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Abstract— In this paper a novel solution to the fault
detection and isolation observer design problem for LTI
systems is presented. A gradient flow approach is proposed
for synthesizing an optimal observer under eigenstructure
assignment which is robust against unstructured uncertainties.
This is achieved by minimizing the spectral condition number
of the observer eigenvector matrix. Convergence properties
of the gradient flow solution are proved and its efficiency
demonstrated via a numerical example.

I. INTRODUCTION

Fault detection and isolation (FDI) techniques via analyt-
ical redundancy involve the generation and the evaluation
of fault signals on the basis of available measurements and
of a mathematical model of the plant. A popular approach
to analytical redundancy is the detection filter which was
first introduced by Beard [1] and refined by Jones [2]. In the
last two decades many other contributions involving similar
ideas were proposed in the literature [3]-[8]. Massoumnia
[3] presented a geometric approach for fault detection filters
by assuming that only one fault at a time may occur, while
in [4], limitedly to disturbance-free systems, a rigorous
framework for FDI problems was developed by imposing
that the signature images of the faults to be isolated lie in
the unobservable subspace of the residuals and by check-
ing if the faults to be detected are input-observable. In
deterministic robust diagnostic observer design problems,
eigenstructure assignment is used to decouple the unknown
inputs from the residuals (see [5],[6]) whereas the unknown
input observer approach decouples the unknown inputs
from the observer states used for the residual generation
[7]. Recently, in [8] a robust multiple-fault detection and
identification algorithm was formulated as an optimization
problem. The approach is based on the projection theory
[9]. Specifically, the output error is projected onto several
subspaces each one corresponding to one specific fault. In
each subspace the corresponding output error is maximized
whereas the error component due to all other faults, noises
and initial conditional error, is minimized.
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This paper concerns with the design of robust FDI filters
which achieve multiple-fault isolation under eigenstructure
assignment in the presence of unstructured uncertainties.
The solution is based on the theory of gradient flow models
that have been proposed recently for the resolution of
a wide variety of real-time optimization problems (see
[10] and [11] and references therein). In control theory,
gradient flow models have been proposed in [10]-[13] for
robust pole assignment in state and output control feedback
design problems. Specifically, the feedback matrix gain that
solves the given pole assignment problem is obtained by
minimizing the spectral condition number of the closed-
loop eigenvector matrix. The relevance of the spectral
condition number of a matrix M , denoted as κ2(M), in
robust state-feedback synthesis problems arises from its
connection to the sensitivity of the eigenvalues of M to
perturbations (see [14]). Let ∆ be a matrix and λ1, . . . , λn

the eigenvalues of M. Then the perturbed closed-loop
matrix M + ∆ remains stable for all matrices ∆ such that
‖∆‖2 ≤ min

j
Re(−λj)/κ2(M) (continuous-time case) or

‖∆‖2 ≤ min
j

(1 − |λj |)/κ2(M) (discrete-time case).

Then, robustness is achieved here by minimizing the spec-
tral condition number of the observer eigenvector matrix
and and by imposing to the filter the corresponding optimal
eigenstructure. Moreover, disturbance decoupling and isola-
tion conditions, expressed in terms of eigenvector conditions
(disturbance decoupling) and Markov parameters equalities
(isolation process), have also been considered as additional
constraints. The main feature of the approach relies on its
capability to converge to a constant observer gain which
achieves, if possible, robust multiple-fault detection and
isolation against unstructured uncertainty.
The paper is organized as follows: in Section II the classical
FDI problem is outlined. Then, a formulation in terms of
a constrained optimization problem under eigenstructure
assignment is proposed, where the objective function is
the spectral condition number. Section III describes the
approach and proves its convergence properties. In Section
IV a numerical example is used to show the effectiveness
of the proposed method. Finally, some conclusive remarks
end the paper.

