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Abstract: In a class of nonlinear systems, additive faults act 
as changes in the state-transition matrix. Each fault can be 
characterized by a trajectory in the parameter space. 
Identifying the parameters online and comparing them to 
pre-computed trajectories offers an approach to fault 
isolation. The distance between the trajectories and the 
observations is subjected to Generalized Likelihood Ratio 
(GLR) testing. As a key element in this procedure, the best 
parameter estimation technique has been selected by 
comparing some typical estimation methods. Simulation 
studies are included to support the theoretical conclusions.  

   

1.  INTRODUCTION 

Most model based fault detection and diagnosis methods 
rely on the concept of analytical redundancy. Its main idea 
is the comparison of the measured outputs with the 
predictions computed from a mathematical model. The 
differences, expressed as residuals, are the indication of the 
presence of faults, as well as possible disturbances, noise 
and modeling errors. Approaches in this framework include 
parity relations, diagnostic observers, Kalman filters, 
parameter estimation etc (see e.g. Gertler, 1991).  

Residuals are usually enhanced to support the isolation of 
faults. Any a priori information on the nature of faults may 
be utilized in residual enhancement. While in a linear 
system residuals may be designed to exhibit directional 
properties in response to a particular fault, in a nonlinear 
setting specific trajectories may be associated with faults.    

In a class of nonlinear systems, faults appear as changes in 
the state transition matrix, leading to fault-specific 
trajectories in the space of the parameters of the 
characteristic polynomial. The comparison of the distance 
between the observed data and the parameter trajectories, 
pre-computed from of the fault model, offers an isolation 
scheme.  

The actual parameters are obtained on-line, with some 
systems identification method. With the system subject to 
random noise, the comparison of distances needs to be done 
in a statistical framework. Relying on a Gaussian 
assumption, a Generalized Likelihood Ratio (GLR) 
approach has been developed which leads to easy χ2 testing. 
Similar GLR ideas have been applied to linear systems in 
(Willsky and Jones, 1976), and (Gertler, 1998). 

In this framework, the fault diagnosis performance highly 
depends on the accuracy of the parameter estimation. We 
will select the appropriate estimation technique by 
comparing the performance of some typical algorithms, 
including input-output and subspace identification methods.  
 
Simulation studies on two artificial systems,  one second 
order and one fourth order, will be presented. A rough 
picture of how the GLR-FDD procedure works will be 
shown on the first system, and then some more delicate 
issues will be discussed in connection with the second 
system.  
 

2.  PROBLEM FORMULATION 

2.1  System Description 

Consider a nonlinear state-space system: 
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where ϕ(t)=ϕ[y(t), u(t)] and Ψ(t)= Ψ[x(t)]. To make the 
problem more tractable, assume that 
            Ψ(t) = [ψ1(t), …, ψk(t)] = [N1x(t), …, Nkx(t)] 
so that Eq. (1a) becomes: 
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= A(t)x(t) + Bϕ(t)                 (3) 
 
Thus the original nonlinear system has been recast as a 
linear time-varying system. 
 
2.2 Fault-Specific Trajectory  

Equation (3) indicates that the faults affect the state-
transition matrix in a predictable, fault-specific way. 
Consider the characteristic polynomial of the system: 
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Clearly, the parameters h1 , …, hn and the poles ξ1 , …, ξn 
depend on the presence/absence and size of the faults.  
 
A certain type of fault, j, and its size, pj, lead to a specific 
parameter vector hj(pj) = [h1 , …, hn]T. Assuming one fault 
at a time, and with the matrices Nj known, a single 
trajectory of the parameters can be pre-computed for each 
fault, in terms of the fault-size, and “drawn” in the n-
dimensional space. The isolation of the additive faults p1, 
…, pk will then require the estimation of the characteristic 
polynomial h+(z). The estimate represents a point in the 
parameter space. The distance of this point from each of the 
pre-computed trajectories is measured and the fault 
associated with the closest one is declared.  
 

3. PARAMETER ESTIMATION 

3.1  Estimation of the Characteristic Polynomial 

Since any fault with a certain size corresponds to a specific 
point in the parameter space, the procedure relies on  
parameter estimation. The characteristic polynomial h+(z) is 
also the denominator of the system transfer function. The 
problem becomes the estimation of the denominator 
coefficients of the system transfer function. The estimate of 
the parameter vector can be obtained by any variant of the 
least squares approach.  
 
A standard linear state-space model with output noise can 
be transferred into input-output form as 
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In the simple, SISO case, this is 
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or re-written in transfer function format: 
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where v(t) represents the noise term. A direct polynomial 
form is written as: 
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Let , then the 
model becomes: 
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where  π=[h1 … hn  g0 … gm]T  and the colored equation 
error term is: 
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Considering the Hankel matrix formed from N consecutive 
observations, the model becomes: 
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Then the LS estimate of the parameter vector π is: 
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In order to apply the GLR technique, the joint distribution 
of the parameter estimates must be derived.  
 
