbRj is enabled, and the AP is emp-
tied when it fires. By the liveness assumption, the AP can

always be marked again from any reachable state (with one
token only, since NRj’ is safe). Suppose, ab absurdo, that
not all OP’s and CP’s are left unmarked when this happens.
Then, the reached marking would be strictly greater than the
initial marking and the net would be unbounded.

�

Definition 2 — Recipe execution sequence
With reference to a recipe model NRj a firing sequence

starting with tbRj, ending with a tekRj and containing only one
tbRj is termed a recipe execution sequence (RES).

�

The absence of deadlocks in NRj is necessary to guarantee
the possibility to complete the recipe. Reversibility is also a
necessary property to ensure that the initial state of the reci-
pe model can always be recovered after a RES. Finally,
boundedness implies that there cannot be reachable states
with a marking strictly greater than that of the initial state
(with only the AP marked), which would allow the execu-
tion of operations when the recipe is inactive.

Lemma 2 — Let NRj be a well-defined recipe model.
Then, all its transitions fire at most once in a RES.

�

Proof. Suppose, ab absurdo, that transition t can fire
twice. In the absence of recirculating paths, the enabling of t
does not depend on the marking of the places in t•. Then,
there exists a reachable marking in which the same places
are marked with two tokens, violating the safeness assump-
tion on NRj’. �

The overall recipe model NR is the composition of all the
recipe models, NR = NR1 ° … ° NRNR, where the symbol ‘°’
denotes the transition synchronization operator.

III. MODELING OF RESOURCES
Resource usage is typically modeled by introducing one

resource place (RP) for each resource, initially marked with
the resource availability, and connected with outgoing
[incoming] arcs to BOT’s [EOT’s] associated to operations
using the resource [8]. If the resource is to be retained be-
tween subsequent operations, only the first BOT and the last
EOT of the sequence are connected to the RP. However,
multiple RP’s may be needed to describe the concurrent
usage of a single resource by different operations, as in
assembly/disassembly operations. For example, resource r1
in Fig. 6b has been modeled with two RP’s, pr11 and pr12,
since it is used in concurrent mode by two independent
parallel branches. Notice that resource r3 in Fig. 6a is not
modeled correctly, because it is allocated before an “alter-
native” connection, but released only in one of the alterna-
tive branches. In Fig. 6b, resource r4 is not modeled cor-
rectly, since the RP pr4 turns out to be unbounded.

A resource that is held throughout the execution of multi-
ple operations, from a transition tboi to a transition tekmom,
must be used in all elementary paths between the same

transitions, denoted ep(tboi,tekmom). Therefore the notion of
macro-operation is introduced.

Definition 3 — Macro-operation
With reference to a well-defined recipe model NRj, the set

of all elementary paths from tboi to tekmom (if any exist) de-
fines a macro-operation M = {ep(tboi,tekmom)1, …, ep(tboi,
tekmom)p}. The begin [end] transition tboi [tekmom] of M is de-
noted tbM [teM]. The support ||M|| of a macro-operation M is
the set of all nodes belonging to elementary paths in M.

�

tbo2

teo1

tbo1

teo2

pr1 pr2

pr3

tbo3

teo3

pr4 pr11 pr12 pr2

pr3

tbo2

teo2

tbo3

teo3

tbo1

teo1

(a) (b)
Fig. 6 Allowed and forbidden resource allocations

By definition, there cannot be two distinct macro-
operations with the same initial and final transitions.

Definition 4 — Alternative macro-operations
With reference to a well-defined recipe model NRj, let M1

and M2 be two distinct macro-operations (i.e. either
tbM1 ≠ tbM2 or teM1 ≠ teM2, or both). M1 and M2 are said to be
alternative macro-operations iff there does not exist any
RES, which contains more than one transition in {tbM1, tbM2}
and more than one transition in {teM1, teM2}.

�

Notice that any two macro-operations M1 and M2 such
that teM1 and teM2 are different EOT’s of the same operation,
are alternative by construction. It is important to group
alternative macro-operations which are also partially over-
lapping, since an inconsistent model would be obtained if
such macro-operations were not to use the same resource
(see e.g. resource r3 in Fig. 6a). To this end, the concept of
complete set of alternative macro-operations is introduced.