II. PROBLEM FORMULATION

Consider the following state space description



{
ẋ(t) = Ax(t) + Bu(t) + Ed(t) + Rf(t)
y(t) = Cx(t) (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm the input
vector, y(t) ∈ Rp the measurement output vector, d(t) ∈
Rd the unknown disturbance vector, f(t) ∈ Rq the fault
to be detected and isolated. A, B, C, E, R are known real
matrices of appropriate dimensions. In particular, R denotes
the fault distribution matrix. Without loss of generality, we
shall assume that C is full row rank and the couple (A,C)
is observable. Notice that system formulation (1) is not
restrictive: sensor faults can also be represented by actuator
faults as indicated in [15].
We consider a full-order state-observer defined as follows




˙̂x(t) = (A + KC)x̂(t) + Bu(t) + Ky(t)
ŷ(t) = Cx̂(t)
r(t) = Q(y(t) − ŷ(t))

(2)

where r(t) is the residual vector, x̂(t) and ŷ(t) the state and,
respectively, the output estimations. The matrix Q ∈ Rq×p

is the residual weighting factor. When the residual generator
represented by (2) is applied to the system described by (1),
the state estimation error e(t) := x(t)−x̂(t) and the residual
r(t) are governed by the following equations:{

ė(t) = (A + KC)e(t) + Ed(t) + Rf(t)
r(t) = He(t) (3)

where H = QC. Consider the following problem:
P1 - Exact Fault Detection- Determine, if there exist,
matrices K and Q such that (2) is asymptotically stable
and the residual is insensitive to disturbances. �

Essentially, we look for matrices K and Q such that:

•
A + KC is asympotically stable

•
Grd(s) = H (sI − A − KC)−1

E = 0 (4)

Condition (4) ensures that the diagnostic observer is unaf-
fected by unknown inputs. Necessary and sufficient condi-
tions for disturbance decoupling can be found in [16]. Here,
for design purposes, we shall use the following sufficient
conditions [17].

Lemma 1 A sufficient condition for satisfying the distur-
bance decoupling requirement (4) is that both

(1) QCE = 0;
(2) each column of the matrix E is a right eigenvector of

A + KC, corresponding to a specific eigenvalue;

are satisfied. �

Problem P1 consists of an eigenstructure assignment prob-
lem subject to algebraic constraints (4). A numerical pro-
cedure for its solution can be derived by considering

P1
′
- Exact Fault Detection- Let Λ = {λ1, . . . , λn} be a

symmetric set of n complex numbers with Re(λi) < 0, i =
1, . . . , n. Find, if there exist, matrices K and Q such that:

AZ − ZΛ + KCZ = 0 (5)

QCE = 0 (6)

Ei ∈ {Z1, Z2, . . . , Zn} (7)

where Z = [Z1, Z2, . . . , Zn] is the right eigenvector matrix
of (A+KC) and Ei is the i-th column of the matrix E. �

When the more difficult problem of exact fault detection
and isolation is of interest, P1 has to be modified in:
P2 - Exact Fault Detection and Isolation- Determine, if
there exist, matrices K and Q such that (2) is asymptotically
stable, the residual is insensitive to disturbances and the
transfer matrix from faults to residuals is diagonal. �

Essentially, we look for matrices K and Q such that:

•
A + KC is asymptotically stable

•

Grd(s) = H (sI − A − KC)−1
E = 0 (8)

Grf (s) = H (sI − A − KC)−1
R

= diag(gr1,f1 , . . . , grq,fq
) (9)

This problem has been well studied in the past and the main
results related to its solvability are described in [16], [18]. It
is straightforward to observe that a solution can be obtained
only if the number of measurements is larger than or equal
to the number of faults plus the number of disturbances

p ≥ q + d (10)

A further obvious necessary condition for Grf (s) being
made diagonal, along with Grd(s) = 0, is that

[E R] is full column rank (11)

Finally, by taking into account Lemma 1, the following
sufficient conditions for P2 arise.

Lemma 2 A sufficient condition for solving the exact fault
detection and isolation problem P2 is that all

(1) QCE = 0;
(2) each column of the matrix E is a right eigenvector of

A + KC, corresponding to a specific eigenvalue;
(3) the first n Markov parameters

(HZY R, HZΛY R, . . . , HZΛn−1Y R) of the
transfer matrix Grf (s) are diagonal matrices, viz.

eT
i HZY Rej = 0, eT

i HZΛY Rej = 0, . . . ,
. . . , eT

i HZΛn−1Y Rej = 0, i, j = 1, . . . , q, i �= j
(12)

where ei, i = 1, . . . , q represent the column vectors of
the canonical basis of Rq.

are satisfied.



Proof. Points (1)-(2) are sufficient conditions for disturbance
decoupling (see Lemma 1). Point (3) ensures diagonaliza-
tion of Grf (s) by standard Markov parameters results [19].

