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Abstract— With respect to the output force control problem
of the hydraulic cylinders, an adaptive control scheme is
proposed by using direct output force measurements through
loadcells. Due to the large and somewhat uncertain piston fric-
tion force, cylinder chamber pressure control with Coulomb-
viscous friction compensation may not be sufficient enough
to achieve a precise output force control. In the proposed
approach, the output force error resulting from direct mea-
surement is used to update the parameters of a novel friction
model which includes not only the Coulomb-viscous friction
force in sliding motion, but also the output force dependent
friction force in presliding motion. The experimental results
achieved on a hydraulic setup comprised of two hydraulic
cylinders in pull-pull configuration demonstrate a frequency
response of±1dB up to 20Hz. The excellent output force (joint
torque) control performance implies the dynamic equivalency
between the hydraulic actuation and the electrical actuation
up to 10 ∼ 20Hz.

I. INTRODUCTION

Hydraulic actuation has been widely used in industrial
applications due to its high force to mass ratio. While
this feature dramatically increases the operational capabil-
ity of a hydraulic driven robot, the inherent nonlinearity
associated with hydraulic cylinders heavily challenges the
controller design. So far, most industrial hydraulic robots
are still using PD position control. Enormous researches
have been performed intending to apply advanced control
approaches such as nonlinear feedback control and model
based adaptive motion control into hydraulic cylinders aim-
ing at significantly improving motion (position or velocity)
tracking performance. However, the derived control laws are
much more complicated than those derived for electrically-
driven motors due to the specific dynamics of the hydraulic
cylinders.

One solution to this challenge is to control the out-
put force of the hydraulic cylinders and to establish dy-
namic equivalency between the hydraulic cylinders and the
electrically-driven motors. Once the actual output force
of a hydraulic cylinder tracks the desired force within a
certain bandwidth, a hydraulic actuator can be viewed as
dynamically equivalent to an electrical motor with the same
force/torque control bandwidth. Thus, many motion/force
control approaches previously developed for electrically-
driven manipulators can be directly applied to hydraulic ma-
nipulators. This will allow cheap development of hydraulic
control algorithms.

Some previous approaches intended to achieve force
control by using chamber pressure control instead [1], [2].
A Coulomb-viscous friction model is usually incorporated
to predict the cylinder output force. However, since the
piston friction force is large and somewhat uncertain1,
calculating the cylinder output force based on a Coulomb-
viscous friction model with fixed parameters may not be
accurate enough. In this paper, a novel adaptive controller
is proposed to control the cylinder output force. Loadcell
sensors are used to directly measure the output force and
the force error is used to update the parameters of a
novel friction model which includes not only the Coulomb-
viscous friction force in sliding motion, but also the output-
force dependent friction force in presliding motion (when
velocity is near zero).

This paper is organized as follows: in section II, a novel
friction model is suggested. An adaptive control scheme
which uses both output force and pressure measurements
are presented in section III. In section IV, the experimental
results are presented. Finally, it follows conclusion and
references.

II. FRICTION MODEL

The piston friction makes a big difference between the
output force and the chamber pressure force. A suitable
friction model is necessary for achieving a good output
force control performance.

A selective functionS is designed as

S(x) ∆=
{

1 x(t) > 0
0 x(t) ≤ 0 (1)

and a differentiable functiong(z, zss) with a constantzss >
0 is defined as

g(z, zss)
∆=




1 z ≥ zss

z/zss 0 < z < zss

0 z ≤ 0
. (2)

A Coulomb-viscous friction model with DC offset

fc = kcpg(z, zss)S(z) − kcng(−z, zss)S(−z) + k0

+ [kvpS(v) + kvnS(−v)]φ(v)v (3)

1The experimental results suggest that the piston friction force amounts
to thousands of Newton which is very much significant compared to the
normal operational force (hundreds of Newton) required by most robotic
tasks.



is used as part of the friction model devoted to sliding
motion, wherez denotes the average deformation of bristles
[3, page 420] anḋz is governed by

ż = v − | v |
zss

z (4)

wherev denotes the velocity. In (3), the first two terms in the
right hand side devote to Coulomb friction and constantk0

denotes a DC offset, and the last term in the right hand side
devotes to the Stribeck and viscous friction with whichφ(v)
is an bounded and differentiable function characterizing
the profile of the Stribeck and viscous friction. Parameters
kcp and kvp correspond to positivev, and kcn and kvn

correspond to negativev.
Remark 2.1: In this paper, the friction model (3) is mainly

used in the sliding motion whenz = zss or z = −zss.
Therefore, the damping termσ1ż as suggested by [3] is not
included.

