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Abstract— A class of evolution systems described by the one-
dimensional fractional diffusion-wave equation subject to a
boundary controller at the boundary is considered. Both bound-
ary stabilization and disturbance rejection are considered. This
paper, for the first, has confirmed, via hybrid symbolic and
numerical simulation studies, that the existing two schemes for
boundary stabilization and disturbance rejection for (integer
order) wave/beam equations are still valid for fractional order
diffusion-wave equations. The problem definition, the hybrid
symbolic and numerical simulation techniques, outlines ofthe
methods for boundary stabilization and disturbance rejection
are presented together with extensive simulation results.Dif-
ferent dynamic behaviors are revealed for different fractional
orders which create new future research opportunities.

Index Terms— Fractional order calculus, fractional diffusion
equation, fractional wave equation, boundary control, distur-
bance rejection.

I. I NTRODUCTION

Fractional diffusion and wave equations are obtained from
the classical diffusion and wave equations by replacing the
first and second order time derivative term by a fractional
derivative (0, 1) and (1, 2), respectively. There has been a
growing interest in investigating the solutions and prop-
erties of these equations because many of the universal
phenomenons can be modeled accurately using the fractional
diffusion and wave equations [1]. Research has been fo-
cused on the analytical solution to the fractional diffusion
and wave equations. In [2], the solution to the fractional
diffusion equation was given in closed form in terms of Fox
functions. In [3], the fractional diffusion and wave equations
were reformulated as integrodifferential equations. Analytical
solutions for the Green’s functions of the latter were then
found. In [4], the fractional wave equation was shown to
govern the propagation of stress waves in viscoelastic solids.
The transition from a pure diffusion process to a pure wave
process was also shown when the time derivative increases
from 1 to 2. In [5], a general solution was given for
a fractional diffusion-wave equation defined in a bounded
space domain.

In this paper, we study the boundary control of a string
governed by the fractional wave equation using the simu-
lation method proposed in [6]. To the best of our knowl-
edge, research on the boundary control of the fractional
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wave equation is still relatively new. In [7], the fractional
derivative control was applied to the boundary control of
the wave equation, which is similar, but still very different
from the topic in this paper. The major contribution of this
paper is that, for the first, we have confirmed, via hybrid
symbolic and numerical simulation studies, that the existing
two schemes for boundary stabilization and disturbance re-
jection for (integer order) wave/beam equations are still valid
for fractional order diffusion-wave equations. The problem
definition, the hybrid symbolic and numerical simulation
techniques, outlines of the methods for boundary stabiliza-
tion and disturbance rejection are presented together with
extensive simulation results. Different dynamic behaviors are
revealed for different fractional orders which create new
future research opportunities.

The paper is organized as follows. In Sec. II, we give
the mathematical description of the boundary control of
fractional wave equation. In Sec. III, we briefly summarize
the simulation method used. In Sec. IV, the effectiveness of
a static boundary velocity controller, a controller mostlyused
in the boundary control of wave equation [8] [9] is studied. In
Sec. V, we study the disturbance rejection performance of a
dynamic controller proposed in [10] for the boundary control
of wave equation. Finally, Sec. VI concludes this paper.

II. PROBLEM DEFINITION

We consider a string, which might be made from special
materials, governed by the fractional wave equation, fixed at
one end, and stabilized by a boundary control at the other
end. The system can be represented by

∂αu

∂tα
=

∂2u

∂x2
, 1 < α < 2, x ∈ [0, 1], t ≥ 0 (1)

u(0, t) = 0, (2)

ux(1, t) = f(t), (3)

u(x, 0) = u0(x), (4)

ut(x, 0) = v0(x), (5)

whereu(x, t) is the displacement of the string atx ∈ [0, 1]
andt ≥ 0, f(t) is the boundary control force at the free end
of the string,u0(x) and v0(x) are the initial conditions of
displacement and velocity, respectively.

The control objective is to stabilizeu(x, t), given the initial
conditions (4) and (5).



We adopt the following definition for the fractional deriva-
tive of orderα of function f(t) [4][11],

dα

dtα
f(t)

.
=

{

f (n)(t) if α = n ∈ N,
t
n−α−1

Γ(n−α) ∗ f (n)(t) if n − 1 < α < n,
(6)

where the∗ denotes the time convolution between two causal
functions.

Based on the definition of (6), the Laplace transform of
the fractional derivative is

L

{

dα

dtα

}

= sαF (s) −
n−1
∑

k=0

fk(0+)sα−1−k (7)

III. A H YBRID SYMBOLIC -NUMERICAL SIMULATION

METHOD

In [6], a method combining symbolic algebra and nu-
merical methods was developed to simulate some typical
boundary control problems, including the boundary control
of beam equation studied in [12]. Here we summarize the
steps.

1) Take the Laplace transform of (1), (2), (3), (4) and (5)
with respect tot, including the controllerf(t). Thus,
the original PDE ofu(x, t) with initial and boundary
conditions is transformed into an ODE ofU(x, s) with
boundary conditions. The resulting ODE is usually
hard to solve manually, due to the complicity of the
fractional wave equation, the dynamic controllerf(t),
and the initial conditions.

2) Call the Matlab Symbolic Math Toolbox function
dsolve() to symbolically solve the ODE(s) and the
boundary or initial condition(s). Althoughdsolve()
is able to determine the arbitrary constants in the
solution using the boundary or initial condition(s), we
find that its capability is very weak. Here, we feed only
the ODE ofU(x, s) to dsolve() rather than provide
both the ODE ofU(x, s) and the boundary conditions.
The expression ofU(x, s) with two arbitrary constants
C1 andC2, which are to be determined later, can be
obtained.

