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Abstract— In this paper, we investigate the disturbance
rejection of switched systems with unit-amplitude disturbance
input by designing a state-dependent switching law. All the
results in this paper are expressed in terms of LMIs, which
can be easily tested with efficient LMI algorithm.

I. INTRODUCTION

Switched systems are a class of hybrid systems consisting
of several subsystems and a switching law that specifies
which subsystem will be activated along the system tra-
jectory at each instant of time. Switched systems deserve
investigation for theoretical development as well as for
practical applications. It is an essential feature of many
control systems to switch among different system structures,
for example, power systems and power electronics [1],
transmission and stepper motors [2], constrained robotics
[3], automated highway systems [4]. Switched systems also
arise from the application of multiple controller, which have
been widely used in adaptive control [5], where a high-
level, logic-based supervisor provides switching between
a family of candidate controllers so as to achieve desired
performance for the closed-loop systems.

In the last decade, switched systems have received grow-
ing attention [6]-[15] and have been studied from various
viewpoints. One interesting viewpoint is that the switching
signal is an exogenous variables, and then the problem is
to investigate whether there exists a switching signal such
that switched systems have desired performance such as
stability, certain disturbance attenuation and so on. [11]
provided a survey of recent development in stability and
design of switched systems.

In this paper, we consider the disturbance rejection of the
following linear switched system:

ẋ(t) = Ar(t)x(t) + Br(t)ω(t), (1)

where x(t) ∈ Rn is the state vector,ω(t) ∈ Rm is
the exogenous disturbance input,r(t) : [0,∞) → I :=
{1, 2, · · · , L} is the switching path to be designed. Further-
more, r(t) = i means that thei-th subsystem(Ai, Bi) is
chosen as the system realization at timet andL > 1 is the
number of subsystems.

We first review some notions and results concerning
the disturbance rejection problem of linear system without
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switchings:
ẋ(t) = Ax(t) + Bω(t). (2)

The reachable set of system (2) is defined as the set of
all states reachable from the origin in finite time by unit-
amplitude disturbance input, i.e.,‖ω(t)‖∞ ≤ 1 [16]. A set
F is said to be inescapable if (I)0 ∈ F ; (II) x(0) ∈ F
and ‖ω(t)‖∞ ≤ 1 implies that x(t) ∈ F for all the
future time t > 0 [16]. Based on these basic definitions,
[16] established a necessary and sufficient condition to
determine whether an ellipsoidε = {x| xT Px ≤ 1, P ≥ 0}
is an inescapable set of system (2) with‖ω(t)‖∞ ≤ 1.
[18] studied the input/output properties of system (2) with∫ ν

0
ωT (t)ω(t)dt ≤ 1, such asL2 and RMS (root-mean

square) gains, dissipativity and so on by linear matrix
inequality approach. [17] investigated some problems of
persistent bounded disturbance rejection for linear uncertain
systems, Lur’e systems and nonlinear systems.

Although there have been many existing results on the
disturbance rejection of systems without switchings, to the
best of our knowledge, there’re few results concerning the
disturbance rejection of switched systems. In this paper, we
focus on designing a switching signal such that a given
ellipsoid ε := {x|xT Px ≤ 1} is an inescapable set of
switched system (1) with unit-amplitude disturbance input.

The contribution of this paper is that, under the assump-
tion that ε isn’t an inescapable set of any subsystem of
switched system (1) (otherwise the switching problem will
be trivial by always choosing the subsystem that hasε as
its inescapable set), we derive a criterion under whichε is
an inescapable set of switched system (1) by designing a
switching law. The criterion is necessary and sufficient for
the case thatL = 2. Furthermore, based on an important
lemma, these results can be extended to switched systems
with norm-bounded uncertainties. All the results in this
paper are expressed in terms of LMIs, which can be easily
tested with efficient LMI algorithm software [18]-[19].

This paper is organized as follows. Section2 introduces
some definitions and lemmas as the preliminaries of the
paper. Some criteria to determine whether an ellipsoid is an
inescapable set of a switched system are obtained in Section
3. An extension to uncertain switched systems is presented
in Section 4. Two examples are given in Section 5 to
motivate and exemplify our results. We give the conclusion
in Section 6.

Notations: We use standard notations throughout this
paper.MT is the transpose of the matrixM . M > 0 (M <
0) means thatM is positive definite (negative definite).Rn

is then-dimensional Euclidean space.S denotes the set of
all the switching signals.Rm×n is the set of all realm×n



matrices.

II. PRELIMINARIES

In this section, we present some definitions, lemmas as
the starting point of our research.