Definition 5 — Complete set of alternative macro-op.s
With reference to a well-defined recipe model NRj, a set S

of alternative macro-operations is said to be complete iff:
i. in any RES, the presence of a tbMi [teMi], with Mi∈S,

implies the presence of one (and only one) teMj [tbMj],
with Mj∈S;

ii. there does not exist a subset of S such that (i) holds.
�

Def. 5 implies that in any RES either no tbMi nor teMi are
fired, for all Mi∈S, or the tbMi of one macro-operation Mi∈S
and the teMj of one macro-operation Mj∈S are fired, in this

order.

Definition 6 — Independent macro-operations
With reference to a well-defined overall recipe model NR,

let M1 and M2 be two macro-operations such that
||M1||∩||M2|| = ∅. M1 and M2 are said to be independent
macro-operations iff:
i. there does not exist any ep(x1, x2) or ep(x2, x1),

x1∈||M1||, x2∈||M2||, or
ii. the only paths between nodes of ||M1|| and ||M2|| either

all contain ep(teM1, tbM2) or ep(teM2, tbM1). �

The following lemma 3 proves that, if one of two inde-
pendent macro-operations is started, its completion is not
constrained by the activation of the other one.

Lemma 3 — With reference to a well-defined overall
recipe model NR, let M1 and M2 be two independent macro-
operations. Then, if tbM1 is fired, the firing of transition teM1

is not constrained by the firing of tbM2. �
Proof. Suppose that M1 and M2 satisfy condition (i) of

Def. 6. Then, it is not possible to modify the enabling con-
dition of any transition in ||M1||, by changing the marking of
places in ||M2|| or by firing transitions in ||M2||. Suppose now
that M1 and M2 satisfy condition (ii) of Def. 6. Then, if the
only paths between nodes of ||M1|| and ||M2|| all contain
ep(teM1, tbM2), there do not exist paths from nodes of ||M2|| to
nodes of ||M1||, and teM1 is not constrained by the firing of
tbM2. In the other case, the only paths between nodes of ||M2||
and teM1 all contain tbM1, which is fired by assumption.

�

Notice that two independent macro-operations M1 and M2
may be alternative. Independent macro-operations subject
to condition (ii) of Def. 6 are strictly sequential. Consider
now the problem of associating macro-operations to re-
sources. With reference to the overall recipe model NR, let
Mrq be the set of all macro-operations which require the
resource rq throughout the whole execution of their opera-
tions, such that there does not exist a macro-operation in the
set, whose support is strictly contained in another one.

Lemma 4 — Let M1∈Mrq. Then ∃/ M2∈Mrq such that:
i. tbM2 ≠ tbM1 and tbM2∈||M1||, or
ii. teM2 ≠ teM1 and teM2∈||M1||. �

Proof. Suppose, ab absurdo, that there is a macro-opera-
tion M2 such that condition (i) is verified. Then construct all
the elementary paths ep(tbM1,teM2) given by the concatenation
of all the elementary paths ep(tbM1,tbM2) in M1, with all the
elementary paths ep(tbM2,teM2) in M2. Such elementary paths
ep(tbM1,teM2) require the resource rq throughout their whole
execution. Therefore, there would exist another macro-
operation M3∈Mrq, with tbM3 = tbM1 and teM3 = teM2, such that
||M3|| ⊃||M2||, which is not compatible with the definition of
set Mrq. A similar line of proof can be adopted to prove that

∃/ M2∈Mrq fulfilling condition (ii).
�

Based on these newly introduced concepts the following
Resource Definition Algorithm (RDA) can be devised to
model the resource usage:
i. With reference to the overall recipe model NR, divide

the set Mrq in all (not necessarily disjunct) sub-sets U n
rq,

Mrq = ∪
n=1

p
 U n

rq , such that each U n
rq is a complete set of

alternative macro-operations.
ii. Partition the set Urq = {U 1

rq, U
2

rq, ..., U
p

rq} in sub-sets W u
rq

such that macro-operations belonging to different
sub-sets W u

rq are independent, and mutually exclusive
with respect to the usage of resource rq.