Equation (3) describes the piston friction force in sliding
motion. In presliding motion, it is found experimentally that
the friction force is a function of the output force. The
mathematical formulation can be expressed as

fs = [kfpS(F ) + kfnS(−F )]ϕ(F ) (5)

whereF denotes the output force, andkfp andkfn are two
positive constants associated with the positive and negative
output force, respectively, andϕ(F ) is a monotonic function
defined as

1) ϕ(0) = 0
2) ϕ(x) ≥ ϕ(y) if x ≥ y

3) | lim
x→∞ϕ(x) |≤ γf1 with 0 < γf1 < +∞

4) ϕ̇(x) = γf2(t)ẋ with 0 < γf2(t) < +∞ .

One possible choice ofϕ(F ) is

ϕ(F ) =
F

1 + δ | F | (6)

with δ > 0 be a constant.
Finally, the total piston friction force is represented as

ff = [1 − L(t)]fc + L(t)fs (7)

whereL(t) ∈ [0, 1] is a differentiable function withL(t) →
1 for presliding motion andL(t) → 0 for sliding motion.

III. ADAPTIVE OUTPUT FORCE CONTROL

A. Cylinder Pressure Dynamics

Two cylinders in pull-pull configuration as illustrated in
Figure 1 is studied in this paper.

The servovalves from TEXTRON have a spool position
bandwidth of 200Hz. Therefore, it is reasonable to ignore
the servovalve dynamics as performed in previous litera-
tures [1], [4], i.e. the valve position is considered to be
proportional to its control voltage.

Based on Bernoulli’s static flow equation [5, page 41], the
difference of flow speed squares at an orifice is proportional
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Fig. 1. Pull-pull configuration cylinders.

to the difference of pressures. As a result, the rate of flow
passing through an orifice, denoted asQ∗, is proportional
to a product of the valve control voltage and the root square
of the pressure drop across the orifice, i.e.

Q∗ = c
√

∆Pu∗ (8)

wherec > 0 is a constant,∆P > 0 denotes the pressure
drop across the orifice, andu∗ is the valve control voltage.

The dynamic equation of the fluid compressibility inside
a chamber can be written as [1], [6]

Ṗ ∗ =
β

V
(Q∗ − V̇ ) (9)

where P ∗ denotes the chamber pressure,V denotes the
chamber volume provided that the transmission line is thin
enough with ignorable volume,Q∗ is the rate of flow
entering the chamber, andβ is the fluid bulk modulus.

With the system as shown in Figure 1, it follows that
Va1 = Aaxa1 and Va2 = Aaxa2, where Va1 and Va2

denote the chamber volumes of the two cylinders withAa

representing the piston area, andxa1 and xa2 denote the
chamber displacements satisfying

xa1 =
l

2
+ δ1 − rψ (10)

xa2 =
l

2
+ δ2 + rψ (11)

where l is the length of the chamber,δ1 and δ2 are two
constants representing the assembly offsets,ψ andr denote
the rotational angle and the driving radius.

Let Q1 andQ2 be the rates of flow entering the upper
and lower chambers, respectively, as shown in Figure 1. It



follows from (8) that

Q1 =




cp1

√
Ps − Pa1u

∗ u∗ > 0
0 u∗ = 0
cn1

√
Pa1 − Pru

∗ u∗ < 0
(12)

Q2 =




−cn2

√
Pa2 − Pru

∗ u∗ > 0
0 u∗ = 0
−cp2

√
Ps − Pa2u

∗ u∗ < 0
(13)

wherePs andPr represent the supply and return pressures,
Pa1 andPa2 represent the pressures inside the upper and
lower chambers, respectively,u∗ is the valve control volt-
age, cp1 > 0 and cn1 > 0 are two constants associated
with the flows entering and leaving the upper chamber, and
cp2 > 0 andcn2 > 0 are two constants associated with the
flows entering and leaving the lower chamber.

