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Abstract— Quantitative feedback theory (QFT) is applied
towards the design of a simple and effective position controller
for a typical low-cost industrial pneumatic actuator with a
5-port three-way control valve, that is subject to disturbing
forces. A simple fixed-gain proportional-integral control law
with dynamic pressure feedback is synthesized to guarantee
the satisfaction of a priori specified closed-loop performance
requirements, including robust stability, tracking performance
and disturbance attenuation, despite the presence of nonlinear-
ities and parametric uncertainty in the pneumatic functions.
A novel outer-inner design approach is proposed to avoid the
synthesis of an unnecessarily complex outer loop controller.
The merits of the inner loop feedback are examined from
the perspective of system responses to step changes in the
reference position and step changes in the disturbing force.
Simulation results show clearly that the inner loop feedback
improves the closed-loop disturbance response by eliminating
oscillation and reducing the overshoot. The main contribution
of this paper is the presentation of a systematic approach to
the design of position controllers for pneumatic servos with
dynamic pressure feedback, within the framework of QFT.

I. I NTRODUCTION

A number of different approaches to controller design for
highly nonlinear pneumatic positioning systems have been
explored in the literature. To name a few, Liu and Bobrow
[1] investigated proportional-derivative (PD) as well as opti-
mal linear quadratic Gaussian (LQG) controls. Sliding mode
control [2], Neural network control [3], Fuzzy logic [4], as
well as Neuro-Fuzzy control [4] have also been tried for
various servopneumatic positioning systems. Robust control
techniques such as modern H∞ and classical quantitative
feedback theory (QFT) have received comparatively little
attention in the fluid power literature, especially with regard
to pneumatic systems. However, H∞ and QFT control of
pneumatic actuators have been recently examined in [5]
and [6], respectively. From the perspective of controller
design for pneumatic servos the QFT design methodology
is attractive since it highly transparent [7] and has the
capacity, at the design stage, to account for the effects
of the nonlinear pneumatic functions and plant parametric
uncertainty. This paper further explores the application of
QFT towards effective position control of pneumatic actu-
ators, particularly in the presence of disturbing forces. The
goal is to apply the QFT methodology towards synthesis

This work was supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

M. Karpenko and N. Sepehri are with the Department of Mechanical
and Industrial Engineering, University of Manitoba, Winnipeg, Manitoba,
CANADA R3T 5V6

Correspondence should be sent to N. Sepehri:
nariman@cc.umanitoba.ca

of a simple and practical position controller for a typical
industrial pneumatic actuator controlled by a low-cost 5-
port three-way valve.

First, proportional-integral (PI) compensation only in
a typical two degree-of-freedom control structure is ex-
amined. It is shown that a PI control law alone cannot
adequately satisfy the specified disturbance attenuation tol-
erance due to the presence of an under-damped complex
mode in the plant transfer function. However, Thompson
et al. [8] have shown that a two degree-of-freedom QFT
control system could be designed to enhance the closed-loop
disturbance rejection characteristics of an electrohydraulic
actuator. To keep the control law as simple as possible in
this paper, the actuator load pressure [1] is introduced as
an internal plant state available for stability enhancing inner
loop feedback. The resulting three degree-of-freedom feed-
back structure is shown to significantly improve the closed-
loop disturbance attenuation properties of the pneumatic
actuator without necessitating an increase in the complexity
of the outer loop PI control law.

The three degree-of-freedom positioning system is syn-
thesized by combining QFT with conventional root locus
analysis using an outer-inner design approach. The inner
loop feedback is observed to affect mainly the high fre-
quency response. Hence, the outer loop cascade controller
is designed first via QFT to set the main properties of
the feedback system, i.e. robust stability margin, tracking
performance, and disturbance attenuation. The inner loop
feedback gain is then easily selected from the resulting
root locus to provide the best damping of the troublesome
closed-loop complex poles. Following this approach helps
prevent the synthesis of an unnecessarily complex outer
loop controller by avoiding the arbitrary selection of the
inner loop feedback gain. Moreover, a satisfactory design
emerges within a few iterations. Such a design procedure
for pneumatic servos with load pressure feedback, within
the context of QFT, has not yet been proposed in the fluid
power literature. A notable exception, however, is the work
of Thompson and Shukla [9] who studied QFT design with
load pressure feedback in a hydraulic positioning system
using an inner-outer design procedure.