3) Using Matlab Symbolic Math Toolbox function
diff(), differentiateU(x, s) with respect tox to get
the derivatives ofU(x, s). SubstitutingU(x, s and its
derivatives into the Laplace transform of (2) and (3),
we can get two equations with two unknownsC1 and
C2.

4) Passing the two equations obtained in the last step
to the Matlab Symbolic Math Toolbox function
solve() to determine the constantsC1 andC2. Now,
we have obtained the explicit expression ofU(x, s).

5) Due to the complicity ofU(x, s), its analytical inverse
Laplace transform is usually unavailable. We apply
the numerical inverse Laplace transform toU(x, s) to
obtain the numerical solution of (1), (2), (3), (4), and
(5).

IV. B OUNDARY STABILIZATION

In this section, we study the performance and properties
of the following boundary controller:

f(t) = kdut(1, t) (8)

wherekd is the controller gain and the suffixd means it is
a derivative gain.

Although the control law (8) has been widely used in
the boundary control of wave equation and beam equation
[9] [13][14], its effectiveness when applied to the boundary
control of fractional wave equation is still unknown.

The initial conditions are chosen as

u(x, 0) = −0.5 sin(0.5πx), (9)

ut(x, 0) = 0. (10)

First, we choosekd = 1 and study the response forα =
1.25, 1.50, 1.75, 2.00.

The tip end movement over time is shown in Fig. 1. The
evolution of the whole string displacement is shown in Fig. 2
through Fig. 5.
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Fig. 1. Tip end movement over time for differentα

We can see that controller (8) still stabilizes the fractional
wave equation. The fixed controller gainkd = 1 provides
the shortest convergence time on the system withα = 2.
The response forα = 2 (wave equation) becomes zero for
t > 2, an already well-known result [15].

Next, for a fixedα = 1.5, we study the response for
different controller gainskd = 0.25, 0.50, 1.00, 2.00, among
which kd = 1.00 is already studied.

The tip end movement over time is shown in Fig. 6. The
evolution of the whole string displacement is shown in Fig. 7
through Fig. 9.

We can see that whenkd increases from0.25 to 2.00, the
system changes from underdamped to overdamped, because
kd is a derivative gain. Once again, the simulation results
show that controller (8) still works for the boundary control
of the fractional wave equation.



Fig. 2. Evolution of the whole string forα = 1.25

Fig. 3. Evolution of the whole string forα = 1.50

Fig. 4. Evolution of the whole string forα = 1.75

Fig. 5. Evolution of the whole string forα = 2.00
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Fig. 6. Tip end movement over time for differentkd.

Fig. 7. Evolution of the whole string forkd = 0.25



Fig. 8. Evolution of the whole string forkd = 0.50

Fig. 9. Evolution of the whole string forkd = 2.00

V. D ISTURBANCE REJECTION

In this section, we assume that a disturbance forcen(t)
is added at the same point where the boundary control
signal enters. We further assume thatn(t) is a sinusoidal
disturbance signal with unknown amplitude and phase but
with a known frequencyω. Together with the boundary
control signal [10](kd + ks

s2+ω2 )ût(1, s), the overall applied
boundary force is given by

f̂(s) = (kd +
ks

s2 + ω2
)ût(1, s) + n̂(s), (11)

where f̂(s) is the Laplace transform of the combination of
boundary control force and disturbance forcen(t); n̂(s) is the
Laplace transform ofn(t); ût(1, s) is the Laplace transform
of the velocity of the free end;kd andk are the control gains.

The above boundary controller (11) was proposed in [10]
to reject the noise for the boundary control of wave equation.
The effectiveness of (11) when applied to the boundary
control of the fractional wave equation is still unknown. Here,

again, we use simulation results to verify the feasibility.In
our simulation, the disturbancen(t) is chosen as

n(t) = sin(10t). (12)

We first study the response forkd = 1 and k = 0, i.e.,
the dynamic part of the controller is turned off, forα =
1.25, 1.50, 1.75, 2.00.

The tip end movement over time is shown in Fig. 10.
The evolution of the whole string displacement is shown in
Fig. 11 through Fig. 14.
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Fig. 10. Tip end movement over time for differentα

Fig. 11. Evolution of the whole string forα = 1.25

We can see that although the performance is severely
degraded with the presence of the noise for allα, the smaller
α is, the less the response is affected by the noise. This is
because the lower order derivatives help reduce the level of
noise [7].

Next we will study the response forkd = 1 and k =
10. The tip end movement over time is shown in Fig. 15.



Fig. 12. Evolution of the whole string forα = 1.50

Fig. 13. Evolution of the whole string forα = 1.75

Fig. 14. Evolution of the whole string forα = 2.00

The evolution of the whole string displacement is shown in
Fig. 16 through Fig. 19.
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Fig. 15. Tip end movement over time for differentα

Fig. 16. Evolution of the whole string forα = 1.25

Simulation results show that controller (11) still appliesto
the boundary control of the fractional wave equation. Since
the lower order derivatives reduce the affect of the noise,
better performance than in the wave equation case can be
obtained.

VI. CONCLUDING REMARKS

We have studied two controllers, already applied to the
boundary control of wave equation, on the boundary control
of fractional wave equation. Simulation results show that the
studied controllers are applicable for the boundary control
of the fractional wave equation. For noise rejection, since
the time derivative of fractional wave equation is lower than
that of the wave equation, the performance is even better.
Boundary control of fractional diffusion and wave equations



Fig. 17. Evolution of the whole string forα = 1.50

Fig. 18. Evolution of the whole string forα = 1.75

Fig. 19. Evolution of the whole string forα = 2.00

is a new research topic. Based on the experience from
the boundary control of the diffusion and wave equations,
controllers better suited for the fractional diffusion andwave
equations are expected to be explored in the future.
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