In the sequel, switched system (1) is assumed to have
unit-amplitude disturbance input, i.e.,ω(t) ∈ Ω, where
Ω := {ω(t)| ω(t) ∈ Rm, ‖ω(t)‖∞ ≤ 1}.

Definition 1. A setF is said to be an inescapable set of
switched system (1) if

(I) 0 ∈ F ;

(II) There exists a switching signalr∗(t) ∈ S such that
x(0) ∈ F , ω(t) ∈ Ω implies thatx(t) ∈ F for all t ≥ 0.

Remark 1. Definition 1 can be regarded as an extension
of the notion of inescapable set for system (2) in [16].

In the sufficiency proof of Theorem 2.1 in [16], it states
“This means that there exists aω ∈ BL∞ and a timeT
such that starting fromx(0) = 0, the state is driven to
x(T ) = xf .” Here,x(0) = 0 is a mistake, which contradicts
x(0) ∈ ε in the definition of inescapable set. Furthermore,
to prove Theorem 2.1 in [16] correctly, we need to modify
the Lemma 4.1 in [16] as follows:

Lemma 1. Letf : [0, ν] → R be differentiable, withf(0) ≤
1, f(ν) > 1, then there exists̄t ∈ (0, ν) such thatf(t̄) > 1
and f ′(t̄) > 0.

Proof: The proof is similar to Lemma 4.1 in [16].

Based on the above discussions and Lemma 1, we can
prove Theorem 2.1 in [16]. Here, we omit the proof.

Lemma 2. Given T1 = TT
1 , T2 = TT

2 ∈ Rn×n, the
following two conditions are equivalent:

(i) ∀ x ∈ Π ⊆ Rn, either xT T1x ≤ 0 or xT T2x ≤ 0.

(ii) There existα1 ≥ 0, α2 ≥ 0, α1 + α2 > 0 such that
xT (

∑2
i=1 αiTi)x ≤ 0,∀ x ∈ Π.

Proof: The proof is similar to Lemma 2.1 in [10].

lemma 3[20] Given matricesG,M ,N of compatible
dimensions, withG symmetric andM 6= 0,N 6= 0, then

G + M∆N + NT ∆T MT ≤ 0

holds for all∆ satisfying∆T ∆ ≤ I, if and only if there
exists a constantϕ > 0 such that

G + ϕMMT +
1
ϕ

NT N ≤ 0.

III. DISTURBANCE REJECTION OF LINEAR
SWITCHED SYSTEMS

In this section, letP ≥ 0, an ellipsoidε := {x| xT Px ≤
1}. We present some criteria to determine whetherε is an
inescapable set of switched system (1) with unit-amplitude
disturbance input.

If ε is an inescapable set of a subsystem of switched
system (1), then we can always activate this subsystem
so that ε is an inescapable set of switched system (1).
Therefore, to make the switching problem non-trivial, we
make the following assumption:

Assumption 1:ε is not an inescapable set of any subsys-
tem of switched system (1). By Theorem 2.1 in [16], this
assumption holds if and only if there doesn’t exist a real
numberαi ≥ 0 such that[

AT
i P + PAi + αiP PBi

BT
i P −αiI

]
≤ 0,∀ i ∈ I. (3)

Proposition 1. The following two conditions are equiva-
lent:

(a) ε is an inescapable set of system (1);

(b) There exists a switching signalr∗(t) such
that under this switching signal, the derivative of
V (x(t)) = xT (t)Px(t) along the solution of (1) satisfies
d

dt
[xT (t)Px(t)] ≤ 0 for all ω(t) ∈ Ω, xT (t)Px(t) ≥ 1.

Proof: Suppose that (b) holds, butε is not an in-
escapable set of system (1). By Definition 1, there doesn’t
exist a switching signalr(t) such thatx(0) ∈ ε, ω(t) ∈ Ω
implies x(t) ∈ ε for t ≥ 0, i.e., for arbitrary switching
signal r0(t) ∈ S, there existx(0) = x0 ∈ ε, ω0(t) ∈ Ω,
T0 > 0 such thatxT

f Pxf > 1, where xf = x(T0).
Let f(t) := xT (t)Px(t). Obviously,f(t) is differentiable.
Moreover,f(0) = xT (0)Px(0) ∈ ε, f(T0) > 1. By Lemma
1, there exists̄t ∈ (0, T0) such thatf(t̄) > 1, f ′(t̄) > 0,
which contradicts (b). Hence, (a) holds.