�

Then based on Lemma 2, a solution of P2 can be obtained
by considering
P2

′
- Exact Detection and Fault Isolation- Let Λ =

{λ1, . . . , λn} be a symmetric set of n complex numbers
with Re(λi) < 0, i = 1, . . . , n, find, if there exist, matrices
K and Q such that:

AZ − ZΛ + KCZ = 0 (13)

QCE = 0 (14)

Ei ∈ {Z1, Z2, . . . , Zn} (15)

eT
i QCZΛkY Rej = 0 (16)

k = 0, . . . , n − 1; i, j = 1, . . . , q, i �= j

�

Problems P1
′

and P2
′

are formulated as eigenstructure
assignment problems with equality constraints. Finding a
numerical solution of such problems is more difficult w.r.t.
the basic assignment problem due to the fact that the
free parameter space (redundancy) is largely reduced. As
a consequence, the algorithms based on the eigenstructure
assignment involve huge and laborious algebraic computa-
tion (see for instance [6], [20]).

A. Robustness against unstructured uncertainties

An important issue concerning a reliable FDI scheme
consists of improving the diagnostic robustness against both
structured and unstructured uncertainties. The assignment
problem (13) has a nonunique solution for a multivariable
system and the minimization of an objective function can
improve the performance of the observer. In this paper, the
model uncertainty is expressed via the maximum unstruc-
tured time-invariant uncertainty ∆ affecting A such that the
stability of the matrix A + ∆ is retained. In the case of
state feedback, Kausky et al. [14] showed that if the matrix
A is subject to a perturbation ∆, the closed-loop matrix
A + ∆ + BK remains stable if

‖∆‖2 < min
j

Re(−λj)/κ2(Z) (17)

where κ2(Z) = ‖Z‖2 ‖Z−1‖2 is the spectral condition
number of the assigned eigensystem. As a consequence,
the minimization of the spectral condition number can be
considered a key figure for robust design. Moreover, as in
[23] and [12], the Frobenius condition number κF (Z) =
‖Z‖F ‖Z−1‖F , κ2(Z) ≤ κF (Z), is preferred to κ2(Z)
because κ2(Z) is not differentiable with respect to Z
and it has been proved in [12] that any Z minimizing
‖Z‖2

F + ‖Z−1‖2
F also minimizes κF (Z).

Hereafter for brevity, we consider Problem P2
′

only. For
the latter, the design of a robust residual generator can be
rewritten as into the following optimization problem:

P3- Robust Fault Detection and Isolation-

min
Z,Y,K,Q

‖Z‖2
F + ‖Y ‖2

F (18)

subject to

AZ − ZΛ + KCZ = 0 (19)

ZY = I (20)

Zei − Ei = 0, i = 1, . . . , d (21)

QCE = 0 (22)

eT
i QCZΛkY Rej = 0 (23)

k = 0, . . . , n − 1; i, j = 1, . . . , q, i �= j

where the new variable Y has been introduced for imposing
the nonsingularity of the eigenvector matrix Z via the
condition (20).
The solution of P3 allows one to reduce as much as
possible the conditioning of the observer eigenvector matrix.
Therefore, a well-conditioned eigenstructure assignment is
obtained and the resulting diagnostic observer is intrisically
robust against all unstructured uncertainties satisfying (17).

III. FDI DESIGN VIA GRADIENT FLOW

The application of the gradient flow approach of [11] to
problem P3 leads to consider the following energy function
(V [t] � V [Z(t), Y (t),K(t), Q(t)]) :

V [t] � T (t)
(‖Z(t)‖2

F + ‖Y (t)‖2
F

)
+‖AZ(t) − Z(t)Λ + K(t)CZ(t)‖2

F

+‖Z(t)Y (t) − I‖2
F

+
d∑

i=1

‖Z(t)ei − Ei‖2
F + ‖Q(t)CE‖2

F

+
∑
i�=j

n−1∑
k=0

‖eT
i Q(t)CZ(t)ΛkY (t)Rej‖2

F

(24)

where Z(t) ∈ Rn×n, Y (t) ∈ Rn×n,K(t) ∈ Rn×p and
Q(t) ∈ Rq×p are activation matrices corresponding to the
unknowns Z, Y,K and Q respectively. T (t) in (24) is a
scalar temperature parameter which satisfies the following
conditions: T (t) ≥ 0, ∀t and lim

t→∞T (t) = 0 if and only if

(Z, Y,K,Q) represents a feasible solution to the optimiza-
tion problem (18)-(23). By considering T as a parameter
and letting the time derivative of the state variables be
directly proportional to the gradient of the energy function
with respect to the variables Z, Y,K and Q, one gets the
following dynamic equations:

dZ
dt

= −µ
(
TZ + AT (AZ − ZΛ + KCZ)

