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Abstract— This work proposes a simple, robust, 
efficient, and practicable method to automatically flag 
poor control performance.  It uses only the run length of 
the actuating errors. Run length is defined as a State, and 
transitions between States are then modeled as a Markov 
Chain.  Transition probabilities are then compared with 
the control limits established from a user-defined period 
of good control. 

 
I. INTRODUCTION 

 
Controllers are tuned for desirable performance.   

However, over time, control performance degrades due to 
changing process factors, and what once was a good 
controller becomes a bad one, unable to control the process 
efficiently. Good control performance is necessary for 
process safety, product quality, and profitable manufacturing 
practice; and real time detection and diagnosis of faults have 
become an integral part of process design [8]. However, only 
about a third of industrial controllers provide an acceptable 
level of performance, despite the performance measures 
developed within the past 10 years [1, 6].  

 A typically large process operation consists of hundreds 
of control loops, often operating under varying conditions. 
Maintenance of these loops is generally the responsibility of 
either a lead operator, control engineer, or an instrument 
technician; but other responsibilities, coupled with the 
tediousness of consistently monitoring a large number of 
loops, often result in control problems being overlooked for 
long periods of time [3].   

In any control scheme, a deviation from setpoint is a 
function of both controller performance and the plant 
disturbance spectrum, and it is a general requirement that any 
controller performance assessment technique should have at 
least the following basic attributes: 1) Be independent of 
disturbance or setpoint spectrums, 2) Be able to be 
automated, 3) Require minimum specification of process 
dynamics, and 4) Be sensitive to detuning or process model 
mismatch [3].   
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A comprehensive approach for controller performance 
monitoring usually includes the following: 1) Determination 
of the capability of the control system, 2) Development of 
suitable statistics for monitoring the performance of existing 
system, and 3) Development of methods for diagnosing the 
underlying causes for changes in performance of the control 
system. Among the various methods for detecting changes in 
an industrial process, statistical methods generally 
predominate in using sampled data for decision analysis [11].   

Minimum variance control (MVC) and its derivatives, 
popular benchmarks for control performance evaluation, are 
based on the work of Harris, et al. [2]. MVC requires that the 
process delay be known; however, the delay in chemical 
processes changes during routine operation, and online 
estimation is often not practicable.  A control performance 
technique that does not require any process knowledge will 
be desirable.  

An automated, goodness of control performance monitor 
developed by Rhinehart [9] uses the ratio of the expected 
variance of the deviation of the controlled variable from the 
setpoint to one half of the expected variance of the deviation 
of two consecutive process measurements.  It then compares 
the current ratio-static value with some critical values to 
indicate performance changes. This technique however, just 
like other performance monitoring techniques compared a 
single index value to a trigger value to judge the performance.  
It did not consider the distribution of index values; and, 
therefore, was not accepted as a completely functional 
approach for performance assessment [7].   

The Linear Quadratic Gaussian (LQG) benchmark was 
proposed as a more appropriate tool for assessing the 
performance of controllers [4].  However, calculation of LQG 
benchmark requires a complete knowledge of the process 
model, which is often a demanding requirement or simple not 
possible for on-line assessment. 

Recently the chi-squared goodness-of-fit statistic to 
compare the distribution of a performance index (run length) 
within a window of data to a reference run length distribution 
in order to determine the performance of a controller was 
proposed.  A statistically significant change in the distribution 
is indicative of a significant change in controller 
performance.  The technique uses only routine plant data and 
is suited for online application [7].  Although it uses the 
generally robust chi-squared test, the theoretical foundation is 
not tractable. 

The technique developed in this work also uses run 
length distribution data.  However, it is based on binomially 
distributed variables, which provides a more satisfying basis 
for fundamental analysis.   
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II. DEVELOPMENT OF THE HEALTH MONITOR 
 

A. Definitions 
 
A few definitions will help the reader.  
Data:  Actuating error or process-model mismatch.   
Run length:  The number of contiguous past data of like 

sign between consecutive zero crossings. 
Zero Crossing: The switching of sign of the actuating 

errors from + to –, or – to +.  In the special case where the 
error is equal to zero, it does not signify a zero crossing and 
the same sign as the prior State is maintained. 

