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Disturbance Rejection of Switched Systems
Dongmei Xie, Long Wang

Abstract—In this paper, we investigate the disturbance switchings:
rejection of switched systems with unit-amplitude disturbance w(1) = A B 2
input by designing a state-dependent switching law. All the () z(t) + Bu(?). 2)
results in this paper are expressed in terms of LMIs, which

can be easily tested with efficient LM algorithm. The reachable set of system (2) is defined as the set of

all states reachable from the origin in finite time by unit-
I. INTRODUCTION amplitude disturbance input, i.€jw(t)||cc < 1 [16]. A set

Switched systems are a class of hybrid systems consistig S S&id to be inescapable if (i) € 73 (Il) z(0) € F
of several subsystems and a switching law that specifi@d [[«(!)llc < 1 implies thatz(t) < F for all the

which subsystem will be activated along the system trduture timet > 0 [16]. Based on these basic definitions,

jectory at each instant of time. Switched systems deseriE0] €stablished a necessary and s;n‘fluent condition to
investigation for theoretical development as well as fof€termine whether an ellipsoid= {z| 2" Pz < 1, P > 0}
practical applications. It is an essential feature of manl{§ @ inescapable set of system (2) with(t)[joc < 1.
control systems to switch among different system structurekL8] ;tud|ed the input/output properties of system (2) with
for example, power systems and power electronics [1fo @ (Hw(f)dt < 1, such asL, and RMS (root-mean
transmission and stepper motors [2], constrained roboticduare) gains, dissipativity and so on by linear matrix
[3], automated highway systems [4]. Switched systems aldgeauality approach. [17] investigated some problems of
arise from the application of multiple controller, which havePersistent bounded disturbance rgjectlon for linear uncertain
been widely used in adaptive control [5], where a highSYStéms, Lur'e systems and nonlinear systems.
level, logic-based supervisor provides switching between Although there have been many existing results on the
a family of candidate controllers so as to achieve desirgiiSturbance rejection of systems without switchings, to the
performance for the closed-loop systems. bgst of our knpwlgdge, thgre’re few results concerning the
In the last decade, switched systems have received grof/Sturbance rejection of switched systems. In this paper, we
ing attention [6]-[15] and have been studied from varioufocUs on designing a switching signal such that a given
viewpoints. One interesting viewpoint is that the switching®!lPS0id & := {a[zT Pz < 1} is an inescapable set of
signal is an exogenous variables, and then the problem $¥itched system (1) with unit-amplitude disturbance input.
to investigate whether there exists a switching signal such 1€ contribution of this paper is that, under the assump-
that switched systems have desired performance such i@ thate isn't an inescapable set of any subsystem of
stability, certain disturbance attenuation and so on. [1Witched system (1) (otherwise the switching problem will

provided a survey of recent development in stability an§€ trivial by always choosing the subsystem that hass

design of switched systems. its inescapable set), we derive a criterion under whigh
In this paper, we consider the disturbance rejection of ttfa" inéscapable set of switched system (1) by designing a
following linear switched system: switching law. The criterion is necessary and sufficient for
the case thaf. = 2. Furthermore, based on an important
&(t) = Aryx(t) + Brpyw(t), (1)  lemma, these results can be extended to switched systems

where z(f) € R" is the state vectorw(f) € R™ is with norm-bounded gncertainties. All the. results in thig

the exogenous disturbance inputy) : [0,00) — T := paper are exp_re_ssed in terms_of LMiIs, which can be easily

{1,2,---, L} is the switching path to be designed. FurtherEeSte.OI with efﬁment LMI algorithm softwarg [.18]-[19]'

more, r(t) = < means that theé-th subsysten{4;, B;) is This Paper 1s organized as follows. Sect@nptroduces

chosen as the system realization at titrend I, > 1 is the some definitions and lemmas as the preliminaries of the
paper. Some criteria to determine whether an ellipsoid is an

number of subsystems. _ . . . .
We first review some notions and results Conceminl-%wescapable set of a switched system are obtained in Section

the disturbance rejection problem of linear system without: An e>.<ten3|on to uncertain SW'tCheq syst.ems IS .presented
in Section 4. Two examples are given in Section 5 to
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matrices.

1. PRELIMINARIES

In this section, we present some definitions, lemmas

the starting point of our research.

In the sequel, switched system (1) is assumed to have

unit-amplitude disturbance input, i.ey(t) € €, where
Q:={w(®)| w(t) € R™, |Jw(t)|le <1}

[1l. DISTURBANCE REJECTION OF LINEAR
SWITCHED SYSTEMS

In this section, let? > 0, an ellipsoidz := {z| 27 Pz <
1}. We present some criteria to determine whethés an
escapable set of switched system (1) with unit-amplitude
disturbance input.