Suppose that (a) holds, but (b) doesn’t hold. Then for
arbitrary switching signal, there existω0(t) ∈ Ω andt0 ≥ 0

such thatxT (t0)Px(t0) ≥ 1, but
d

dt
[xT (t)Px(t)]|t=t0 > 0.

Then by the definition of derivative, for sufficiently small
υ > 0, xT (t0 + υ)Px(t0 + υ) > 1, which contradicts (a).
Hence (b) holds.

For system (2), we have the following necessary and
sufficient condition which can be regarded as a special case
of switched system (1) by assuming thatL = 1.

Remark 2. This proposition presents necessary and suffi-
cient condition to determine whetherε is an inescapable
set of a switched system, which will play an important role
in our later discussions. But It doesn’t provide a concrete



method to design a switching law. We will design the
convex-based switching law.

Corollary 1. ε is an inescapable set of system (2) if and
only if the derivative ofV (x(t)) = xT (t)Px(t) along the

solution of system (2) satisfies
d

dt
[xT (t)Px(t)] ≤ 0 for all

ω(t) ∈ Ω, xT (t)Px(t) ≥ 1.

Theorem 1. ε = {x| xT Px ≤ 1} is an inescapable set
of switched system (1), if there existτi ≥ 0 satisfying∑L

i=1 τi > 0, and α ≥ 0 such that[
(
∑L

i=1 τiAi)T P + P (
∑L

i=1 τiAi) + αP

(
∑L

i=1 τiBi)T P

P (
∑L

i=1 τiBi)
−αI

]
≤ 0. (4)

Proof: Suppose that there existτi ≥ 0 satisfying∑L
i=1 τi > 0, and α ≥ 0 such that (4) holds, then for

any x(t) ∈ Rn andω(t) ∈ Rm, we have

xT (t)[(
L∑

i=1

τiAi)T P + P (
L∑

i=1

τiAi)]x(t)

+ xT (t)P (
L∑

i=1

τiBi)ω(t)

+ wT (t)(
L∑

i=1

τiBi)T Px(t)

− α[wT (t)w(t)− xT (t)Px(t)] ≤ 0,

i.e.,
L∑

i=1

τi{xT (t)(AT
i P + PAi)x(t) + xT (t)PBiω(t)

+ ωT (t)BT
i Px(t)− αi[wT (t)w(t)− xT (t)Px(t)]}

≤ 0,

where
α1 = α2 = · · · = αL =

α∑L
i=1 τi

.

Sinceτi ≥ 0,
∑L

i=1 τi > 0, we get

L∑
i=1

τi min
i∈I

{xT (t)(AT
i P + PAi)x(t)

+ xT (t)PBiω(t) + ωT (t)BT
i Px(t)

− αi[wT (t)w(t)− xT (t)Px(t)]}
≤ 0.

Define the following switching signal

r∗(t) = argmini∈I{xT (t)(AT
i P + PAi)x(t)

+ xT (t)PBiω(t) + ωT (t)BT
i Px(t)

− αi[wT (t)w(t)− xT (t)Px(t)]}.

Then, under the switching signalr∗(t), from previous
discussions, we immediately get that for allω(t) ∈ Ω,
xT (t)Px(t) ≥ 1,

d

dt
xT (t)Px(t) = xT (t)(AT

r∗(t)P + PAr∗(t))x(t)

+ xT (t)PBr∗(t)ω(t) + ωT (t)BT
r∗(t)Px(t)

≤ αr∗(t)[ωT (t)ω(t)− xT (t)Px(t)]
≤ 0,

whereαr∗ is defined as above. By Proposition 1,ε is an
inescapable set of switched system (1).

Based on Lemma 2, we can get a necessary and sufficient
condition for the case thatL = 2.

Theorem 2. Assume thatL = 2. ε = {x| xT Px ≤ 1} is
an inescapable set of the switched system (1), if and only if
there existτi ≥ 0 satisfying

∑2
i=1 τi > 0, and α ≥ 0 such

that [
(
∑2

i=1 τiAi)T P + P (
∑2

i=1 τiAi) + αP

(
∑2

i=1 τiBi)T P

P (
∑2

i=1 τiBi)
−αI

]
≤ 0. (5)

Proof: We only need to prove the necessity since the
sufficiency is proved in Theorem 1.

Suppose thatε = {x| xT Px ≤ 1} is an inescapable
set of switched system (1), then by Proposition 1, there
exists a switching signalr∗(t) such that the derivative of
V (x(t)) = xT (t)Px(t) along the solution of system (1)
satisfies

d

dt
[xT (t)Px(t)] ≤ 0 for all ω(t) ∈ Ω, xT (t)Px(t) ≥ 1.