−(AZ − ZΛ + KCZ)ΛT

+CT KT (AZ − ZΛ + KCZ) + (ZY − I)Y T

+

d∑
i=1

(Zei − Ei)e
T
i

+
∑
i�=j

n−1∑
k=0

(eT
i QC)T (eT

i QCZΛkY Rej)(Λ
kY Rej)

T




� −µ(TZ + H1(Z, Y, K, Q), Z(0) = Z0,
(25)



dY
dt

= −µ
(
TY + ZT (ZY − I)

)
+
∑
i�=j

n−1∑
k=0

(eT
i QCZΛk)T (eT

i QCZΛkY Rej)(Rej)
T




� −µ(TY + H2(Z, Y, Q)), Y (0) = Y0,
(26)

dK
dt

= −µ (AZ − ZΛ + KCZ) ZT CT

� −µH3(Z, K), K(0) = K0,
(27)

dQ
dt

= −µ
(
QCE(CE)T +∑

i�=j

n−1∑
k=0

ei(e
T
i QCZΛkY Rej)(CZΛkRej)

T




� −µH4(Z, Y, Q), Q(0) = Q0,

(28)

where µ is a positive scaling parameter. Finally, the ”tem-
perature” parameter T (t) is defined as

T (t) = η(‖AZ(t) − Z(t)Λ + K(t)CZ(t)‖2
F

+‖Z(t)Y (t) − I‖2
F +

d∑
i=1

‖Z(t)ei − Ei‖2
F +

‖Q(t)CE‖2
F +

∑
i�=j

n−1∑
k=0

‖eT
i QCZΛkY Rej‖2

F )

� ηT̂ (t), T (0) = T0

(29)
where η > 0 is a parameter design, which affects the rate
of convergence of T.
Remark 1- The main features of the proposed gradient flow
approach can be summarized as follows:
1) detection and isolation of multiple actuator and sensor

faults can be achieved
2) the robustness of the filter against unstructured pertur-

bations is taken into account by the minimization of
the spectral condition number. �

Convergence properties of the proposed gradient flow for
the robust residual generator design are reported in the next
Theorem 1:

Theorem 1 Given the initial state (Z0, Y0,K0, Q0) /∈ Ω,
where Ω is the set of equilibrium points of the gradient
flow, viz. each state (Z, Y,K,Q) satisfying the conditions
(19)-(23), it is an equilibrium point of Eqs. (25)-(28). Then

(a) The state (Z(t), Y (t),K(t), Q(t)) of the gradient flow
(25)-(28) and (29) converges to an equilibrium point
(Z̄, Ȳ , K̄, Q̄) ∈ Ω.

(b) If (Z̄, Ȳ , K̄, Q̄) ∈ Ω∗, where Ω∗ :=
{(Z, Y,K,Q) | (Z, Y,K,Q) satisfying (19) − (23)} ⊆
Ω, then the convergence is exponential.

Proof. See [21].

A. A ”singular” case

When the number of independent disturbances and fault
signals exceeds the number of measurements, the necessary
condition (10) is not satisfied and the fault detection and
isolation problem cannot be jointly solved, because the
transfer matrix Grf (s) cannot be made diagonal. In such
a case, it is possible to relax the isolation requirements

by satisfying them only approximately. Here, the gradient
flow developed in the previous section is straightforward
generalized in order to include such a case. The idea can
be briefly described as follows: let Grf (s) be a strictly
proper transfer matrix, expressed in terms of its Markov
parameters:

Grf (s) = G1s
−1 + . . . + G2s

−k + . . . =
∞∑

k=1

Gks−k (30)

Via the Caley-Hamilton theorem, it is possible to show
that only the first n Markov parameters are necessary to
completely define the transfer matrix Grf (s). Then, a pre-
specified structure can be assigned for Grf (s) by imposing
that

QCZΛkY R = G∗
k+1, k = 0, . . . , n − 1. (31)

instead of (12) in P3, with G∗
i ∈ Rq×q, i = 0, . . . , n − 1

selected by the designer.
As a consequence, the gradient flow of Section 3.1 is
modified as follows: the energy function becomes

V [t] � T (t)
(
‖Z‖2

F + |Y ‖2
F

)
(32)

+ ‖AZ(t) − Z(t)Λ + K(t)CZ(t)‖2
F (33)