If ¢ is an inescapable set of a subsystem of switched
system (1), then we can always activate this subsystem
so thate is an inescapable set of switched system (1).

Definition 1. A setF is said to be an inescapable set of Therefore, to make the switching problem non-trivial, we

switched system (1) if
H oeF;

(I) There exists a switching signal*(t) € S such that
z(0) € F, w(t) € Q implies thatz(t) € F for all ¢ > 0.

Remark 1. Definition 1 can be regarded as an extension

of the notion of inescapable set for system (2) in [16].

In the sufficiency proof of Theorem 2.1 in [16], it states

“This means that there existsua € BL,, and a timeT

such that starting fromx:(0) = 0, the state is driven to
z(T) = z;.” Here,z(0) = 0 is a mistake, which contradicts

make the following assumption:

Assumption 1z is not an inescapable set of any subsys-
tem of switched system (1). By Theorem 2.1 in [16], this
assumption holds if and only if there doesn’t exist a real
numberq; > 0 such that

B;I*P —Oéll SO,VZEI

3

Proposition 1. The following two conditions are equiva-
lent:

(a) € is an inescapable set of system (1);

z(0) € ¢ in the definition of inescapable set. Furthermore, () There exists a switching signak*(¢) such
to prove Theorem 2.1 in [16] correctly, we need to modifythat under this switching signal, the derivative of

the Lemma 4.1 in [16] as follows:

Lemma 1. Let f : [0, ] — R be differentiable, withy (0)
1, f(v) > 1, then there exists € (0,v) such thatf(t) >
and f'(t) > 0.

<
1

Proof: The proof is similar to Lemma 4.1 in [16].

V(z(t)) = 27 (t)Pz(t) along the solution of (1) satisfies
a[a;T(t)ch(t)} <0 for all w(t) € Q,zT(t)Px(t) > 1.

Proof: Suppose that (b) holds, butis not an in-
escapable set of system (1). By Definition 1, there doesn'’t
exist a switching signat(t) such thatz(0) € e,w(t) € Q
implies z(t) € ¢ for ¢ > 0, i.e., for arbitrary switching

Based on the above discussions and Lemma 1, we cgjgnal ro(t) € S, there existz(0) = x¢ € &,wo(t) € Q,

prove Theorem 2.1 in [16]. Here, we omit the proof.

Lemma 2. Given T, = T, T, = T§ < R"*", the
following two conditions are equivalent:

() Vo eIl CR", eitherz"Tiz <0 or 27 Thx < 0.

(II) There exista; > 0,0 > 0,01 + g > 0 such that
T(N7 Tz <0,V x € 1L

Proof: The proof is similar to Lemma 2.1 in [10].

lemma 3J20] Given matricesG, M, N of compatible
dimensions, withG symmetric andM # 0, N # 0, then

G+ MAN +NTATMT <0

holds for all A satisfying A" A < I, if and only if there
exists a constanp > 0 such that

1
G+oMMT + =NTN <.
o

To > 0 such thatz} Pzy > 1, wherez; = z(Tp).
Let f(t) := 2T (t)Pxz(t). Obviously, f(t) is differentiable.
Moreover,f(0) = z7(0)Pz(0) € ¢, f(Tp) > 1. By Lemma
1, there existd € (0,Tp) such thatf(¢) > 1, f/(f) > 0,
which contradicts (b). Hence, (a) holds.

Suppose that (a) holds, but (b) doesn't hold. Then for
arbitrary switching signal, there exist(¢) € Q andtg > 0

such thate” (ty) Pz (to) > 1, but — [27 (t) Px(t)]]4=¢, > 0.
Then by the definition of derivative, for sufficiently small
v > 0, 2T (tg + v)Px(typ + v) > 1, which contradicts (a).
Hence (b) holds.

For system (2), we have the following necessary and
sufficient condition which can be regarded as a special case
of switched system (1) by assuming that= 1.

Remark 2. This proposition presents necessary and suffi-
cient condition to determine whetheris an inescapable

set of a switched system, which will play an important role
in our later discussions. But It doesn’t provide a concrete
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method to design a switching law. We will design the Then, under the switching signal(¢), from previous

convex-based switching law.

T
Corollary 1. ¢ is an inescapable set of system (2) if and’ )P
only if the derivative of V (z(t)) = 2 (t)Pxz(t) along the

solution of system (2) satisfiecﬁ[xT(t)Px(t)] < 0 for all
w(t) € Q2T (t)Px(t) > 1.