3.2  Joint Distribution of the Parameter Estimates  

As it is well known, if the equation error w(t) is zero-mean, 
Guassian white noise, the estimate for the model Eq.(9) 
follows the normal distribution: 
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where , σ12 })()({ −= T
w ttE ϕϕσP w is the standard deviation 

of the noise, and π is the real parameter vector. Since we 
only need to consider the first n elements of the parameter 
vector , we retrieve the respective part of the variance 

matrix P, namely, the variance matrix of , M, which is 
the left-upper sub-matrix of P. Thus, the joint distribution 
of  can be described as: 
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where h0 is the real parameter vector, which is the first n 
elements of the real parameter vector, π.   

Note that we assumed that the equation error is a white 
Gaussian process. However, it is generally colored. A more 
accurate characterization of the distribution would be too 
complicated for real-time estimation. Therefore, we rely on 
the assumption of the Gaussian white noise, which  is 
acceptable since the noise is relatively small in the real 
system. Thus, the density function of   is: )(ˆ tLSh
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where K is a constant, hj(pj(t)) is the pre-computed vector 
for the j-th fault of size pj(t). We can define a simplified 
log-likelihood function as: 
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where we ignore the factor K since it cancels out in the 
likelihood ratio anyway.  

Usually, the standard deviation of the noise is not available. 
However, we can estimate from the data as: wσ
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where ),( Ntε is the prediction error, and dim( ) is the 
dimension of vector .  
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4. GLR-FDD FRAMEWORK 

4.1 Fault Detection 

A simple testing can be constructed for the detection of the 
presence of faults (Gertler, 1998). The concept is to test 
whether the estimated parameter vectors are inside a hyper-
ellipsoid in the hyperspace, which corresponds to a constant 
density contour of the parameter joint normal distribution. 
The contour is chosen according to a selected false alarm 
rate, α.  
 
Re-write Eq. (17): 

 

0
1

000 )(ˆ)(ˆ]),(ˆ[log2 hhMhhhh −−=− − tttL LS

T

LSLS [ ] [ ]   (19) 

which obeys the central χ2 distribution with degree of 
freedom λ = n⋅N. Here n is the order of the system and N is 
the number of observations. Note that here we only 
consider the single vector h0 and its variance matrix M0, 
which are from the fault-free situation.  
 

4.2  Fault Isolation 

A constrained GLR approach can be implemented 
(Basseville and Nikiforov, 1993; Gertler,1998) to measure 
the distances between the estimates by the windowed 
observations and the pre-computed parameter trajectory and 
then to decide which point at the trajectory is the closest to 
the estimated parameter vector . Based on this approach, 
we can not only determine the fault type but also estimate 
its size.  

LSĥ

 
Define a set of fault hypotheses: 
        H j: the j-th fault is present ( j = 1, …, k) 
The isolation test is triggered once the detection test reports 
a fault. Then, the procedure can be described as: 

(1) Pre-compute the trajectories h j( pj)  (j = 1,…, k); 
(2) By applying the LS method to the windowed N 

observations, obtain and its joint distribution at 
time t; 

)(ˆ tLSh

(3) Compute the log-likelihood functions under each fault 
hypothesis.  

(4) Find the minimal value (maximal density function) of 
the log-likelihood functions among various fault 
hypotheses and their sizes. This value indicates the 
estimated fault type and its size. 

 
GLR testing can be simply written as: 
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Generally, no closed-form solution exists for the fault size 
that corresponds to the minimum of the likelihood   
functions   since    h j(pj)    implies   the computation of the 
matrix determinant. Therefore, in practice, one has to rely 
on a numerical algorithm to obtain the optimal solution. In 

our research, a MATLAB built-in function, fmin, has been 
used. This minimization algorithm works without 
derivative computation (Brent, 1973) and employs a 
combination of golden-section search and successive 
parabolic interpolation, leading to fast convergence in 
reaching the minimal value in Eq. (20). 

4.3  Enhanced LS Identification: RCLS 

Since the noise term in the model shown in Eq. (8) is 
a colored Gaussian noise, the standard LS estimation 
cannot lead to an unbiased result. Especially, with the 
growth of the model order, the estimation bias becomes 
significantly large even with very small noise. For the 
model in Eq. (8), an approach, called the Recursive 
Compensation Least Squares (RCLS, Fang and Xiao, 
1988), is developed to overcome this bias problem.    
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In the RCLS approach, the noise term in Eq. (10) is split to 
two parts: 
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Considering the LS shown in Eq. (12), we can derive: 
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Apparently, the standard LS estimate, , is biased due to 

the term . Thus, by considering a compensation 
term, we can eliminate the bias. 
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In each iteration of the RLS, the RCLS updates the LS 
result using a bias-compensated term: 
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and re-evaluates the variance of the noise: 
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We can easily prove that the RCLS is unbiased. In order to 
introduce it into GLR framework, we need to derive its 
joint distribution.  
 