+ ‖Z(t)Y (t) − I‖2
F (34)

+
d∑

i=1

‖Z(t)ei − Ei‖2
F + ‖Q(t)CE‖2

F (35)

+
n−1∑
k=0

∥∥Q(t)CZ(t)ΛkY (t)R − Gk+1

∥∥2

F
,(36)

the dynamic equations (25-28):
dZ
dt = −µ

(
TZ + AT (AZ − ZΛ + KCZ)

− (AZ − ZΛ + KCZ) ΛT

+ CT KT (AZ − ZΛ + KCZ) + (Z Y − I)Y T

+
d∑

i=1

(Zei − Ei) eT
i

+
n−1∑
k=0

(QC)T (
QCZΛkY R − Gk

) (
ΛkY R

)T)

� −µ(TZ + H̃1(Z, Y,K,Q), Z(0) = Z0,
(37)

dY
dt = −µ

(
TY + ZT (Z Y − I)

+
n−1∑
k=0

(
QCZΛk

)T (
QCZΛkY R − Gk+1

)
(R)T

)

� −µ(TY + H̃2(Z, Y,Q), Y (0) = Y0,
(38)

dK
dt = −µ (AZ − ZΛ + KCZ) ZT CT

� −µH̃3(Z,K), K(0) = K0,
(39)

dQ
dt = −µ

(
QCE(CE)T +

n−1∑
k=0

(
QCZΛkY R − Gk+1

)
(
CZΛkR

)T)
� −µ(H̃4(Z, Y,Q), Q(0) = Q0,

(40)



T (t) � η
(
‖AZ(t) − Z(t)Λ + K(t)CZ(t)‖2

F

+ ‖Z(t)Y (t) − I‖2
F +

∑d
i=1 ‖Z(t)ei − Ei‖2

F

+ ‖Q(t)CE‖2
F +

n−1∑
k=0

∥∥Q(t)CZ(t)ΛkY (t)R − Gk+1

∥∥2

F

)

� ηT̂ (t), T (0) = T0.
(41)

Theorem 2 Given the initial state (Z0, Y0,K0, Q0) /∈ Ω,
where Ω is the set of equilibrium points of the gradient flow,
viz. each state (Z, Y,K,Q) satisfying the conditions (19)-
(22) and (31), it is an equilibrium point of Eqs. (37)-(40).
Then

(a) The state (Z(t), Y (t),K(t), Q(t)) of the gradient flow
(37)-(40) and (41) converges to an equilibrium point
(Z̄, Ȳ , K̄, Q̄) ∈ Ω.

(b) If (Z̄, Ȳ , K̄, Q̄) ∈ Ω
∗
, where Ω

∗
:=

{(Z, Y,K,Q) | (Z, Y,K,Q) satisfying (19) − (22) and
(31)} ⊆ Ω, then the convergence is exponential.

Proof See [21].
It is worth pointing out that the design parameters µ and
η strongly affect the stationary solution. Specifically, η
influences the decay rate of the temperature parameter T,
while µ affects that of the flow. Numerical experiences (see
Section IV) seem to reveal that a sort of trade-off arises
between µ and η, in that the higher the rate of convergence
of the flow, the lower that of T. Observe also that the
property of convergence of the flow to a feasible solution
may depend on the rate of T, the higher the worse.

IV. NUMERICAL EXAMPLE

This example, considered in [22], deals with the robust
FDI procedure developed in Section 3.2. The system is
a double-effect pilot evaporator plant described by the
following matrices:

A =




0 0 −0.0034 0 0
0 −0.0410 0.0013 0 0
0 0 −1.1471 0 0
0 0 −0.0360 0 0
0 0.0940 0.0057 0 −0.0510


 ,

B =




−1.0000 0 0
0 0 0
0 0 0.9480

0.9160 −1.0000 0
−0.5980 0 0




E =




0 1.0000
0.0620 −0.1320

0 −7.1890
0 0
0 0


 , C =


 1 0 0 0 0

0 0 1 0 0
0 0 0 1 0




Let us consider the faults of the first and third inputs,
so that the fault entry matrix is chosen in this case as
R = [col1(B) col3(B)] . Due to the fact that there are
three measurements and four independent disturbances and
faults, the necessary condition (10) does not hold true.