Let

Hi :=
[

AT
i P + PAi PBi

BT
i P 0

]
, i = 1, 2.

Then, for all ω(t) ∈ Ω, xT (t)Px(t) ≥ 1, we

have either
[

xT (t) ωT (t)
]
H1

[
x(t)
ω(t)

]
≤ 0 or[

xT (t) ωT (t)
]
H2

[
x(t)
ω(t)

]
≤ 0. By Lemma 2,

there exist τi, i = 1, 2, nonnegative and not all
zero such that for all ω(t) ∈ Ω, xT Px ≥ 1,[

xT (t) ωT (t)
]
(
∑2

i=1 τiHi)
[

x(t)
ω(t)

]
≤ 0, i.e.,

[
xT (t) ωT (t)

] [
(
∑2

i=1 τiAi)T P + P (
∑2

i=1 τiAi)
(
∑2

i=1 τiBi)T P

P (
∑2

i=1 τiBi)
0

] [
x(t)
ω(t)

]
≤ 0,

for all ω(t) ∈ Ω, xT (t)Px(t) ≥ 1. By Corollary 1,ε is an
inescapable set of the LTI system(

∑2
i=1 τiAi,

∑2
i=1 τiBi).

By Theorem 2.1 in [16], this is equivalent to (5).



Remark 3. By Theorem 2.1 in [16], Theorem 1 can be
restated as follows:ε is an inescapable set of switched
system (1) if there existτi ≥ 0 satisfying

∑L
i=1 τi > 0

such thatε is an inescapable set of the linear time-invariant
(LTI) system(

∑L
i=1 τiAi,

∑L
i=1 τiBi). For Theorem 2, we

can get similar results.

Remark 4. Although we made Assumption 1 so as to make
our switching problem non-trivial. In fact, Both Theorem 1
and Theorem 2 have covered the case that Assumption 1
is not true. That is, ifε is an inescapable set of thei-th
subsystem,i ∈ I, then we can chooseτi = 1 and τj =
0,∀ j 6= i in (4).

Remark 5. All the criteria in Theorems 1-2 are expressed
in terms of LMIs, which can be easily tested with efficient
LMI algorithm [18]-[19].

IV. EXTENSIONS TO UNCERTAIN SWITCHED
SYSTEMS

Consider the following uncertain switched system:

ẋ(t) = (Ar(t) + ∆Ar(t))x(t) + (Br(t) + ∆Br(t))ω(t), (6)

wherex(t), ω(t), r(t) are defined as before.[∆Ai,∆Bi] =
Ei∆(t)[HAi ,HBi ], whereHAi ,HBi , Ei are constant ma-
trices of compatible dimensions.∆(t) ∈ Γ := {∆(t) :
∆T (t)∆(t) ≤ I}.

In this section, we give the following assumptions:

Assumption 2: There existsi ∈ I such thatEi 6= 0.

Assumption 3: For anyi ∈ I,
[

HAi HBi

]
6= 0.

Remark 6. Assumptions 2-3 will be used in the proof of
Theorem 3 below.

Similarly, a setF is said to be a robustly inescapable set
of the uncertain switched system (6) with unit-amplitude
disturbance input if the following two conditions hold:

(I) 0 ∈ F , x(0) ∈ F , ω(t) ∈ Ω;

(II) There exists a switching signalr∗(t) such thatω(t) ∈
Ω, x(0) ∈ F implies thatx(t) ∈ F for all ∆(t) ∈ Γ, where
t ≥ 0.

Given the ellipsoidε = {x| xT Px ≤ 1}, whereP ≥ 0,
we have the following results to determine whetherε is an
inescapable set of switched system (6) with unit-amplitude
disturbance input.

Proposition 2. ε is an inescapable set of system (6) if and
only if there exists a switching signalr∗(t) such that for
all ∆(t) ∈ Γ, ω(t) ∈ Ω, xT (t)Px(t) ≥ 1, the derivative of
V (x(t)) = xT (t)Px(t) along the solution of (6) satisfies

d

dt
[xT (t)Px(t)] ≤ 0.

Proof: The proof is similar to that of Proposition 1

Theorem 3. ε = {x| xT Px ≤ 1} is an inescapable set of
the uncertain switched system (6) withω(t) ∈ Ω if there
existτi ≥ 0 satisfying

∑L
i=1 τi > 0, α ≥ 0 andϕ > 0 such

that

(
L∑

i=1

τiAi)T P + P (
L∑

i=1

τiAi) + αP + ϕ(
L∑

i=1

PEiE
T
i P )

(
L∑

i=1

τiBi)T P

τ1HA1

...
τLHAL

P (
∑L

i=1 τiBi) τ1H
T
A1

· · · τLHT
AL

−αI τ1H
T
B1

· · · τLHT
BL

τ1HB1 −ϕI · · · 0
...