iii. Let Nrq = ∏
u=1

t

 | W u
rq |, where | · | is the cardinality opera-

tor. Let C s
rq, s = 1, ..., Nrq, be the possible t-ples <Us1

rq ,
..., U st

rq > of elements Usu
rq , s.t. Usu

rq ∈W u
rq, u = 1, ..., t.

iv. Represent resource rq with Nrq RP’s prqs, s = 1, ..., Nrq,
each initially marked with a number of tokens equal to
the resource capacity. Connect prqs with outgoing [in-
coming] arcs to all the initial BOT’s [final EOT’s] of
the macro-operations belonging to the t elements Usu

rq ,
u = 1, ..., t, in C s

rq, s = 1, ..., Nrq.

Notice that a macro-operation cannot belong to different
W u

rq, whereas it can belong to multiple U n
rq. Macro-opera-

tions belonging to different U n
rq in the same W u

rq can use
concurrently the resource rq. On the other hand, macro-
operations in different W u

rq are in mutual exclusion with
respect to rq and therefore must be completely distinct. The
effect of RDA are summarized in Def. 7.

Definition 7 — Specification model for resource rq
The model for resource rq is described by an acyclic

marked PN Nrq = (Pq, Tq, Wq, mq), where:
i. Pq = {prqs}, s = 1, ..., Nrq, being the set of Nrq RP’s asso-

ciated to resource rq;
ii. Tq = {t | t = tbMi ∀Mi∈Mrq}∪{t | t = teMi, ∀Mi∈Mrq};
iii. Wq(prqs, tbMi) = 1 iff Mi∈Usu

rq and Usu
rq is contained in C s

rq,
where s = 1, ..., Nrq, j = 1, ..., NR, otherwise
Wq(prqs,tbMi)=0; Wq(teMi, prqs) = 1 iff Mi∈Usu

rq and Usu
rq is

contained in C s
rq, where s = 1, ..., Nrq, j = 1, ..., NR, oth-

erwise Wq(teMi,prqs)=0;
iv. mq(prqs) = crq, where crq is the capacity of rq. �

The overall resource model Nr is obtained by collecting
all the single resource models in a single net by means of
transition fusion:Nr = Nr1 ° Nr2 ° … ° NrNr .

IV. WELL-DEFINED RESOURCE MODEL
A minimum requirement for the formal correctness of the

resource model is that whenever a resource is allocated to a
recipe for one or more operations, the recipe cannot end
without releasing the resource.

Definition 8 — Well-defined resource model
Let NR = NR1 ° ... ° NRNR be an overall recipe model,

where all the recipe models NRj, j = 1, ..., NR, are well-
defined, and NR’ = NR1’° ... ° NRNR’ its augmented version. A
resource model Nrq is said to be well-defined iff the compo-
sed model NR’°Nrq, with AP’s and RP’s initially marked
with one token each, is live, safe and reversible. �

For example, the incorrect modeling of r3 in Fig. 6a
would result in a deadlocked and non reversible sub-net,
whereas place pr4

 is unbounded in Fig. 6b, so that safeness
and reversibility would be lost.

Lemma 5 — Let NR = NR1 ° ... ° NRNR be an overall recipe
model, where all the recipe models NRj, j = 1, ..., NR, are
well-defined. Let a resource model Nrq be constructed for
resource rq according to RDA. Then:
i. Any two distinct macro-operations Mk, Ml∈Mrq, such

that Mk, Ml∈Um
rq, are connected to the same RP’s.

ii. Any two distinct macro-operations Mk, Ml∈Mrq, such
that Mk∈Um

rq, Ml∈U n
rq, and Um

rq∈W i
rq, U n

rq∈W j
rq, i ≠ j, are

connected to at least one common RP.
iii. Any two distinct macro-operations Mk, Ml∈Mrq, such

that Mk∈Um
rq, Ml∈U n

rq, m ≠ n, Mk, Ml∉Um
rq∩U n

rq, and Um
rq,

U n
rq∈W i

rq, are not connected to any common RP.
�

Proof.
i. By construction, a RP is either connected with all the

macro-operations in Um
rq or with none of them.

