
Robust second order sliding mode controller for electropneumatic
actuator

S. Laghrouche, M. Smaoui, X. Brun and F. Plestan

Abstract— This paper deals with the robust control problem
of a pneumatic actuator subjected to parameters uncertainties
and load disturbances. The control strategies are based on
second order sliding mode approaches. Implementation results
of the proposed sliding mode control schemes on an experi-
mental set-up are given to illustrate the developments.

NOMENCLATURE

y Load position (m)
v Load velocity (m/s)
u Servo-distributor input voltage (V )

p Pressure (Pa) V Chamber volume (m3)
Fext External force (N ) Ff Dry friction forces (N )
b Viscous friction coeff. M Load mass (kg)
k Polytropic constant T Chamber temperature (K)
r Perfect gas constant related to unit mass (J/kg/K)
S Area of the cylinder piston on a chamber side (m2)
qm Mass flow rate provided by the servo-distributor

to cylinder chamber (kg/s)
N Relative toN chamber
P Relative toP chamber.

I. I NTRODUCTION

Until several years, pneumatic actuators were mainly
used for two-end position control. However, viewed that
the pneumatic actuators have several advantages versus for
example electrical or hydraulic ones because they are cheap,
lightweight, clean, and they present a good force/weight
ratio, many works and developements showed that this kind
of actuators can also be used in a position control context,
by using specific servodistributor [9], [29], [10], [13], [15],
[20], [26]. As the necessary technology is avalaible for
the positioning control of pneumatic actuators, the exciting
challenge is now to develop new control laws able to get
high static and dynamic precision in presence of undesirable
characteristics. They are due to the high compressibility
of air, the high other nonlinearities of these systems (in
particular frictions), and the variation of environment as
load disturbance.
Due to these latter facts, several works have proposed linear
and nonlinear controllers in order to get high performances
behaviour. In [7], a comparison between two positionning
linear control laws (a fixed gains control law and a control
law with scheduling gains) of an electropneumatic disym-
metrical cylinder is made in point to point displacement
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aim. This work has been extended to nonlinear control
in [22], [6] and [8], in which a linearizing controller has
been implemented on an experimental set-up in single
and multi variable context. Due to uncertainties appearing
in the modelization, robust controllers are necessary to
ensure position tracking with high precision. A possible
way to reach this objective is the use of sliding mode
approach. This approach has been used in several works
[5], [21], [28]. The standard sliding mode features are high
accuracy and robustness with respect to various internal
and external disturbances. Specific problem involved by this
technique is chattering effect,i.e. dangerous high-frequency
vibrations of the controlled system. Some authors [25], [27]
relate the chattering behaviour to the discontinuity of the
discontinuous “sign” function on the sliding manifold. To
overcome this problem, the first and natural suggestion is
to replace the discontinuous function in a small vicinity
of the surface by a smooth approximation ; that implies a
small deterioration in accuracy and robustness1. Recently, a
new philosophy for sliding called “high-order sliding mode”
has been proposed with several different solutions (twisting
and super-twisting algorithms [18], approach based on
bang-bang control [1],LQ approach for the definition of
the sliding manifold [17]). Instead of influencing the first
sliding manifold derivative, the “sign” function acts on its
higher time derivative. Keeping the main advantages of
the standard sliding mode control, the chattering effect is
eliminated and higher order precision is provided. It has
been shown in [16] for the control of a permanent magnet
synchronous motor.
The paper proposes a second order sliding mode controller
for an electropneumatic actuator. Section 2 describes the
model of the electropneumatic actuator and states the prob-
lem under interest. Section 3 deals with the design of a
second order sliding mode controller for this system. Sec-
tion 4 discusses the implementation results of the proposed
control schemes on an experimental set-up.