Therefore joint disturbance decoupling and fault isolation
cannot be achieved. As a consequence, the method in [6]
is not applicable, while other algorithms (e.g. [20]) allow
one to derive robust fault detection observers only. Notice
that the system is detectable and the dimension of the
unosservable subspace is dim(XNO) = 2. Therefore, an
admissible observer spectrum is Λ = ΛN∪ΛV where ΛN =
{−2,−3} (the subset of the new observer eigenvalues) and
ΛV = {−0.0510,−0.0410,−1.1471} (a subset of the open-
loop eigenvalues). Finally, the Markov parameters of (30)
were imposed according to the following structure of the
fault-residual transfer matrix:

G∗
rf (s) =

[ 1
s+2

0.001
s+2

0.001
s+3

1
s+3

]
.

We choose again as initial values of the computation

Z(0) = Y (0) = I5, K(0) = 05×4, Q(0) =

[
10 10 10
10 10 10

]

Applying the gradient flow (32-40) and T (t) in (41) with
µ = 1011 and η = 10−7, we obtained

Z̄ =




0.00013446091 0.0517298606
0.0619965095 0.1021744161
0.0000180818 0.0109866527
−0.0001687437 −0.0487201859
0.0000000119 0.9880044007

0.088268324 0.999992964 −0.0000123462
0.04704487274553 −0.1320000624 0.0758774744
0.02219193779655 −7.18900097756 −0.000000691
−0.00587760277504 −0.00001137315 0.0000154567
0.63084402828304 0.00000000665 0.766273607




K̄ =




−3.01015918837239 −0.25575050251047
−1.34975175539159 −0.20936471215718
−0.47084588449908 −0.06549434430870
0.06920862552386 0.04562817771611
−19.20729734829293 −2.67919847626693

−1.13101671089989
2.62829908201686
−0.32237039884921
−1.92432103302015
18.72450504950933




Q̄ =

[
0.07553994520407 0.01050817932394
7.58287560565125 1.05478877431106

1.17415748997201
8.28916472026641

]

and κ2(Z̄) = 230.6786. The resulting computed
disturbance-residual and fault-residual transfer matrices are

Grd(s) =

[
0 −3.356e−006 (s+5.532)

(s+2)(s+1.147)

0 −8.9287e−007(s+311.5)
(s+3) (s+1.147)

]
,

Grf (s) =

[
1

s+2
0.0099618

s+2
0.0099993 (s+2.007)(s+1.148)

(s+3)(s+2)(s+1.147)
1

s+3

]
.

In next Fig. 3, for the sake of completeness, the step
responses of residual-fault transfer matrices, computed via
the algorithm of Section III.A and, respectively, the SCB-
based design algorithm of [20], are shown. As expected,



our flow gradient solution has determined a reasonable
”detection and isolation degree” in those cases when the
exact multiple-fault isolation problem cannot be solved. As
a matter of fact the approach of [20], which imposes the
fault detection conditions, is not capable to achieve any
degree of fault isolation (see Fig. 3 right).
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Fig. 1. Step responses of Grf (s) computed via gradient flow algorithm
of Section 3.1 (continuous line) and via SCB-based design algorithm of
[20](dashed line)

Remark 2- As far as the computational burdens of the
proposed algorithms are concerned, it is worth pointing
out that they involve a number of ordinary differential
equations which is equal to 2 ∗ n2 + n ∗ p + q ∗ p. An
interesting mathematical and computational analysis for a
suite of programs for solving ordinary differential equations
in MATLAB can be found in [24] where, amongst many, a
stiff problem is considered: the classical Brusselator system
modelling diffusion of a chemical reactor of 2N equations.
It has been showed that such a problem can be solved by
the ode15s MATLAB function with the SparseJ option up
to a 1000 sized system. As a consequence, taking also into
consideration that our problem formulation leads to initial
value problems of simpler structures w.r.t. a stiff ones, the
proposed algorithm can hopefully be applied to reasonable
large sized FDI problems.

V. CONCLUSIONS

In this paper a novel solution to robust multiple-fault detection
and isolation has been presented. The problem is formulated as
an optimization one where the objective function is the spectral
condition number of the observer eigenvector matrix and the fault
isolability conditions, expressed in terms of Markov parameters,
are imposed as constraints. A gradient flow model has been derived
and its convergence properties proved. The main feature of such an
approach relies on its capability to both efficiently isolate failures
and be robust against unstructured model uncertainties. A second
flow gradient algorithm, derived simply by modifying the energy
function of the first flow model, is presented in order to consider
also situations where the exact solvability conditions are not met.
The numerical experiments demonstrate the effectiveness of the
approach.
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