The RCLS estimation can be expressed in one-step form: 
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where [ ] 112 −−−= DCIG wσ . Then its variance is calculated as  
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Since ϕ(t)ϕT(t) can be handled as a deterministic matrix 
(Ljung, 1999), we have: 
                   [ ] TT
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Thus the RCLS estimate follows the normal distribution as 
well: 
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Note that there is only one term, , which is unknown; 
instead can we use its estimate, . Similarly, we can 

retrieve the first n elements, , and their variance 

matrix . Thus, the joint distribution can be expressed 
as: 
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Note that this result corresponds to Eq. (15) in the standard 
LS; then we can follow the same procedure.  
 

4.4  Subspace Identification 

In the past few years, a novel class of identification 
approaches, called Subspace Identification Methods 
(SIMs), has been presented to avoid the priori 
parameterization and nonlinear optimization problem. SIMs 
(Overschee and DeMoor, 1994) refer to the state-space-
based identification that determines the states of the system 
directly from the observation data, and allows the 
associated covariance matrices to be solved directly 
through linear LS. Their algorithms rely on some numerical 
techniques, especially singular value decomposition (SVD) 
plays a critical role in them. There are three main subspace 
algorithms: numerical algorithms for subspace state space 
system identification (N4SID, Overschee and DeMoor, 
1994), multivariable output-error state space (MOESP, 
Verhaegen, 1994), and canonical variate analysis (CVA, 
Larimore, 1983). Furthermore, those algorithms have been 
placed in a unified framework, the only difference among 
them being the choice of weights (Ljung, 1999).   
 
In order to compare the LS methods with the SIMs, we 
consider three typical subspace algorithms: MATLAB 
built-in function, N4SID, (Overschee and DeMoor, 1994), 
the instrumental-variables subspace algorithm (SIM-IV) 
contributed by Chou and Verhaegen (1997), and the CVA 
approach presented by Larimore (1990)    
 

5. SIMULATION STUDIES 

5.1  Scenario 1:  Second-order LTI system 
Let us start with a simple state-space model: 
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Assume two types of faults and define their coefficient 
matrices as: 
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 Figure 1: GLR-FDD for a 2nd order system 
 
The size, pj, (j = 1, 2) of the faults varies from 0.0 to 1.0. 
The standard deviation of measurement noise is 0.1. 2400 
data points have been collected and each window contains 
40 points. A process with the first 1/3 period without any 
fault, the second 1/3 period with fault 1 and size = 0.5, and 
the last 1/3 period with fault 2 and size = 0.2, was 
simulated.  For the χ2 test, the confidence level was set at 
95%. Simulation results are shown in Figure 1.  
 
Note that the upper plot in Figure 1 shows the result of the 
χ2 testing and the lower plot exhibits the result of the fault 
diagnosis. Here the solid line in the lower plot represents 
the real fault size; the dots indicate the estimated fault type 
and size. If the result is fault 1, a symbol ‘⋅’ is shown; if it 
is fault 2, the symbol ‘+’ is drawn. 
 
We can see that, in a simulated second order LTI system, 
the GLR-FDD framework can correctly detect the fault, 
determine the fault type, and estimate the fault size.  
 
5.2  Scenario 2: Fourth-order LTI system 

Here a more challenging model has been investigated. This 
is a fourth-order LTI system: 
            [ ])6.07.08.09.0(diag=A ,               
            [ ]T3.03.05.02.0 −−=B , 
            [ ]1.01.02.01.0=C .  D = 0. 
Assume two types of faults and define their coefficient 
matrices as: 
                [ ])2.00.14.02.0(1 −−= diagN ,   
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One of the key points of this GLR-FDD approach is to 
identify the parameters of the characteristic polynomial, h. 
The subsequent steps of this approach will be ineffective 
unless the result of the identification is reasonably close to 
the real parameters. With the growth of the system order, 
such as the fourth-order system here, the identification bias 
may become significantly large. Thus, in order to guarantee 
the effectiveness of the whole framework, we have to select 
an identification method as good as possible. Since 
identification is  independent from the other procedures in 
this framework, we can consider this issue separately.  
 
Of course, there are numerous identification methods after 
the exploration of several decades in this field. However, 
identification is not the main focus of this paper. Therefore, 
here we consider only five typical identification methods:  
CVA,  SIM-IV and N4SID, which all belong to subspace 
identification; the standard LS, and the RCLS, which 
belong to the least squares family.  
 