ii. By construction, there exists at least one t-ple C s
rq which

contains both Um
rq and U n

rq. Since each t-ple is associated
with a RP, all the macro-operations belonging to Um

rq

∪U n
rq will be connected to it.

iii. By construction, there does not exist any t-ple C s
rq which

contains both Um
rq and U n

rq. Since each t-ple is associated
with a different RP, Um

rq and U n
rq are associated to dis-

tinct sets of RP’s.
�

Lemma 6 — Let NR = NR1 ° ... ° NRNR be an overall recipe
model, where all the recipes are well-defined. Let a resource
model Nrq be constructed for resource rq according to RDA,
with all RP’s marked with one token each. Assume that one
transition t fires, such that •t∩Pq ≠ ∅. Then there exists at

least one transition t^, which can be fired after the firing of t,
such that t^•∩Pq = •t∩Pq. �

Proof. Transition t may have two kinds of RP’s in its pre-
set. RP’s with only t in their post-set do not introduce con-
straints with respect to other transitions. When transition t
fires, no other transition is inhibited as far as such RP’s are
concerned. On the other hand, RP’s with multiple transi-
tions in their post-set realize structural and effective con-
flicts between them, i.e. at most one of them can fire when
they are all enabled. When transition t fires, all the other
conflicting transitions in (•t∩Pq)• are inhibited. By Lemma
5 each of these transitions:
i. is either alternative to t, since by Lemma 5.i both are

starting transitions of macro-operations which belong
to a complete set of alternative macro-operations,

ii. or it is the starting transition of a macro-operation,
which is independent with respect to all macro-
operations starting with t (Lemma 5.ii).

In the first case, at most one of the two transitions can
fire, so that the RP’s do not introduce additional constraints
with respect to the recipe. In the second case, by Lemma 3,
if one of the two transitions is fired, the firing of the second
one is not required to complete a macro-operation starting
with the first one. In all cases the unmarking of the RP’s in
•t∩Pq due to the firing of t does not inhibit the firing of any
transition which could prevent the completion of a macro-
operation starting with t. Therefore, since the overall recipe
model is live, a transition t^ will eventually be fired, which
corresponds to the ending transition of a macro-operation
starting with t. By RDA, t^•∩Pq = •t∩Pq, so that when t^ is
fired the RP’s in •t∩Pq will be marked again.

�

Theorem 1 — Well-defined resource model
Let NR = NR1 ° ... ° NRNR be an overall recipe model,

where all the recipe models NRj, j = 1, ..., NR, are well-
defined. Let a resource model Nrq be constructed for re-
source rq according to RDA. Then Nrq is well-defined.

�

Proof. Consider the net NR’°Nrq, initially marked with
one token in each RP and AP. With reference to a generic
reachable marking m in NR’°Nrq, either all RP’s are marked,
and then there is always at least one enabled transition
(since NR’ is live, from the well-definiteness of NRj, j = 1, ...,
NR), or some of them are unmarked. In the latter case, there
are necessarily some macro-operations in execution using
resource rq. However, by Lemma 6, these macro-operations
can always complete their execution, thereby restoring the
original marking of the involved RP’s. Since only the de-
finitive unmarking of RP’s may impair the original liveness
of NR’, this proves that NR’°Nrq is live. By Lemma 6, every
time a RP is unmarked, its token will eventually be restored,
so that RP’s are safe. Then, since NR’ is safe, also NR’°Nrq is
safe. Since NR’°Nrq is live and there are not any recirculat-
ing paths in the net, then all activated recipes can indepen-

dently terminate by firing the corresponding ERT’s. In the
resulting state, the AP’s are marked again. Since in NR’ the
AP’s can be marked only when OP’s and CP’s are un-
marked, and since all RP’s are marked (no operation is
active and using the resource rq), the initial marking m0 is
restored. This proves the reversibility of NR’°Nrq. �

The well-definiteness of the resource model has been
proved in the worst case in terms of resource availability
(RP’s marked with only one token each). The preceding
results can be simply extended to the case of multiple ca-
pacity resource places. In particular, NR’°Nrq can be proved
to be live, bounded and reversible.