...
...

...
τLHBL

0 · · · −ϕI

 ≤ 0. (7)

Proof: By Theorem 1,ε is an inescapable set of system
(6) if there existτi ≥ 0,

∑L
i=1 τi > 0, andα ≥ 0 such that (

L∑
i=1

τiĀi)T P + P (
L∑

i=1

τiĀi) + αP P (
L∑

i=1

τiB̄i)

(
L∑

i=1

τiB̄i)T P −αI


≤ 0, (8)

whereĀi = Ai + Ei∆(t)HAi
, B̄i = Bi + Ei∆(t)HBi

.

(8) can be rewritten as

G +
L∑

i=1

τi[Mi∆(t)Ni + NT
i ∆T (t)MT

i ] ≤ 0,

i.e.,

G +
[

M1 · · · ML

]
∆(t)

 τ1N1

...
τLNL


+

[
τ1N

T
1 · · · τLNT

L

]
∆T (t)

 MT
1
...

MT
L

 ≤ 0,(9)

where

G =

 (
L∑

i=1

τiAi)T P + P (
L∑

i=1

τiAi) + αP P (
L∑

i=1

τiBi)

(
L∑

i=1

τiBi)T P −αI

 ,

Mi =
[

PEi

0

]
,

Ni =
[

HAi
HBi

]
.



By Lemma 3, (9) holds if and only if there existsϕ > 0
such that

G + ϕMMT +
1
ϕ

NT N ≤ 0,

where
M =

[
M1, · · · , ML

]
,

N =

 τ1N1

...
τLNL

 .

Then by Schur complement formula [14], we get[
G + ϕMMT NT

N −ϕI

]
≤ 0,

i.e., (7) holds. Hence, this theorem holds.

Theorem 4. Assume thatL = 2. ε = {x| xT Px ≤ 1} is an
inescapable set of uncertain switched system (6) withω ∈ Ω
if and only if there existτi ≥ 0 satisfying

∑2
i=1 τi > 0,

α ≥ 0 and ϕ > 0 such that


(

2∑
i=1

τiAi)T P + P (
2∑

i=1

Ai) + αP + ϕ(
2∑

i=1

PEiE
T
i P )

(
2∑

i=1

Bi)T P

τ1HA1

τ2HA2

P (
∑2

i=1 Bi) τ1H
T
A1

τ2H
T
A2

−αI τ1H
T
B1

τ2H
T
B2

τ1HB1 −ϕI 0
τ2HB2 0 −ϕI

 ≤ 0. (10)

Proof: By Lemmas 2-3 and Theorem 3, this theorem
can be proved easily.

V. EXAMPLES

Example 1.

Consider system (1) withN = 2 and

P =
[

2 0
0 2

]
, A1 =

[
−1 2
2 −1

]
,

B1 =
[
−1/2 1/2
1/2 −1/2

]
, A2 =

[
−1 −2
−2 −1

]
,

B2 =
[
−1/2 −1/2
−1/2 −1/2

]
.

Since bothA1 and A2 are unstable, there doesn’t exist
αi such that (3) holds. Using the LMI Control Toolbox in
Matlab [19] to solve the LMI (4), we getτ1 = τ2 = α =
1/2. Hence,ε = {x|xT x ≤ 1/2} is an inescapable set of
this switched system.

Example 2. Consider system (6) withN = 2 and

P =
[

2 0
0 2

]
, A1 =

[
−1 2
2 −1

]
,

B1 =
[
−0.1000 0.1000
0.1000 −0.1000

]
, E1 =

[
1 0
0 1

]
,

HA1 =
[

0.1000 0
0 0

]
,

HB1 =
[

0 0.1000
0 0

]
, A2 =

[
−1 −2
−2 −1

]
,

B2 =
[
−0.1000 −0.1000
−0.1000 −0.1000

]
, E2 =

[
0 0
1 0

]
,

HA2 =
[

0 0.1000
0.1000 0

]
,HB2 =

[
0.1000 0

0 0.1000

]
.

Using the LMI Control Toolbox in Matlab [19] to solve
the LMI (10), we get


τ1 = 13.9716
τ2 = 13.9695
τ3 = 22.4856
τ4 = 7.2740

Hence,ε = {x|xT x ≤ 1/2} is an inescapable set of this
uncertain switched system.
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