Transition: The change in State, e.g. a run of +2 to –1. 
State: The run length with a sign representing whether 

run was comprised of – or + data.  Further, if the number of 
States were limited to a maximum value of +3 or –3 for 
instance then a run length of 5 negative errors would be in 
State of –3. 

Transition Probability: The probability of moving to 
another State at the next observation. 

Count: The number of times a State has been occupied 
(Cumulative State value). 

Window: A reference period of the past N samplings 
which provide data for statistical comparison at each 
sampling. 

 
B. Measurement of Actuating Errors 

 
 When a controller is in operation, the actuating errors 

(Setpoint minus Controlled Variable) are generated 
sequentially as shown in Figure 1. 

 

Fig.1. Controller Actuating Errors  
    
Labeled is a period of good control when the controller 

was able to desirably manipulate the controlled variable in 
order to make the process stable and minimize deviations of 
the process output variable from the process setpoint. Figure 
1 also illustrates a period when the controller was aggressive, 
resulting in increased oscillations in the process output.  
Lastly, a period of sluggish control is labeled.  Not shown are 
examples of constraint encounters, sticktion, or continuous 
disturbances, all of which are flagged by this proposed 
method.  The actuating errors as they occur are labeled 

showing their run length in Figure 2.  Errors above the mean 
are labeled as positive and those below are labeled as 
negative.  If the actuating error persists on one side of the  
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mean, the run length numbering continues on that side with 
the appropriate sign.  However, anytime a zero crossing 
occurs, it signifies a sign change, and the state numbering 
also changes from positive to negative (or vice versa) and 
begins again with either +1 or –1 as appropriate.  If the error 
has a value of zero, it is not a zero crossing, and the run 
length continues to increase, with the State bearing the same 
sign as the prior State.  Shown here, for illustration, the 
maximum State number is 4. Runs of 5, 6, or more, remain in 
a state of ±4.  

 
C. Model States as a Markov Chain 

 
A Markov Chain is a probabilistic model describing the 

State transition of a system where the present State depends 
only on the immediately past State and not on the manner the 
system arrived at this particular State [10].  See Figure 3. 
Given that an actuating error run is in a State of +i, it only has 
2 (binomial) transition options for the next observation.  It 
can either move to a State of +i+1 or make a zero crossing to 
a State of -1.  The directed paths in Figure 3 indicate the 
allowable state transitions. If it is in a State of -i, it also has 2 
options of either moving to a State of  –i-1 or making a zero 
crossing to a State of +1. This Markov Chain Model is shown 
with k States (k = 8).  In general the run length can be any 
number, but for practical purposes, it is appropriate to limit 
States.  Any run length higher than the extreme State (E) 
remains in the extreme State.  Intuitively, the authors believe 
that the number of States should reveal about 80% of the 
State transitions.  Based on this, the authors defined twelve 
(12) total States with the States of ±6 as the extreme States 
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for this work.  This implies that all run lengths of positive 
errors of 6 and above are labeled as being in State +6. 
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Fig. 3.  A Schematic of Markov Chain with 8 States 

 
For each State, the number of times that the actuating 

error is in a State +i or –i is denoted by n+i or n-i.  These 
counters are shown within the circles representing State 
nodes. Since the run can not stay in an interior state, the 
number of times that runs enter an interior State is the same 
as the number of times that a run existed in that State. 
Therefore, the number of transitions from a State of +i-1 to a 
State of +i will, also, be given by n+i. The number of 
transitions from an interior  State of +i to a State of -1 will 
then be given by n+i – n+i+1. The analysis is equivalent for 
runs that exist in negative States.  If P(+i)  denotes the 
probability of  transition from an interior State of +i to a State 
of -1, then:  
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When the run length enters the penultimate State (+E-1, or –
E+1) or the extreme State (+E or -E), the determination of the 
transition probability is different from Equation (1).  In the 
Penultimate State (i.e. +3 to +4 or -3 to -4 in Figure 3), the 
transition probability is given by: 
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hile in the extreme State, the transition probability from the 

 
 

Figure 4 shows a flow chart of the entire structure of the 
proposed health monitor.  The steps performed are described 

fined by the user. After data has 
been

nce Monitor 

below.  For each stage, at each sampling time, measure the 
process controlled variable (CV) and the setpoint (SP), and 
calculate the error (SP-CV).  