In the comparison of the five identification methods, we 
only consider the fault-free situation in the 4th order system. 
Different levels of the noise magnitude (standard deviations 
from 10e-6 to 10e0) have been taken into account; at each 
noise level, 200 pairs of data (input u and output y) have 
been generated and this simulation has been repeated 20 
times to obtain an average.  
 
The quality indicator of identification is the mean square 
parameter estimation error (MSPE), which is: 
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where h is the real parameter vector, is the i-th 
identification result, and N is the number of identification 
runs. As for the subspace identification methods, has 
been indirectly obtained from the directly identified state-
space model, by  transformation.   
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Double-axis logarithmic scaling has been applied for 
clearer appearance. The comparison plot is shown in Figure 
2.  We can see that between –1 and 0 of the noise STD 
level, all the approaches behave similarly. However, the 
identification bias is too large to be useful for the  FDD 
procedure. In the lower noise STD area (less than -3), the 
noise level is too small to make  practical sense. Between –
3 and –1, a reasonable range for the noise level, the RCLS 
method performs better than the other four. 
 
In general, subspace identification provides the state-space 
model, which is not unique. Thus, only the eigenvalues of 
the  state  transition  matrix, A, are regarded as the indicator 

 
Figure 2: A full comparison among 5 identifications 
 
of identification performance. However, they are less stable 
than the parameter vector of the polynomial model and 
sometimes are complex numbers. Therefore, the subspace 
identification method is not an appropriate choice to deal 
with the FDD problem presented in this paper. Thus, we 
only consider two LS approaches, the standard LS and the 
RCLS, as identification methods in the GLR-FDD 
framework.  
 
The fault sizes, pj(j = 1, 2), vary from 0 to 1. The sequence 
does not contain any fault during its first ¼ part. Then  fault 
1 has been added with size = 0.8; the STD of the noise is 
0.005. 4000 data points have been collected and 100 data 
were windowed. For the χ2 test, the confidence level was 
set at 95%. The simulation result with the RCLS is shown 
in Figure 3. For comparison, the same GLR-FDD 
procedure but with the standard LS has been tested, its 
result is shown in Figure 4.  
 
Note that this framework is able to detect the occurrence of 
the fault by χ2 testing, moreover, it is able to determine the 
fault type and identify its size by the RCLS identification 
and the GLR technique. But if the standard LS 
identification is applied in this framework, the performance 
becomes worse. The algorithm fails to detect the fault and 
to identify its size although it gives the correct fault type.  
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Figure 3: GLR-FDD with CLS for 4-th order system 
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Figure 4: GLR-FDD with LS for 4-th order system 
 
These results have also indicated that the identification 
method plays an important role in this GLR-FDD 
framework. More accurate identification will lead to more 
effective FDD performance. However, when the STD of 
noise is increased to 0.01, this procedure cannot give a 
meaningful FDD result with any identification method. The 
essential reason is that no identification technique is able to 
offer a reasonable estimate at that noise level. This can be 
observed apparently in Figure 2.  

 

6. CONCLUSION 

For a specific fault model shown in Eqs. (1) – (3), assuming 
that a priori information on the model and the faults is 
available, a statistical diagnostic algorithm has been 
constructed not only for fault detection but also for fault 
diagnosis. Certain system features, such as the parameter 
trajectory of the characteristic function or zero-pole 
trajectory, essentially provide a link to specific faults. We 
make use of this concept for the FDD investigation by 
measuring the statistical distance between the pre-computed 
trajectories and the observations. 
 
A simple detection test is introduced which, in the usual 
way, converts the multidimensional Gaussian problem into 
a scalar χ2 testing. For fault diagnosis, a Generalized 
Likelihood Ratio approach is developed. The conditional 
estimates of the parameter vector of the characteristic 
polynomial are computed, under the constraints imposed by 
the various fault hypotheses. This is followed by the 
computation of conditional likelihood functions for each 
hypothesis.  
 
In our comparison study among the identification methods, 
the Subspace methods have not behaved better than the 
traditional LS methods in the 4-th order system. Moreover, 
an enhanced LS identification, the RCLS method, was 
found to possess outstanding identification ability. We have  
selected the RCLS also because the LS class methods have 
been well developed for several decades and they may offer 

more options. Moreover, the LS methods can directly give 
the transfer function parameter estimates, while the 
Subspace methods involve a detour through the state space 
model.    
 
The joint distribution of the parameter estimates under the 
RCLS technique has then been derived for  use  in a GLR-
FDD framework. Finally, the complete GLR-FDD 
framework, including χ2 testing,  RCLS identification and 
the GLR technique, has been developed. Simulation studies 
for a second order state space system and a 4-th order 
system have demonstrated the algorithm’s ability in  fault 
detection and diagnosis.    
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