In view of (9), the pressure equations of the two chambers
are written as

Ṗa1 =
β

Aaxa1
(Q1 +Aav) (14)

Ṗa2 =
β

Aaxa2
(Q2 −Aav) (15)

wherev is the linear velocity along the cylinders. Note that
the pressures inside the two cylinders can be converted into
the net pressure force as

P = Aa(Pa2 − Pa1) . (16)

Subtracting (14) from (15) and using (12), (13), and (16)
yield

Ṗ = β [u−Aaχ(t)v] (17)

where

u=




−
(

cp1
√

Ps−Pa1
xa1

+ cn2
√

Pa2−Pr

xa2

)
u∗ u∗ > 0

0 u∗ = 0
−

(
cn1

√
Pa1−Pr

xa1
+ cp2

√
Ps−Pa2
xa2

)
u∗ u∗ < 0

(18)

χ(t)=
1
xa1

+
1
xa2

(19)

Once
Ps > Pa1 > Pr (20)

Ps > Pa2 > Pr (21)

hold together withxa1 > 0 andxa2 > 0, (18) and (19) are
analytical and (18) is invertible such that the valve control
signalu∗ can be calculated formu. Equation (17) represents
the dynamics of the cylinder pressures. Only two parameters
β andAa are involved.

B. Adaptive Control and Stability Analysis

The output force equation can be written as

F = P − ff (22)

whereff represents the piston friction force governed by
(7).

The control u is designed in terms of the cylinder
dynamic model (17) as

u = k̂1Ṗd + Âaχ(t)v + kp(Pd − P ) + kf (Fd − F ) (23)

where k̂1 and Âa denotes the estimates of1/β and Aa,
respectively;kp > 0 andkf > 0 are two control gains;Fd

denotes the desired output force (the input to the controller)
with bounded derivative (̇Fd ∈ L∞); and Pd denotes the
desired pressure that is designed, in view of (22), as

Pd = Fd + f̂f (24)

f̂f = Yf θ̂f (25)

with Yf = [(1 − L(t))g(z, zss)S(z),
−(1 − L(t))g(−z, zss)S(−z),
(1 − L(t)), (1 − L(t))S(v)φ(v)v,
(1 − L(t))S(−v)φ(v)v,
L(t)S(Fd)ϕ(Fd),
L(t)S(−Fd)ϕ(Fd)] ∈ R1×7 (26)

θf = [kcp, kcn, k0, kvp, kvn, kfp, kfn]T

∈ R7 (27)

where θ̂f denotes the estimate ofθf . By using theP
function defined in [7, page 311], the estimated parameters
in (23)-(25) are updated by

k̂1 = P((Pd − P )Ṗd, ρ1, k
−
1 , k

+
1 ) (28)

Âa = P((Pd − P )χ(t)v, ρa, A
−
a , A

+
a ) (29)

(θ̂f )i = P((Fd − F )(Yf )i, ci, (θf )−i , (θf )+i ),
i = 1, 2, · · · , 7 (30)

where(•)i denotes theith element of matrix/vector•; ρ1 >
0, ρa > 0, and ci > 0 denotes the parameter updating
gains; and•− and •+ denote the lower and upper bounds
of parameter•, respectively.

An non-negative function is defined as

W =
1
2

{
1
β

(Pd − P )2 +
1
ρ1

(
1
β
− k̂1

)2

+
1
ρa

(Aa − Âa)2

+
7∑

i=1

kf

ci

[
(θf )i − (θ̂f )i

]2
}
. (31)

In view of (17)-(25), (3), (5), (7), the time derivative of (31)
can be written as

Ẇ =−kp(Pd − P )2 − kf (Fd − F )2

−kf (Fd − F )L(t) {[S(Fd)ϕ(Fd) − S(F )ϕ(F )] kfp

+ [S(−Fd)ϕ(Fd) − S(−F )ϕ(F )] kfn}
+

(
1
β
− k̂1

)[
(Pd − P )Ṗd − 1

ρ1

˙̂
k1

]

+(Aa − Âa)
[
(Pd − P )χ(t)v − 1

ρa

˙̂
As

]

+
7∑

i=1

{
kf [(θf )i − (θ̂f )i]