Stage 1 - Initialization: Collect data for the entire length 
of a good control period as de
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 collected, calculate the transition probabilities 
associated with each State.  If the actuating error run is in a 
State of +1, then it can only make a transition to a State of +2 
with probability denoted by 1-P(+1) or make a zero crossing 
to a State of  -1 with probability denoted by P(+1).  Similarly, 
if the actuating error is in a State of +2, then it can only make 
a transition to a State of +3 with probability denoted by 1-
P(+2) or make a zero crossing to a State of  -1 with 
probability denoted by P(+2).  A probability 1-P(+E) denotes 
that the actuating error persists in the extreme positive State, 
while 1-P(-E) denotes that the run persists in the negative 
extreme State.  Once transition probabilities are calculated, 
determine the control limits for the data collected using 
binomial statistics. Store the control limits and use them as 
checks for future transition probabilities.  

 

Fig. 4.  Process Flow Chart for Performa
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where, n(+E) denotes the total number of times the run length 
existed in the extreme State (either entered or reentered), and 
n(+E’) denotes only the total number of times that the run 
length left the penultimate State (i.e.+E-1) and entered the 
extreme State.   The same analogy is true for p(-i) if all the  
"+" signs in (1), (2) and (3) above are replaced with "-" signs. 
  

D. Structure of Proposed Health Monitor 
 



 
Stage 2 – Monitor: In the moving window of data, 

com are each transition probability with the control limits.  If 
any 
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p
transition probability lies outside the control limits, it 

indicates data in the new window has a significantly different 
behavior from the “good” reference.  This could be the result 
of a setpoint change or a disturbance.  The controller needs 
time to adjust to any such disturbance.  Hence, a grace period 
equal to the closed loop settling time (CLST) plus the 
window length is allowed.  If after the grace period is 
exceeded, the controller has still not been able to adjust to the 
disturbance, then the monitor should raise a flag and provide 
a retroactive time stamp based on the grace period.  If the 
controller is able to adjust to the disturbance within the grace 
period, the violation counter is reset to zero. 

 
E. Binomial Statistics to Check for Viol
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E. Binomial Statistics to Check for Viol
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rmine control limits, which are used as operating limits to 

check the transition probabilities for violations.  It is 
applicable under conditions where: 1) All the trials are 
identical, 2) Each has only two possible outcomes, 3) The 
probabilities of the two outcomes remain constant, and 4) The 
trials are independent [5].    For X outcomes in N trials, the 
binomial distribution makes use of the binomial formula:   
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Equation (4) however, defines the pr ability ne 
State transition given a level of significance α. However, 
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e are a total of ‘k’ states within a window, and each State 
transition is associated with a level of significance denoted by 
αi (where i, denotes State in this work). Since the monitor 
flags if any one of the k transitions is in any of the extreme 
regions of the binomial density distribution as shown in 
Figure 5, the composite level of significance for the entire 
health monitor (i.e. any one of k events) will be different 
from an individual event.  Let the composite (total) level of 
significance of the monitor be denoted by αT.  Then αT  = sum 
of the extreme tails in Figure 5.  So P(Data is in extreme 
region) = αT and P(Data not in extreme region) = 1-αT  =  
P(no violation).  Let P(Ti) =  probability of the ith transition, 
then  P(Ti) = probability that Ti is not extreme, where the null 
hypothesis, H0: (All State transitions are equal to the 
reference period). Then, P(H0:) = P(T-6 is not extreme and T-5 
is not extreme and …T-1 is not extreme and T1 is not  
extreme…and T6 is not extreme). Mathematically, P(H0:) = 
P(T-6 is not extreme)*…* P(T-1 is not extreme)* P(T1 is not 
extreme)*…* P(T6 is not extreme) = 1-αT .  Hence, 1-αT  = 
[1-P(T-6 is extreme)]*…* [1-P(T-1 is extreme)]* [1-P(T+1 is 
extreme)]*…* [1-P(T+6 is extreme)]. Or, 
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where k is the total number of States.  Equation (5) 
establishes the critical alpha, 

 
Let X = n, given H0: and N = 

tal number of State transitions, from Equation (4),  

individual State transition beyond which the monitor should 
flag.  Since this is a two-tailed test, it implies that for each 
transition, the lower limit below which the controller should 
flag is αi/2 and the upper limit is 1-αi/2.  This establishes the 
level of significance for calculating the control on individual 
Stare transition probabilities. 