II. M ODEL OF THE PNEUMATIC SYSTEM AND CONTROL

PROBLEM STATEMENT

A. Description of the experimental set-up

The electropneumatic system under interest is a double
acting actuator (Figure 1) composed by two chambers,

1Note that this solution is not enough in pneumatic field [4]: indeed,
a good compromise between static position error and chattering cannot
be found. So, the spool of the valve is exited which conduced to a lot
of noise due to the air going from source to exhaust and an undesirable
deterioration of the servodistributor.



denotedP (as positive) andN (as negative). The air mass
flow rates entering the two chambers are modulated by two
three-way servodistributors controlled by a micro-controller
with two electrical inputs of opposite signs. The pneumatic
jack horizontally moves a load carriage of mass M, has a
stroke of 500 mm and is very unsymmetrical since it has
an internal diameter of 32 mm with a simple rod of 20
mm diameter. The position sensor of the load cariage is
a potentiometer. Velocity is obtained by analog derivation
from the position signal and a numerical derivation of the
velocity signal gives the acceleration information used by
the control law. Two pressure sensors are also implemented
in each chamber and used for incremented the quality of
control in term of accuracy and robustness.

Fig. 1. Electropneumatic system

B. Model

Assumptions [24], [19] used to obtain a model of the
pneumatic part of the electropneumatic system are:

• The supply and exhaust pressures are constant,
• The air is a perfect gas and its kinetic energy is

negligible in both chambers,
• The pressure and the temperature are homogeneous in

each chamber,
• The thermodynamic evolution of the air in the cylinder

chambers is polytropic and characterized by a coeffi-
cient k,

• The temperature variations in each chamber are negli-
gible with regards to the mean temperature T,

• There is no mass flow leakage between the two cylin-
der chambers and outside the actuator,

• The dynamics of the servo-distributor are neglected.
• The two three-way servodistributors are the same and

their electrical variable inputs are of inverse signs.

Then, a nonlinear dynamic model of the electropneumatic
system reads as:

ṗP =
krT

VP (y)
[qm(u, pp)− SP

rT
pP v]

ṗN =
krT

VN (y)
[qm(−u, pN ) +

SN

rT
pNv]

v̇ =
1
M

[SP pP − SNpN − bv − Ff − Fext]

ẏ = v

(1)

with y the load carriage position,v its velocity andpP and
pN the pressures ofP andN chambers. The model of mass
flow rate delivered by each servodistributor can be reduced
to a static function described by two relationshipsqm(u, pP )
andqm(−u, pN ). The two first equations of (1) concern the
pneumatic part of the system and are obtained from the state
equation of perfect gases, the mass conservation law and the
polytropic law under the assumptions given above. The two
last equations describe the mechanical part and are derived
from the fundamental mechanical equation applied to the
moving part. The termFf represents all the dry friction
forces which act on the moving part in presence of viscous
friction (b.v) and an external force only due to atmospheric
pressure(Fext). In order to get an affine nonlinear state
model, the mass flow rate static characteristic issued from
measurements [23] is written as a function of control input
u and polynomial functions ofpP andpN [3]

qm(u, pP ) = ϕ(pP ) + ψ(pP , sgn(u)) · u
qm(−u, pN ) = ϕ(pN )− ψ(pN , sgn(−u)) · u (2)

C. Uncertainties

Two kinds of uncertainties are taken into account: uncer-
tainties due to the identification of physical parameters, and
variations of environment (see Table I). The knowledge of

TABLE I

UNCERTAINTIES OR VARIATIONS OF SYSTEM PARAMETERS

Viscous friction coefficient ± 20%
Dry friction coefficient ± 90%
Functionϕ(·) ± 15%
Functionψ(·, ·) ± 5%
Load mass variation ± 50%

the viscous friction coefficient has been identified and the
variation of this coefficient around the nominal value has
been experimentally evaluated at±20%. The dry friction
coefficient is more difficult to identify: the track surface
quality (thus the piston position), the seal wear, the working
conditions (temperature, pressure, quality of air) influence
the dry friction values. By some experimental tests, dry
friction variation around the nominal value is evaluated
to ±90%. Futhermore, the dry friction variations are sup-
posed to be not instantaneous: the dry friction dynamics
are then bounded. The mass flow rate delivered by each



servodistributor has been approximated by polynomial func-
tions (2). The uncertainties onϕ(·) andψ(·) are evaluated
to ±15% and±5% respectively. Finally, during the load
moving, the total mass in displacement can evolve from 17
kg until 47 kg. The nominal mass is 32 kg, the variation
being more and less±50%.