II. M ATHEMATICAL MODELLING

A schematic of the pneumatic servoactuator under con-
sideration is shown in Fig. 1. Assuming adiabatic charging
and discharging of the actuator chambers [1], a set of
nonlinear state equations that describe the dynamic system
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ẋp = vp

v̇p =
1
M

(−bvp + AP1 −AP2 − Fd)
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In (1), xp denotes the position of the actuator,vp is
the actuator velocity,xv is the displacement of the valve
spool, andu is the control signal.P1, P2, V1, and V2

are the instantaneous absolute actuator chamber pressures
and volumes, respectively. Parameterα is a compressibility
flow correction factor, which accounts for the fact that
the pressure-volume work process is neither adiabatic nor
isothermal, but somewhere in between [10].Fd signifies the
disturbing force that must be rejected at the plant output.
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Fig. 1. Schematic of typical valve controlled pneumatic actuator.

The nonlinear equation governing the mass flow rate of
air through each control valve orifice is [11]
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In (2), Pd is the absolute downstream pressure,Pu

denotes the absolute upstream pressure, andKf is the valve
gain. As suggested by Sanville [11], the critical pressure
ratio,Pcr, which delineates between the sonic (choked) and
subsonic flow regimes, is taken as 0.2.

Equation (2) may be linearized using a Taylor series
expansion about operating pointo. Neglecting the second
and higher order terms as well as any control valve leakages,
the mass flows into each actuator chamber are written as
follows

∆ṁ1 = Cf1∆xv − Cp1∆P1

∆ṁ2 = Cf2∆xv + Cp2∆P2

(3)

where ∆ denotes a perturbation from the operating point
value, e.g.∆xv = xv − xvo. ParametersCfi and Cpi are

known as the valve flow gain and flow-pressure coefficient,
respectively. Their specific values depend upon operating
point pressures,P1o andP2o, as well as the operating point
value of valve spool displacement,xvo.

Combining the Laplace transformations of equations (1)
and (3) allows the operating point dependant transfer func-
tion model of the open-loop system to be written as

Xp(s) = G1(s)G2(s)U(s)−G2(s)Fd(s) (4)

where

G1(s) =
γRTkvACf1 (γRTCp2 + V2os)

(τvs + 1) (γRTCp1 + V1os) (γRTCp2 + V2os)
+

γRTkvACf2 (γRTCp1 + V1os)

(τvs + 1) (γRTCp1 + V1os) (γRTCp2 + V2os)
(5)

and

G2(s) =
(γRTCp1 + V1os) (γRTCp2 + V2os)

D(s)
(6)

with

D(s) = s (Ms + b) (γRTCp1 + V1os) (γRTCp2 + V2os)+

αγA2s [γRT (P1oCp2 + P2oCp1) + (P1oV2o + P2oV1o) s]
(7)

Table I defines the remaining model parameters and
summarizes the nominal values of all model parameters
and their variations used in the controller design. The
parameters and their ranges are representative of a typical
low-cost industrial pneumatic servoactuator operating at
5 bars supply pressure (e.g. FESTO MPYE proportional
flow control valve and a double-rod actuator with 500 mm
stroke).

With respect to the characteristics of the open-loop
transmission from inputU(s) to output Xp(s), it was
observed that the family of plantsG(s) = G1(s)G2(s)
are all Type 1 and minimum phase. Resonance peaking
due to lightly damped complex poles ofG2(s) was also
observed to occur around∠G ≈ −180◦ thus limiting the
achievable gain margin. The Bode plots of the transfer
functions G2(s), which relate the changes in the output
Xp(s) to disturbing forceFd(s), also showed resonance
peaking around frequency,ω ≈ 45 rad/sec. Consequently,
it is expected that the response to step changes in the
disturbing force will be oscillatory in nature.

III. QFT CONTROLLER SYNTHESIS

Fig. 2a shows an open-loop block diagram of the pneu-
matic actuator, while Fig. 2b illustrates the closed-loop
block diagram with dynamic pressure feedback. Transfer
function H(s) relating the change in the control signal,
U(s), to load pressure,PL(s) = P1(s)− P2(s), is

H(s) =
KPLτHP s

τHP s + 1
(8)

In (8), parameterKPL is the dynamic pressure feedback
gain andτHP is the cutoff frequency of a high-pass filter.



TABLE I

L IST OF NOMINAL MODEL PARAMETERS AND THEIR RANGES.