[
(Fd − F )(Yf )i − 1

ci
( ˙̂θf )i

]}
. (32)

Based on the definitions ofϕ, S andL(t), it can be checked
out that

−kfkfpL(t)(Fd − F ) [S(Fd)ϕ(Fd) − S(F )ϕ(F )]
≤ 0 (33)

−kfkfnL(t)(Fd − F ) [S(−Fd)ϕ(Fd) − S(−F )ϕ(F )]
≤ 0 . (34)

Furthermore, by using Lemma 1 in [7] (Equation (5) on
page 311) together with (28)-(30), it follows that

Ẇ ≤ −kp(Pd − P )2 − kf (Fd − F )2 . (35)

In view of (31) and (35), it yields

Pd − P ∈ L∞ ∩ L2 (36)

Fd − F ∈ L2 . (37)

Under bounded desired output forceFd and bounded ve-
locity v (which can be ensured by using a stable motion
controller such as thevirtual decomposition control [7]), f̂f

is bounded in view of (25) and (26). This leads to bounded
Pd in terms of (24). Consequently, pressureP is bounded
in terms of (36), i.e.

| P |≤ γp < +∞ . (38)

Meanwhile, the piston friction forceff is also bounded in
view of (3), (5), and (7). Therefore, the boundedness of
the output forceF is ensured from (22). Bounded output
force implies bounded accelerations. Thus, under bounded
Ḟd, the boundedness oḟPd can be ensured in terms of (24)-
(27) and (30). Furthermore,̇P is bounded in view of (17)
for bounded controlu obtained from (23), i.e.

| Ṗ |≤ γpd < +∞ . (39)

Finally, the boundedness oḟPd − Ṗ is ensured such that
Pd − P is uniformly continuous. Based on [8], asymptotic
stability ofPd−P → 0 can be achieved. SincėP is bounded
and the derivative offf can be expressed aṡff = f1(t) +
f2(t)Ḟ with | f1(t) |≤ γf < +∞ andf2(t) > 0, it follows
that Ḟ = Ṗ − ḟf ≤ Ṗ + γf − f2(t)Ḟ and furthermore
Ḟ ≤ (Ṗ + γf )/(1 + f2(t)) < +∞. The boundedness of
Ḟd − Ḟ implies thatFd −F is uniformly continuous. Thus,
asymptotic stability ofFd − F → 0 is ensured from (37).

Below, the boundedness of all signals will be proven.
define

Ṗ ∗ = Aa(Ṗa2xa2 + Ṗa1xa1) . (40)

It follows from (12)-(15) that Ṗ ∗ =
S(u∗)βu∗(cp1

√
Ps − Pa1 − cn2

√
Pa2 − Pr) −

S(−u∗)βu∗(cp2

√
Ps − Pa2 − cn1

√
Pa1 − Pr). Define

Ψ = S(u∗)(cp1

√
Ps − Pa1 + cn2

√
Pa2 − Pr) +

S(−u∗)(cp2

√
Ps − Pa2+cn1

√
Pa1 − Pr) > 0. Multiplying

Ψ to Ṗ ∗ yields ΨṖ ∗ = S(u∗)βu∗[c2p1(Ps − Pa1) −
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Fig. 2. Pressure tracking results between the desired pressure (force)
Pd (dashed line) and the measured Pressure (force)P (solid line) with
different cases of parameter adaptation forÂa. Figures (a) and (b)
correspond toρa = 700(V ·s/kN) andρa = 7(V ·s/kN), respectively,
underA−

a = 6(V · s) and A+
a = 15(V · s); figure (c) corresponds to

Âa = (A−
a + A+

a )/2 and figure (d) corresponds tôAa = 0.

c2n2(Pa2−Pr)]−S(−u∗)βu∗[c2p2(Ps−Pa2)−c2n1(Pa1−Pr)].
WhenPr ≈ 0, this equation can be expressed as

Ṗ ∗ = ε1(t)Ps − ε2(t)Pa1 − ε3(t)Pa2 (41)

with ε1(t) > 0, ε2(t) > 0, and ε3(t) > 0 subject to
ε1(t) < ε2(t) + ε3(t). In view of (16), adding both sides of
(41) by Ṗ xa1 and replacingPa1 by Pa2 − P

Aa
yield (xa1 +

xa2)AaṖa2 = ε1(t)Ps−[ε2(t)+ε3(t)]Pa2+ε2(t) P
Aa

+Ṗ xa1.
SinceP andṖ are bounded and independent ofPs, see (38)
and (39), once the supply pressurePs is chosen as

Ps >
Aaγpd max{xa1, xa2} + γp max{ε2(t), ε3(t)}

Aa min{ε1(t), ε2(t) + ε3(t) − ε1(t)} (42)

it follows that

Ṗa2 > 0 if Pa2 = 0
Ṗa2 < 0 if Pa2 = Ps .