D. State model with uncertainties

The formalization of the variations is stated as

krTϕ(pP , u) = k1 = k01 + δk1,

krTψ(pP , sign(u)) = k2 = k02 + δk2,

−kSp = k3 = k03 + δk3,

krTϕ(pN , u) = k4 = k04 + δk4,

−krTψ(pN , sign(−u)) = k5 = k05 + δk5,

kSN = k6 = k06 + δk6,

SP /M = k7 = k07 + δk7,

−SN/M = k8 = k08 + δk8,

−b/M = k9 = k09 + δk9.

(3)

wherek0i (1 ≤ i ≤ 9) is the nominal value of the concerned
parameter,δki the uncertainty on the concerned parameter
such that|δki| ≤ δk0i, with δk0i a known positive bound.
Note that, viewed the previous hypotheses,δk3 = δk6 = 0.
The termF = −Ff+Fext

M is viewed as a perturbation which
is bounded, as its first time derivative. Letx denote the state
x = [x1 x2 x3 x4]T = [pP pN v y]T andu the input. Then,
a state space model of the pneumatic actuator is

ẋ1 =
1

VP (x4)
[k1 + k2 · u + k3 · x1 · x3]

ẋ2 =
1

VN (x4)
[k4 + k5 · u + k6 · x2 · x3]

ẋ3 = k7 · x1 + k8 · x2 + k9 · x3 + F

ẋ4 = x3

(4)

with x ∈ X ⊂ IR4 and u ∈ U ⊂ IR such thatX = {x ∈
IR4 |, 0 < xmin ≤ xi ≤ xMAX , 1 ≤ i ≤ 2, ximin ≤
|xi| ≤ xiMAX , 3 ≤ i ≤ 4} and U = {u ∈ IR | |u| ≤
uMAX}, xmin and xMAX the minimum/maximum values
of the P and N chambers pressures,x3min and x3MAX

(resp.x4min andx4MAX ) the minimum/maximum values of
the load velocity (resp. position) anduMAX the maximum
value of the voltage input.

E. Control problem statement

The aim of the control law is to respect a good accuracy
in term of position tracking for a desired trajectory defined
by a fifth order time polynomial function (Figure 2). The
amplitude of displacement is equal to 50% of the total
stroke around the central position and the maximum desired
velocity equals 0.60 m/s.
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Fig. 2. Desired position trajectory (mm) versus time (s).

III. A SECOND ORDER SLIDING MODE CONTROLLER

It is well known that the standard sliding mode features
are high accuracy and robustness with respect to various
internal and external disturbances. The basic idea is to
force the state via discontinuous feedback to move on a
prescribed manifold called the sliding manifoldS1 = {x ∈
X | s(x, t) = 0} with X ⊂ IRn so that the corresponding
zero dynamics satisfy a suitable dynamical behaviour [14].
A specific problem involved by this technique is the chat-
tering effect. Some authors [25], [27] relate the chattering
behaviour to the discontinuity of the sign function on the
sliding variable. To overcome this problem, they suggest
to replace the sign function in a small vicinity of the
surface by a smooth approximation; that implies a small
deterioration of accuracy and robustness. A new approach
called ”high-order sliding mode” has been proposed [1],
[18]. In this technique, instead of influencing the first sliding
variable derivative, the sign function acts on its higher time
derivative. Lets(x, t) (x ∈ X ) the sliding variable, with a
relative degree equal tor (i.e. the control appears in the
rth time-derivative ofs(x, t)). In the case of therth order
sliding mode, the idea is to keep the following set of con-
straint conditionss(x, t) = ṡ(x, t) = · · · = s(r−2)(x, t) =
s(r−1)(x, t) = 0, where r ∈ IN . In this configuration,
the controlu acts directly ons(r)(x, t) but the total time
derivativess(r−1)(x, t), s(r−2)(x, t), · · · , ṡ(x, t), s(x, t) are
regular continuous functions defined on the state space.