Uncertain Parameter Value
min nominal max

load mass,M (kg) 1.81 1.91 2.01
viscous damping coefficient,b (N·sec/m) 60 70 80

piston annulus area,A (m3) ×10−4 − 10.6 −
chamber volume,V1o (m3 × 10−4) 1.32 2.64 3.96
chamber volume,V2o (m3 × 10−4) 1.32 2.64 3.96

valve spool position gain,kv (mm/V) − 0.25 −
valve time constant,τv (msec) 3.4 4.2 5.0
ideal gas constant,R (J/kg·K) − 287 −

temperature of air source,T (K) − 300 −
ratio of specific heats,γ − 1.4 −

pressure-volume work correction
factor,α − 0.9 −

chamber pressure,P1o (bars) 3.7 3.7 4.5
chamber pressure,P2o (bars) 2.3 3.7 3.7

valve spool displacement,xvo (mm) 0 0 0.125
flow gain,Cf1 (kg/sec·m) 8.0 13.6 13.6
flow gain,Cf2 (kg/sec·m) 8.0 13.6 13.6
flow-pressure coefficient,
Cp1 (kg/Pa·sec)×10−10 0 0 118.6
flow-pressure coefficient,
Cp2 (kg/Pa·sec)×10−10 0 0 51.8

High-pass filtering of the load pressure signal is required to
ensure zero steady-state load sensitivity. WhenH(s) = 0,
the pressure feedback loop is open and a two degree-of-
freedom feedback structure is formed.

A three degree-of-freedom feedback control structure
compatible with the QFT design methodology is shown in
Fig. 2c. With reference to Fig. 2c, the closed-loop system
contains two feedback loops, which may be referred to
as outer and inner loops. The outer loop has transmission
LO(s) = Gc(s)G1(s)G2(s) where subscriptO denotes the
outer loop. The transmission of the inner loop referred to
by subscriptI is LI(s) = G1(s)G2(s)Ĥ(s). The transfer
functions,Gd(s) and Ĥ(s), required for the QFT design
are

Ĥ(s) = H(s)
[
Ms2 + bs

]
A−1 (9)

Gd(s) = G2(s)
[
G1(s)H(s)A−1 + 1

]
(10)

For a design utilizing series compensation only,H(s) = 0
giving Ĥ(s) = 0 andGd(s) = G2(s).

Two important transfer functions that give the perfor-
mance of the closed-loop system are now defined. The trans-
fer function from reference inputXd(s) to outputXp(s) is
T (s) = Xp(s)

Xd(s) = F (s) LO(s)
1+LI(s)+LO(s) . The transfer function

relating the effect of disturbing forceFd(s) to changes in
the outputXp(s) is TD(s) = Xp(s)

Fd(s) = Gd(s)
1+LI(s)+LO(s) . Due

to the parametric uncertainty in functionsG1(s) andG2(s),
there exist families of closed-loop responses, denoted by
T(s) andTD(s).

The objective of the control design problem is to syn-
thesize free elements,F (s), Gc(s) and H(s), so that po-
sition responses,xp(t) = L−1{Xd(s)T(s)}, and xdp(t) =
L−1{Fd(s)TD(s)}, fall within the prescribed time-domain
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Fig. 2. Block diagram of pneumatic actuator: (a) open-loop; (b) closed-
loop with dynamic pressure feedback; (c) three degree-of-freedom QFT
structure.

tolerances. In QFT, these constraints on the closed-loop per-
formance are used to form QFT bounds,B(ω), at a number
of design frequencies,ω, with respect to nominal plant,
Gnom(s) = G1,nom(s)G2,nom(s). Nominal loop trans-
missionsLO,nom(s) = Gc(s)Gnom(s) and LI,nom(s) =
Gnom(s)Ĥ(s) are then shaped by controllersGc(s) and
Ĥ(s) to satisfy the QFT bounds. A more detailed discussion
of QFT can be found in [7].

The closed-loop performance specifications used in
the subsequent QFT controller design are given in the
frequency-domain as [12]:
(i) robust stability margin

∣∣∣∣
LO(s)

1 + LO(s) + LI(s)

∣∣∣∣ ≤ 1.24 (11)

Equation (11) ensures minimum gain and phase margins of
5.14 dB and 45◦, respectively for all plants in the setG(s).
(ii) tracking performance

|TL(s)| ≤
∣∣∣∣F (s)

LO(s)
1 + LO(s) + LI(s)

∣∣∣∣ ≤ |TU (s)| (12)

where

TL(s) =
22500

(s + 5.7)(s + 10)2(s + 39.3)

TU (s) =
11.8(s + 2)(s + 20)
(s + 2.1)(s + 15)2

(13)

Tracking boundTL(s) gives an over-damped response with
a 90% rise-time of 0.7 sec, whileTU (s) has a 90% rise time
of 0.2 sec and 2 percent overshoot. The bounds were derived
from the relevant figures of merit for the step response of
a model second-order system.