V. AN ILLUSTRATIVE EXAMPLE
Consider the flexible assembling/disassembling station

represented in Fig. 7, which executes two different recipes
R1 (disassembly) and R2 (assembly) (see Tab. I), involving 5
conveyor belts CBi, i = 1, ..., 5, and two robots RBT1 and
RBT2. Loading from CB2 and CB3 can be performed con-
currently, as well as unloading to CB4 and CB5. The as-
sembling/disassembling operations are in mutual exclusion.

FLEXIBLE
ASSEMBLING /

DISASSEMBLING
STATION

CB2 CB3

CB1 CB4

CB5

RBT1
RBT2

Fig. 7 The flexible assembling/disassembling station.

TABLE I RECIPES IN THE FLEXIBLE STATION EXAMPLE

recipe operation operation description
o1 loading product from CB1 (with RBT1)
o2 disassembling product
o3 unloading part on CB5 (with RBT1)

R1

o4 unloading part on CB4 (with RBT2)
o5 loading part from CB2 (with RBT1)
o6 loading part from CB3 (with RBT2)
o7 assembling parts

R2

o8 unloading product on CB4 (with RBT2)

An overall recipe model NR is built according to the in-
formal process specifications described above. The recipe
nets are represented in dotted boxes in Fig. 8, where the 8
operation sub-nets have been integrated with 12 CP’s and
the recipe scheduling transitions (tbR1, teR1, tbR2, teR2). Note
that operations o3 and o4 are performed in parallel, as well
as o5 and o6. The recipe models NR1 and NR2 are well-
defined, since their augmented versions are live, safe and
reversible (Def. 1 and Lemma 1). Overlooking for brevity
reasons the role of the conveyor belts, three resources can
be identified in the system, namely the two robot manipu-
lators (r1 and r2) and the station itself (r3). The macro-
operations using r1 are M1, M3 and M5, with tbM1 = tbo1,
teM1 = teo1, tbM3 = tbo3, teM3 = teo3, tbM5 = tbo5, teM5 = teo5. Since

these are not alternative macro-operations, U 1
r1 = {M1} and

U 2
r1 = {M3} and U 3

r1 = {M5}. In addition, these macro-
operations are independent and mutually exclusive, so that
W 1

r1 = {U 1
r1}, W 2

r1 = {U 2
r1}, W 3

r1 = {U 3
r1} and Nr1 = 1. The only

possible 3-ple of elements U n
r1 is C 1

r1 = <U 1
r1, U 2

r1, U 3
r1>. In

view of this, one RP only must be introduced with outgoing
arcs to transitions tbo1, tbo3 and tbo5 and incoming arcs from
transitions teo1, teo3 and teo5. A similar resource model is
computed for r2, which uses in mutual exclusion the macro-
operations M4, M6 and M8, with tbM4 = tbo4, teM4 = teo4, tbM6 =
tbo6, teM6 = teo6, tbM8 = tbo8, teM8 = teo8. Resource r3 is used by
the macro-operations M13, M14, M58 and M68, with
tbM13 = tbo1, teM13 = teo3, tbM14 = tbo1, teM14 = teo4, tbM58 = tbo5,
teM58 = teo8, tbM68 = tbo6, teM68 = teo8. Notice that M13 and M14

can be executed concurrently, as well as M58 and M68,
whereas the usage of r3 is mutually exclusive between M1j
and Mk8 for j = 3, 4, k = 5, 6. These macro-operations are
not alternative macro-operations, so that U 1

r3 = {M13}, U 2
r3

 = {M14}, U 3
r3 = {M58}, U 4

r3 = {M68}. Now, M13 and M14 are
partially overlapping and therefore not independent. The
same applies to M58 and M68. In view of this, the set Ur3 is
partitioned in 2 sets W 1

r3 = {U 1
r3, U

2
r3}, W 2

r3 = {U 3
r3, U

4
r3}. Since

Nr3 = | W 1
r3 | × | W 2

r3 | = 2 × 2 = 4, four RP’s must be introdu-
ced connected with the relative transitions (see Tab. II). The
complete specification model is represented in Fig. 8.