A. Second order sliding mode

Without loss of generality, consider a single-input nonlinear
system

ẋ = f(x) + g(x)u
y = s(x, t) (5)

with x ∈ X ⊂ IRn the state variable andu ∈ U ⊂ IR the
input, such thatX = {x ∈ IRn | |xi| ≤ xiMAX , 1 ≤ i ≤
n} andU = {x ∈ IR | |u| ≤ uMAX}. s(x, t) is the output
function, calledsliding variable. f , g and s are smooth
uncertain functions. Suppose that the control objective is
to force s(x, t) to zero. By differentiating twices, under



the assumption that system (5) has relative degree versuss
equal to 2, it leads to the following relationship

ṡ =
∂s

∂t
+

∂

∂x
[s][f(x) + g(x)u],

s̈ =
∂2s

∂t2
+

∂

∂x
[ṡ][f(x) + g(x)u].

(6)

Definition 1: [2] Given the sliding variables(x, t), its
“second order sliding manifold” is defined as

S = {x ∈ X | s(x, t) = ṡ(x, t) = 0} (7)

Definition 2: Consider the not-empty second order slid-
ing set (7), and assume that it is locally an integral set in the
Filippov sense,i.e. it consists of Filippov’s trajectories of
the discontinuous dynamics system [11]. The corresponding
behavior of system (5) satisfying (7) is called “second order
sliding mode” with respect to the sliding variables(x, t).

Definition 2 means that system (5) satisfies a second order
sliding mode with respect tos(x, t) if its state trajectories
lie on the intersection of the two manifoldss(x, t) = 0 and
ṡ(x, t) = 0 in the state space. In order to state a rigorous
control problem, the following conditions are assumed:

• H1 u is bounded and discontinuous. Furthermore the
solution of (5) admits solution in the Filippov sense
on the 2-sliding manifoldS for all t

• H2 ‖f(x)‖2 and‖g(x)‖2 are bounded and∂∂u s̈(x, t) >
0.

Let a = ∂2s
∂t2 + ∂

∂x [ṡ]f(x), and b = ∂
∂x [ṡ]g(x). Under

H1-H2, there exist positive constant valuesC, Km andKM

so that,∀u ∈ U and∀x ∈ X ,

0 < Km < b(x, u, t) < KM , |a(x, u, t)| ≤ C (8)

Consider local coordinates[ζ1 ζ2]T = [s ṡ]T . Then, on the
basis of the previous definitions and conditions, the second
order sliding mode problem may be expressed in terms
of the finite time stabilization problem for the following
uncertain second order system [18]

ζ̇1 = ζ2

ζ̇2 = a(x, u, t) + b(x, u, t)u
(9)

where ζ2 may be unmeasurable but with a known sign.
There exist several algorithms able to ensure the finite time
stabilization of the system (9) towards the origin [1], [12],
[18]. Among them, the so-called “Twisting algorithm” is
based on an adequate commutation of the control between
two different values so that the trajectories in the phase
plan of (9) execute an infinite number of rotations while
converging in finite time to the origin. This algorithm is
defined by the following control law [12], [18]

u =

{ −αmsign(ζ1) if ζ1ζ2 ≤ 0
−αM sign(ζ1) if ζ1ζ2 > 0 (10)

with the sufficient conditions which ensure the finite time
convergence to the sliding manifold

0 < αm < αM , αm >
C

Km

KmαM − C > KMαm + C.
(11)

B. Sliding variable and control design

To track the load position given by Figure 2, a sliding
variable is proposed, so that the error dynamics follows a
desired first order dynamic. Denotingx4ref

(t) the desired
trajectory, one gets

s = x3 − ẋ4ref
+ λ(x4 − x4ref

) (12)

whereλ is a positive parameter such thatP (z) = ż + λz
is Hurwitz polynomial. Note that the relative degree ofs
equals 2. Consider the second time derivative ofs

s̈ = A + Bu (13)

where

A =
k7

VP (x4)
[k1 + k3x1x3] +

k8

VN (x4)
[k4 + k6x2x3]

+k9 [k7x1 + k8x2 + k9x3 + F ] + Ḟ − x
(3)
4ref

+λ [k7x1 + k8x2 + k9x3 + F − ẍ4ref ]

=: A0 + δA

B =
k7k2

VP (x4)
+

k8k5

VN (x4)

=: B0 + δB
(14)