(43)

Therefore, condition (21) will be valid∀t > 0. Similarly,
subtracting both sides of (41) bẏPxa2 and replacingPa2

by Pa1 + P
Aa

yield (xa1 + x − a2)AaṖa1 = ε1(t)Ps −
[ε2(t)+ ε3(t)]Pa1 − ε3(t) P

Aa
− Ṗ xa2. Under condition (42),

it follows that

Ṗa1 > 0 if Pa1 = 0
Ṗa1 < 0 if Pa1 = Ps .

(44)

Thus, condition (20) will be valid∀t > 0.

IV. EXPERIMENTS

In this section, experimental results will be demonstrated
when the proposed adaptive output force controller is ap-
plied to the first joint of a six-joint hydraulic robot (STVF)
installed at Canadian Space Agency [9].

An advanced computer control system running QNX
based operating system RT-LAB from OPAL-RT with a
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Fig. 3. Output force tracking results between the desired forceFd

(dashed line) and the measured forceF (solid line) with different cases of
parameter adaptation for̂kcp andk̂cn under activêk0. Figures (a) and (b)
correspond toc1 = c2 = 100(1/s) andc1 = c2 = 1(1/s), respectively,
with c3 = 20(1/s), underk−

cp = k−
cn = 0 andk+

cp = k+
cn = 2.0(kN);

figure (c) corresponds tôkcp = (k−
cp + k+

cp)/2 = 1.0(kN) and k̂cn =

(k−
cn + k+

cn)/2 = 1.0(kN), and figure (d) corresponds tôkcp = 0 and
k̂cn = 0.

multi-processor configuration is being used with a sampling
rate of 1000Hz. The measurements include: the chamber
pressuresPa1, Pa2, the supply pressurePs, the loadcell
force F , and the joint angleψ read by using a 23-bit
absolute encoder. The linear velocityv is derived fromxa1.
The control output is the valve voltageu∗. Note thatu
in (23) is a virtual control variable. Therefore, in control
implementation the unit ofu∗ (Volt) is used instead.

The functionφ(v) in (3) is chosen as−1 to accommodate
the Stribeck effect only, since the operational velocity of the
robot is very low such that the velocities of the cylinders in
most circumstances are limited by a range of3cm/s which
is dominated by Stribeck friction [1].

The functionL(t) is basically a differentiable switching
function that ensures a smooth transition between sliding
motion and presliding motion. A design used in this paper
is

L(t) = 1/[1 + (δ1ṽ)3]
˙̃v = 10(| v | −ṽ)

whereδ1 = 300(s/m) is a constant and̃v ≥ 0 with ṽ(0) =
0.

The feedback gains arekp = 1.2(V/kN) and kf =
2.4(V/kN), The pressure differential parameterk̂1 =
0.01(V · s/kN) is used as a constant.

A. Pressure Control

Figures 2 illustrates the pressure tracking results. The
dashed lines represent the desired pressurePd and the solid
lines represent the measured pressureP . Figure 2 (a) shows
the result of using (23) with a full version of parameter
adaptation (29). Figure 2 (b) shows the result when the
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Fig. 4. Output force tracking results between the desired forceFd

(dashed line) and the measured forceF (solid line) with different cases of
parameter adaptation for̂kcp and k̂cn under inactivêk0 = 0. Figures (a)
and (b) correspond toc1 = c2 = 100(1/s) and c1 = c2 = 1(1/s),
respectively, underk−

cp = k−
cn = 0 and k+

cp = k+
cn = 2.0(kN);

figure (c) corresponds tôkcp = (k−
cp + k+

cp)/2 = 1.0(kN) and
k̂cn = (k−

cn+k+
cn)/2 = 1.0(kN), and figure (d) corresponds tôkcp = 0

and k̂cn = 0.

parameter adaptation gainρa is reduced 100 times while
keeping the other parameters unchanged. Figure 2 (c) shows
the result when the parameter adaptation stops and a fixed
parameter (̂Aa = 10(V · s)), which is the average of the
lower and upper bounds, is used instead. Figure 2 (d) shows
the result when there is no velocity compensation.