TABLE II C
S

R3
 2-PLES FOR THE FLEXIBLE STATION EXAMPLE

C
s

r3 U
n

r1
BOT’s EOT’s

C
1

r3 <U
1

r3, U
3

r3> tbo1, tbo5 teo3, teo8

C
2

r3 <U
1

r3, U
4

r3> tbo1, tbo6 teo3, teo8

C
3

r3 <U
2

r3, U
3

r3> tbo1, tbo5 teo4, teo8

C
4

r3 <U
2

r3, U
4

r3> tbo1, tbo6 teo4, teo8

VI. CONCLUSIONS
In the paper, the modeling of concurrently used shared

resources in a generic manufacturing system is considered,
such as arises in complex assembly and disassembly opera-
tions. An algorithm is proposed which computes the number
of resource places and their connection to the recipes’ tran-
sitions, on the basis of simple specifications in terms of
resource usage. The specification model obtained by means
of the presented methodology can be conveniently incorpo-
rated in the framework of a modular and hierarchical con-
trol structure, as hinted in [3]. This will give rise to a design
methodology for Petri net models of manufacturing systems.
Basic necessary conditions are provided for the well-
definiteness of the partial models obtained, though clearly
the liveness of the overall specification system cannot be
proven by construction. Current research is focussing on the
development of algorithms and rules for the construction of
the recipe model, starting from high level prescriptions.

Also, the relationship between the well-definiteness condi-
tions of the specification model and liveness enforcing
algorithms will be investigated.

pr31

tbo3

teo3

tbo4

teo4

tbo5

teo5

tbo6

teo6

tbo7

teo7

pr32

pr33

pr34

tbR2

tbo1

teo1

tbR1

tbo2

teo2

teR1

tbo8

teo8

teR2

pr1

pr2

Fig. 8 Specification model for the flexible assembly/disassembly station

REFERENCES
[1] M.D. Jeng, “A Petri Net Synthesis Theory for Modeling Flexible

Manufacturing Systems,” IEEE Trans on Systems, Man, and Cy-
bernetics, part b, Vol. 27, n. 2, 1997, pp. 169-183.

[2] P. Falkman, B. Lennartson, and M. Tittus, “Modeling and Specifi-
cation of Discrete Event Systems using Combined Process Algebra
and Petri Nets,” IEEE/ASME Int. Conference on Advanced Intelli-
gent Mechatronics, AIM 2001, Como (Italy), 2001, pp. 1011-1016.

[3] L. Ferrarini, and L. Piroddi, “Design and implementation of a
modular supervisory control system of a batch process,” European
Control Conference, ECC 2001, Porto (Portugal), 2001, pp. 1583-
1588.

[4] M.D. Jeng, and F. DiCesare, “Synthesis Using Resource Control
Nets for Modeling Shared-Resource Systems,” IEEE Trans. on Ro-
botics and Automation, Vol. 11, n. 3, 1995, pp. 317-327.

[5] M.C. Zhou, and F. DiCesare, “Parallel and Sequential Mutual
Exclusions for Petri Net Modeling of Manufacturing Systems with
Shared Resources,” IEEE Trans. on Robotics and Automation, Vol.
7, n. 4, 1991, pp. 515-527.

[6] M.C. Zhou, F. DiCesare, and A. Desrochers, “Hybrid Methodology
for Synthesis of Petri Nets Models for Manufacturing Systems,”
IEEE Trans. on Robotics and Automation, Vol. 8, n.3, 1992, pp.
350-361.

[7] L. Ferrarini, M. Narduzzi, and M. Tassan-Solet, “A new approach
to modular liveness analysis conceived for large logic controller’s
design,” IEEE Trans. on Robotics and Automation, Vol. 10, n. 2,
1994, pp.169-184.

[8] M.C. Zhou, and F. DiCesare, “Petri Net Modeling of Buffers in
Automated Manufacturing Systems,” IEEE Trans. on Systems, Man
and Cybernetics, Vol. 26, n. 1, 1996, pp. 157-164.

[9] T. Murata, “Petri nets: Properties, analysis and applications,”
Proceedings IEEE, Vol. 77, n. 4, 1989, pp. 541-580.

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrM17.1
	Page0: 5096
	Page1: 5097
	Page2: 5098
	Page3: 5099
	Page4: 5100
	Page5: 5101