Theorem 1. ¢ = {z| 27 Pz < 1} is an inescapable set
of switched system (1), if there exist > 0 satisfying

Zle 7; > 0, and« > 0 such that

(CE L mA)TP + P(CE 1A + aP
(i mB:)TP

P(ZiL:I 7:.B;) } <0. 4)

—ad
Proof:

any z(t) € R" andw(t) € R™, we have

L L
O mA)T P+ PO A (t)

=1

+ xT(t)P(Z 7iBi)w(t)

L
+ wT(t)(Z 7. B;)T Px(t)

— afw (Hw(t) — 2T (t)Px(t)] <0,

ie.,
L
Z 7T () (AT P 4 PA)x(t) + 27 (t) PBiw(t)
+ wT(t)BZ-TPx(t) —ay [wT(t)w(t) - xT(t)Px(t)}}
< 07
where o
Q] = Qg = =y = ﬁ

Sincer; > 0,55, 7; > 0, we get

L
don r_réi%l{zT(t)(AiTP + PA;)x(t)
=1 ¢

+ 2T (t)PBw(t) + v (t)B] Px(t)
— aifw (Qw(t) — 2T (t) Pe(t)]}
0.

IN

Define the following switching signal
r*(t) = argminiez{z’ (t)(AT P+ PA;)x(t)
+ 2T (t)PBw(t) + v (t)B] Px(t)
— oy [wT(t)w(t) - zT(t)Px(t)]}.

Suppose that there exist > 0 satisfying
Zle 7, > 0, anda > 0 such that (4) holds, then for

discussions, we immediately get that for al(t) € €,
x(t) > 1,

L aT(0)Pr(t) = 2T ()AL ) P+ P Are )1
2" (t)PB,-hw(t) + wT(t)Bgl(t)Pz(t)

e ol (Do (t) — o7 (1) Pa()]

Oa

ININ +

where o« is defined as above. By Propositioneljs an
inescapable set of switched system (1).

Based on Lemma 2, we can get a necessary and sufficient
condition for the case that = 2.

Theorem 2. Assume that, = 2. ¢ = {z| 27 Pz < 1} is

an inescapable set of the switched system (1), if and only if
there existr; > 0 satisfyinng:1 7, >0, anda > 0 such
that

(X2 mA)TP+ P(X2_ miA;) + aP
(7, mB)TP

P(37, 7:Bs)

1= < .

= <0 ©)
Proof: We only need to prove the necessity since the

sufficiency is proved in Theorem 1.

Suppose that = {z| 2Pz < 1} is an inescapable
set of switched system (1), then by Proposition 1, there
exists a switching signat*(¢t) such that the derivative of
V(x(t)) = 27 (t)Pz(t) along the solution of system (1)
satisfies
%[xT(t)Px(t)] <0 for all w(t) € Q, 27 (t)Px(t) > 1.
Let

ATP+PA, PB;] .

Then, for all w(t) € Q. 27@)Px(t) > 1, we
have either [ () w’(t) | Hy Zig } < 0 or
[ 27(t) wT(t) | Ha 58 < 0. By Lemma 2,

there exist r;,i = 1,2,
zero such that for allw(t) €

- T 2 7 z(t)
[ () w' () ] (O izy TiHi) { w(t) }
(S5 i) TP+ P(YT i)
[ l‘T(t) WT(t) ] l: (2?21 TiBi)TP

P(Zio B ] [ o ] <0,

nonnegative and not all
O, zTPr > 1

- )

<0, ie.,

for all w(t) € Q, 27 (t)Px(t) > 1. By Corollary 1,¢ is an
inescapable set of the LTI systefl.;_, 7i4i, Y7, 7:B;).
By Theorem 2.1 in [16], this is equivalent to (5).
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Remark 3. By Theorem 2.1 in [16], Theorem 1 can be Proof: The proof is similar to that of Proposition 1
restated as followsz is an inescapable set of SW'tChedTheorem 3.c = {z| 2Pz < 1} is an inescapable set of

. . . . L
system (1). i there exist; > 0 sat|sfy|p 9 22.2172. = 0. the uncertain switched system (6) witlit) € Q if there
such that is an inescapable set of the linear t|me-|nvar|antexist > 0 satisfying™ 20 o> 0ande > 0 such
(LTI system(ZiL:1 Ti As, Zf:l 7;B;). For Theorem 2, we Ti = 92.i=1Ti = g

can get similar results. that
r L L L
Remark 4. Although we made Assumption 1 so as to make (> 7:4;,)T P+ P(>" 1;4;) + aP + (Y, PE,E] P)
our switching problem non-trivial. In fact, Both Theorem 1| ! =t =1
and Theorem 2 have covered the case that Assumption|1 (> nB)TP
is not true. That is, ifc is an inescapable set of theth i=1
subsystemj € Z, then we can choose; = 1 and 7; = T4,
0,V j#1iin (4). :
Remark 5. All the criteria in Theorems 1-2 are expressed‘ THa,
in terms of LMIs, which can be easily tested with efficient
LMI algorithm [18]-[19]. ’ P, i) “HfTTh TLHgL
—al 71}731 . TLZJBL
T Hp, ol - 0 <0. (7)
IV. EXTENSIONS TO UNCERTAIN SWITCHED . . . .
SYSTEMS : : : :
TLHBL 0 ce —(pI