(iii) disturbance attenuation

∣∣∣∣
Gd(s)

1 + LO(s) + LI(s)

∣∣∣∣ ≤
∣∣∣∣

0.91s

(s + 5)(s2 + 31.5s + 2025)

∣∣∣∣ (14)

Satisfaction of specification (14) ensures zero steady posi-
tion error for any disturbing force,Fd(s), and requires that
the error due to the disturbance should be reduced to less
than 2% of the peak value fort > 0.8 sec.

A. Design of PI Controller

A PI control law, for whichĤ(s) = 0 in Fig. 2c, was first
designed to establish a closed-loop performance benchmark
to which the closed-loop system with dynamic pressure
feedback could be later compared. The PI control law was
selected to shapeLO,nom(s) to satisfy the QFT bounds due
to its widespread use in industry. Fig. 3 shows the important
QFT bounds and the designed nominal loop transmission.
The PI control law, solved as ratioLO,nom(s)

Gnom(s) , has transfer
function

Gc(s) =
Kp(s + Ki

Kp
)

s
=

15.3(s + 1.7)
s

(15)
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Fig. 3. QFT bounds,B(ω), and nominal outer loop transmission
LO,nom(jω) without dynamic pressure feedback.

With reference to Fig. 3,LO,nom(s) is observed to
penetrate the high-frequency boundsB(35) and B(45).
As will be seen in Section IV, this leads to significant
oscillation in the closed-loop disturbance responses. Using
only a PI control law, it was impossible to increase the gain
margin and placeLO,nom(s) outside ofB(35) andB(45)
without violating the other QFT bounds. Hence, satisfaction
of the bounds can only be achieved by a more complex
Gc(s). PrefilterF (s) was synthesized via straight-line Bode
approximations and has transfer function

F (s) =
8.6(s + 5.8)

(s + 2.5)(s + 20)
(16)

B. Design of PI Controller with Dynamic Pressure Feed-
back

To avoid the design of an unnecessarily complex outer
loop controller, the outer loop was closed first andGc(s)
derived to set the main properties of the feedback system.
Then, the pressure feedback was designed to improve the
closed-loop performance. To accommodate the inner loop
closure, however,LO,nom(s) had to be shaped with some
extra allowances at important frequencies.

With respect to outer loop transmissionLO(s), the ad-
dition of the inner loop feedback was observed to give a
larger gain margin, smaller phase margin, and have little
effect on the plant in the low frequency range. The outer
loop transmission was therefore initially designed to have a
slightly larger phase margin to accommodate the subsequent
inner loop closure. This was accomplished by moving the
location of the zero in the PI controller (15) froms = −1.7
to s = −1.5 and adjusting the gain from 15.3 to 17.3.

Design of the feedback gains on the Nichols chart is cum-
bersome sincêH(s) appears in the feedback path. However,
the required feedback gains can be easily designed using
the root locus. Referring to Table I, it is observed that for
the nominal plant,V1o = V2o = V̄ , Cf1 = Cf2 = Cf ,
Cp1 = Cp2 = 0, and P1o = P2o = Pq. Since the
dynamics of the control valve spool are much faster than
the required response of the servoactuator, the relationship
between control signal and valve spool position can also be
approximated asxv ≈ kvu. Hence, the nominal outer loop
transmission with dynamic pressure feedback is

LO,nom(s) =
2γkvCfRTA(Ki + Kps)

s(Ms2 + bs)

{ [
V̄ s + 2γkvCfRTH(s)

]
+2γαPqA

2s2

}

(17)

The characteristic equation of (17) may be rearranged as
follows to investigate the effect of pressure feedback gain,
KPL, on the location of the closed-loop poles

1 +
2γkvCfRT (Ms2 + bs3)τHP KPL

(τHP s + 1)

{
V̄ s(Ms3 + bs2) + 2γαPqA

2s2

+2γkvCfRTA(Ki + Kps)

} = 0

(18)

The root loci of (18), with the nominal plant parameters of
Table I and designed PI gainsKp = 17.3 V/m andKi = 26
V/m·sec, are shown in Fig. 4. The cut off frequency of the
high pass filter was set to 15 rad/sec.