 

Fig. 5.  Binomial Probability Density Function 
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H. Upper Control Limit (UCL) 
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It is possible to determine the control limits above by 
using the binomial approximation to a normal distribution.  
However, the analysis used in the wo akes ch 
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H. Grace Period 
 
In order for the monitor not to flag for any short-lived 

ch time the controll
xt
disturbance is introduced, a controller must be allowed to 

adjust to the desired setpoint within a reasonable time frame 
equivalent to the closed loop settling time (CLST).  So, 
during monitoring, a period at least equivalent to the CLST 
must be provided.  However, usually after the CLST is 
exceeded, the monitor must be allowed to collect enough data 
to remove the upset from the analysis window to determine if 
the controller has adjusted or not. Consequently, a period 
equivalent to one window length must be provided for the 
health monitor to collect data.  So, a grace period equivalent 
to the CLST, in units of samplings, plus the window length 
also in units of samplings (CLST + window) must be 
provided before the monitor flags.  The advantage of this is 
that once the monitor flags, it is quite certain that the 
controller could be having some problems and might require 
immediate attention.  The grace period eliminates calling 
operator attention to brief, but recoverable events.  

 
J. Window 
 
In general, by setting a desired significance 
a
ability of makin

the number of samples collected per transition, 
additionally β depends on α.  A logical way to reduce Type-II 
errors [5] will be to choose a large enough window size. In 
this work a window size of 2000 data points was used.  
However, the larger the window size the greater the time to 

detect poor control. The authors acknowledge that this work 
is still in progress and future endeavors include studying the 
effects of number of States, window size, sampling rate, and 
grace period in minimizing Type-I and Type-II errors, and 
speed of detection and recovery. 

 
III. PERFORMANCE MONITOR DEMONSTRATION  
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 stud ing an overall level of significance (αT = 1%
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en and Coon tuning parameters to control a second-order 
plus deadtime (SOPDT) process.  A schematic diagram of the 
system is shown in Figure 6 where, d = Disturbance; SP = 
Setpoint; C = Control Variable; MV=Manipulated Variable; 
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6. los cess 
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running in tandem with the controller is shown in Figure 7.
 to
h a time step of 0.1 second, this translates to a total 

duration of approximately 4000 seconds (≅ 1.1 hour) of 
monitoring.   

 

Fig. 7.  Controller Performance Monitor Output 
Sampling Period = 0.1s,  Window length = 2000  samples, 

Startup Period = 250 Samples, Grace Period 2050 
Samples, Violation Counter Trigger =   Length of Grace 

od +1, Overall Level of Significance (αT) =  1%). 
 
During this period various events were introduced into 

the control loop in order to determine the ability of the health 
monitor to detect poor controller performance.  Afte
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[7] Li, Q., Whiteley, J. R., and Rhinehart, R. R., “An 
Automated Performance Monitor for Process 
Controllers”, Control Engineering Practice, In Press, 
2004. od was reached the controller had not recovered, so the 

flag was raised.  The controller was restored to normal mode 
at sampling 26,000.  When the monitor detected a return to 
good control the flagging was stopped.   

Further disturbances introduced in the control loop 
included an external disturbance at sampling 30,000, 33,000 
and 36,000 where the manipulated variable was altered by a 
factor of -3, -1/3, and 4 respectively.  In

[8] Ralston, P., Depuy, G., and Graham, J. H., “Computer-
Based Monitoring and fault diagnosis: A Chemical 
Process case study”, ISA Transactions, 40, 85-98, 2001. 
Rhineh[9] art, R. R., “A Watch Dog for Controller 
Performance Monitoring”, Proceedings of the 1995 
American Control Conference.  Seattle, WA. 1995. 
 Tamir, A., “Applicat[10]  

[11]
and 

ions of Markov Chains in Chemical
Engineering”, Elsevier Science B.V., NY 1998. 
 Tatara, E., and Cinar, A., “An Intelligent System for 
Multivariate Statistical Process Monitoring 

controller recovered within the grace period and no flag 
was raised.  
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