Consider the following uncertain switched system:
.%‘(t) = (Ar(t) + AAT(t))a:(t) + (Br(t) + ABT(t))w(t)7 (6)
wherex(t),w(t), r(t) are defined as befor@AA;, AB;] =

Proof: By Theorem 1¢ is an inescapable set of system
(6) if there existr; > 0,37 7, > 0, anda > 0 such that

L B L B L _
E;A(t)[Ha,,Hp,], where Hy,, Hp,, E; are constant ma- (X1 A)TP+P(Y. i A) +aP P(Y. 1:B;)
trices of compatible dimension&\(t) € T' := {A(¢) : i=1 . i=1 i=1
AT()A(t) < T}, (> mB)TP —al

i=1

In this section, we give the following assumptions:
J I P <0, ®)

Assumption 2: There existse 7 such thatE; # 0. where A, — A, + BiA(t)Ha,, Bi = B, + EsA(t)Hap,.
Assumption 3: For any € Z, [ Hy, Hp, } £ 0. (8) can be rewritten as

Remark 6. Assumptions 2-3 will be used in the proof of

L
Theorem 3 below. G+ ZTi[MiA(t)Ni + NTAT(#)MT] <0,
=1

Similarly, a setF is said to be a robustly inescapable se
of the uncertain switched system (6) with unit-amplitude’
disturbance input if the following two conditions hold: 71N

() 0 € F,z(0) € Fw(t) € G+ M - My JA@) |

TLNL

(1) There exislts a iwitching sigfnaf(ﬁ)zuch thau(;f]) € M7
Q,z(0) € F implies thatz(t) € F for a t) € I, where
t >x(() ) P " w + [ nN{ o mNEJAT(@) | | £049)

> MT

Given the ellipsoice = {z| 2T Pz < 1}, where P > 0, H
we have the following results to determine whethds an where
inescapable set of switched system (6) with unit-amplitude L L L
disturbance input. (,ZlTiA")TPJF P(ZlTiAi) taP P(ZlTiBi)

G — 1= I 1= 1= ,
Proposition 2. ¢ is an inescapable set of system (6) if and (> 7:B)TP —al
only if there exists a switching signal'(¢) such that for i=1
all A(t) € T,w(t) € Q,2T(¢t)Px(t) > 1, the derivative of PE.
V(z(t)) = 2T (t) Px(t) along the solution of (6) satisfies M; = [ 0 ' } ;
d T
%[x (t)Pz(t)] < 0. N;=| Ha, Hp, |
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By Lemma 3, (9) holds if and only if there exisis > 0
such that

G+ oMMT + éNTN <0,
where
M=[ M, -, My],
T1 N1
N: .
TLNL

Then by Schur complement formula [14], we get

G+oeMMT NT
N —pl

i.e., (7) holds. Hence, this theorem holds.

<0,

Theorem 4. Assume thal, = 2. ¢ = {z| 27 Px < 1} is an
inescapable set of uncertain switched system (6) with(2
if and only if there existr; > 0 satisfyinng:1 > 0,
a >0 and ¢ > 0 such that

2 2
7 Ai)" P+ P(3 Ai) + aP + (3 PE;E]P)

(>
i=1 i:12 i=1
(> B)'P
i=1
TIHAl
ToH a,
P(X7,B) nHY nHY,
—al Tngl 7'2H;‘§2 <. (10)
T1Hp, —pl 0 -
TQH32 0 —QDI

Proof: By Lemmas 2-3 and Theorem 3, this theorem

can be proved easily.

V. EXAMPLES

Example 1.

Consider system (1) withV =2 and

[ 4)ae[3 2]
e[ ][4 72)

~1/2 1/2}
~1/2 —1/2 |°

are unstable, there doesn't exist

|

Since bothA; and A,
«; such that (3) holds.
Matlab [19] to solve the LMI (4), we get; = 75 = a =

1/2. Hence,e = {z|zTx < 1/2} is an inescapable set of
this switched system.

Example 2. Consider system (6) withh = 2 and

Using the LMI Control Toolbox in[10]

20
r=l5 5]

|

n=[ ey Same |- (48],
Ha = [ 0.1800 8 ] ’
Hm:[g 0.1800],/12:[ }
B= | Tolom “oao | E= |1 o |
Haz = { 0.1(())00 0.1(())00 ] Mgz = { 0.1800 0.1%00 } :

Using the LMI Control Toolbox in Matlab [19] to solve
the LMI (10), we get

1 = 13.9716
5 = 13.9695
5 = 22.4856
74 = 7.2740

Hence,e = {z|zTx < 1/2} is an inescapable set of this
uncertain switched system.
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