Fig. 4 shows that two sets of complex poles are possible
when the dynamic pressure feedback loop is closed. Thus,
an appropriate value of feedback gainKPL must balance
the effects of both oscillatory modes and some iteration in
the design is expected. Pressure feedback gain,KPL, was
first selected from the root locus to be1.1 × 10−5 V/Pa
so that both complex pole pairs were equally damped with
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Fig. 5. QFT bounds,B(ω), and nominal outer loop transmission
LO,nom(jω) with dynamic pressure feedback: design iteration 1.

ζ ≈ 0.7. Fig. 5 shows the resulting QFT bounds along with
the redesigned outer loop transmissionLO,nom(s).

Although the nominal loop satisfies all of the bounds, it
is overdesigned in the low frequency rangeω ≤ 5 rad/sec
since in this frequency range|LO,nom(jω)| > B(ω).
An optimal design, in terms of controller gain, requires
|LO,nom(jω)| = B(ω) [13]. Hence, it is evident that a
more economical solution with a lower controller gain may
be obtained through some redesign.

To improve the design, eitherGc(s) must be made more
complex to reduce the phase angle in the frequency range
ω ≤ 5 rad/sec or the pressure feedback gain may be reduced
(increasing the pressure feedback gain further complicates
the design ofGc(s) by reducing the phase margin). The
latter option will be taken in order to keep the simple outer
loop PI control law. Thus, after the design first iteration,
it is apparent thatKPL ≤ 1.1× 10−5 V/Pa for a practical

design. This important fact may not be immediately obvious
if the inner loop is arbitrarily closed first.

SelectingKPL = 0.5×10−5 V/Pa sets the damping ratio
of the far-off complex pole pair at 0.47 and the damping
ratio of the dominant complex pole pair at 0.87. Fig. 6
shows the recomputed bounds forKPL = 0.5×10−5 V/Pa
along with the redesignedLO,nom(jω). By decreasing the
pressure feedback gain, the QFT bounds could be amply
met by placing the zero of the outer loop PI control law at
s = −1.3 and adjusting the gain to 20. A 10◦ improvement
in phase margin also results. Moreover,|LO,nom(jω)| now
lies closer to the correspondingB(ω) in the frequency range
0.5 ≤ ω ≤ 5 rad/sec indicating a more efficient use of
the outer loop controller gain. Prefilter (16) is suitable to
complete the design.
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Fig. 6. Final QFT bounds,B(ω), and nominal outer loop transmission
LO,nom(jω) with dynamic pressure feedback.

IV. SIMULATION RESULTS AND DISCUSSION

To verify the controllers of Section III, the closed-
loop frequency responses,|T(jω)| and |TD(jω)|, were
obtained by computer simulations. The frequency responses
|T(jω)| were within the specified tolerances. In general, the
frequency responses|TD(jω)| were also observed to meet
the disturbance attenuation specification, i.e.|TD(s)| ≤
|MD(s)|. However, the resonance peaks in|TD(s)| under
PI control without pressure feedback penetrated theMD(s)
bound.

Fig. 7 shows the family of closed-loop unit step re-
sponses,xp(t) = L−1{s−1T(s)} pertaining to each of the
designed control systems. As is seen, the unit step responses
are nearly identical for both control systems, suggesting
that implementation of the inner loop feedback does little
to affect the closed-loop reference tracking performance.
The similarity in the responses is mainly due to the fact
that the low-pass effect of the prefilter attenuates any
resonance peaking in transfer functionsT(s). Consequently,
no resonance oscillations are observed in time responses.
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The simulated time-domain responses to unit step dis-
turbances,xd

p(t) = L−1{s−1TD(s)} are shown in Fig.
8. As is seen, the inner loop feedback eliminates the
oscillation and reduces the overshoot associated with the
design whereĤ(s) = 0. Evidently, the inner loop feedback
improves the damping of the troublesome under-damped
complex plant poles thereby reducing the peaking in transfer
functionsTD(s). Hence, from the perspective of rejection
of disturbing forces, the use of inner loop pressure feedback
is clearly justified.

V. CONCLUSIONS

The QFT design of a simple PI position controller for a
typical industrial pneumatic actuator having internal load
pressure feedback has been addressed for the first time.

It was observed that a PI control law alone could not
adequately satisfy the disturbance attenuation specification
due to resonance peaking caused by under-damped closed-
loop complex poles. However, measurement of the load
pressure provided an internal state variable that was ex-
ploited for stability enhancing inner loop feedback. The
inner loop closure was observed to significantly improve
the closed-loop disturbance responses without increasing
the complexity of the outer loop control law. The use of
dynamic pressure feedback for improvement of the closed-
loop disturbance attenuation characteristics of pneumatic
servos is thus justified.
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