A0 andB0 are the known nominal expressions whereas the
expressionsδA andδB contain all the uncertainties due to
parameters variations and termF . The final controller is
composed by a linearizing controller coupled to a second
order sliding mode one (see Figure 3 and Equation (15)).
The validity of the control law depends on the stability of

Fig. 3. Global structure of the robust controller.

the unobservable subsystem, which is one-dimensional. It
is very difficult to obtain results about the global stability



of the zero dynamics, but, in the physical domain, the local
stability has been proved [6]. Using the static feedback2

u = B−1
0 [−A0 + v] (15)

wherev is the new control vector, one gets

s̈ = [δA− δB
B0

A0] + [1 + δB
B0

]v

=: A + Bv
(16)

In fact, the term−B−1
0 A0 of (15), which is the so-called

equivalent controlin the sliding mode context [27], is not
able to cancel all the nonlinearities. Then, uncertainties can
act on the motion equations in a nonlinear form. Since
x1, x2, x3, x4, ki, δki, F and Ḟ are bounded, there exist
positives constantsC, Km, andKM so that

|A| < C
0 < Km < B < KM

(17)

Then, one can apply the second order algorithm previously
presented

v =

{ −αmsign(s) if sṡ ≤ 0
−αM sign(s) if sṡ > 0

with

0 < αm < αM , αm >
C

Km

KmαM − C > KMαm + C.
(18)

Finally, a sliding mode occurs onS leading to desired
tracking property for the position.

IV. I MPLEMENTATION RESULTS OF THE SECOND ORDER

SLIDING MODE CONTROLLER

The control law is implemented using a dSpace DS1104
controller board with a dedicated digital signal processor
with a 4 ms sample time. Two pressure sensors are fixed
in each chamber. The sensed signals were run through
the signal conditioning unit before being read by the 16
bits analog/digital converter. The pressurespN andpP are
such thatxmin = 1 bar andxMAX = 7 bar absolute.
The maximum/minimum value of the load position equals
x4min/4MAX = ±250 mm. The control input is such that
uMAX = 10V
The objective consists in minimizing the position tracking
error in presence of model uncertainties and load variations.
The gainsαm andαM have been tuned such that condition
(18) is satisfied :αm = 200 and αM = 7000. The
real λ is fixed at λ = 15s−1. Some experiment results
are provided here to demonstrate the robustness of the
second order sliding mode controller. Firstly, the total load
mass equals 27 kg. Figure 4 displays the tracking position
error with desired position described in Section II-E. The
maximum position tracking error is about 2.12mm which

2The scalarB0 never equals 0; then, the control inputu is always
defined.

is better than with classical nonlinear control [8]3: this error
represents less than 1% of the total displacement magnitude.
In steady state, the position error is about 86µm, which
is better than with classical linear control law (PI) [13].
In this case, the sensor Figure 5 displays the control input

0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

Time [s]

Po
sit

io
n 

er
ro

r [
m

m
]

Fig. 4. Tracking position error (mm) versus time (s).

which is not affected by the chattering effect. Even if the
signal exited the spool valve during the dynamic stage, no
audible noise can be heard4, which was not the case with
first order sliding [5]. From these experiment results, good
tracking responses are obtained for the position owing to the
robust control characteristics of the controller. These two
curves are obtained without a good mass flow rate model
and in presence of important frictions variations. For the last
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Fig. 5. Control input (V ) versus time (s).

experimentation, the total load mass is decreased until 17
kg. The presented results are obtained without changing the
control gains value. The robust control characteristics of this
controller versus the load mass variation can be observed
in Figure 6. The maximum position tracking error is about
1.81 mm. In steady state, the position error is about 92µm.
The required performances are achieved.

3The control laws in [8] have been implemented on the same experi-
mental set-up, in the same conditions.

4The noise is due to a very high frequency displacement of the
servodistributor mobile part, which can induce a faster wear.
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V. CONCLUSION

The paper has proposed a second order sliding mode
controller for an electropneumatic actuator. The controller
based on the twisting algorithm has been tuned so that its
convergence is ensured in spite of parameters uncertainties
and perturbation. Experimental results show that the trajec-
tory tracking is done with a very good accuracy. The results
have been compared to previous ones and appear more
precise and robust versus uncertainties and load variations.
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