The experimental results demonstrate that the parameter
adaptation gain has a weak impact on the pressure tracking
control, since the difference between Figure 2 (a) and (b) is
not significant. However, using parameter adaptation does
produce a better result than using fixed parameters, the
difference is reflected between Figure 2 (b) and (c). Finally,
the pressure doesn’t track at all if the velocity feedforward
compensation is not added.

B. Output Force Control

Figures 3 and 4 demonstrate the experimental results of
using different compensations with respect to the piston
Coulomb friction. The dashed lines represent the desired
output forceFd and the solid lines represent the actual
output forceF . Figure 3 (a) shows the output force tracking
result with a full version of parameter adaptation (30).
Figure 3 (b) shows the output force tracking result when the
parameter adaptation gainsc1 andc2 are reduced 100 times,
while keeping the other parameters unchanged. Figure 3 (c)
shows the output force tracking result when the parameter
adaptation stops and a set of fixed parameters (k̂cp = k̂cn =
1.0(kN)) is used instead. Figure 3 (d) shows the output
force tracking result when there is no Coulomb friction
compensation ((̂kcp = k̂cn = 0)). Figure 4 corresponds to
Figure 3 except that̂k0 = 0 is used.

Both the Coulomb friction compensation characterized by
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Fig. 5. Transfer function of output force tracking control.

k̂cp and k̂cn and the DC offset compensation characterized
by k̂0 contribute to the output force tracking performance.
By either disabling the DC offset compensation or reducing
the parameter adaptation gains or disabling the parameter
adaptation for Coulomb compensation, the output force
tracking performance will be degraded. This can be clearly
seen by observing the differences between Figure 3 (a)
and Figure 4 (a) for disabling the DC offset compensation,
between Figure 3 (a) and Figure 3 (b) for reducing the
parameter adaptation gains, and between Figure 3 (a) and
Figure 3 (c) for disabling the parameter adaptation fork̂cp

and k̂cn. The close observation between Figure 3 (b) and
Figure 3 (c) indicates a small difference between low-gain
parameter adaptation and fixed parameter compensation for
k̂cp and k̂cn provided that the adaptation of the DC offset
k̂0 is active. However, the difference will be big oncek̂0 is
inactive withk̂0 = 0, as shown in Figure 4 (b) and Figure 4
(c). The poor tracking performances in Figure 3 (d) and
Figure 4 (d) correspond to no parameter compensation for
k̂cp and k̂cn.

Finally, the transfer function20log10(F/Fd) (dB) is
shown in Figure 5, where∗ indicates the frequency re-
sponses when individual sinusoidal excitations are added
to the white noise excitation for improving the confidence
of the transfer function. The transfer function demonstrates
a 20Hz bandwidth within±1dB.

V. CONCLUSION

In this paper, a novel adaptive control scheme is proposed
to control the output force of the hydraulic cylinders. Unlike
some previous approaches where only the chamber pressure
is measured and controlled, and the output force is predicted
by using a friction model with fixed parameters, the pro-
posed controller directly measures the output force by using
loadcells. The error between the desired output force and the
measured output force is not only used for feedback control,
but also used to update the parameters of a friction model
which incorporates Coulomb, Stribeck, and viscous frictions
in sliding motion and output-force dependent frictions in

presliding motion.L2 and L∞ stability and furthermore
asymptotic stability are guaranteed for both pressure control
and output force control.

The experimental results have clearly demonstrated the
necessity of using parameter adaptation to handle both
the velocity based pressure compensation and the piston
friction force compensation. Finally, the proposed output
force controller demonstrated its ability to reach a band-
width of 20Hz within ±1dB, which clearly indicates the
dynamic equivalency between the hydraulic actuation and
the electrical actuation in robotic applications.
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