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A Higher Order Stokes-Dirac Structure for Distributed-Parameter
Port-Hamiltonian Systems

Gou Nishida* and Masaki Yamakita**

Abstract— This paper studies an extension of a Stokes-Dirac Il. PRELIMINARIES

structure which is treated in a port-Hamiltonian formulation : Lo :
of distributed-parameter systems for a higher order. The In the madeling of a power-conserving interconnection,

extended structure does not only use exterior derivative opera- the relation between elements is described such as the total
tors but Hodge star operators and their composite operators to  inComing power into the interconnection is always zero
relate flows with efforts. The structure represents a differential  through the boundary. The power-conserving interconnec-
relation between energy variables and it shows clearly some tjon is formalized by a Dirac structure as follows [1].
geometric properties.
Definition 2.1: Let F and £ be linear spaces with a
|. INTRODUCTION bilinear operatior | ) : F x £ — L called a pairing such
as
A generalized Hamiltonian formulation provides a use-
- . L . 1
ful framework to describe a physical network. A port- (elf)el, feF, eck (1)
Hamiltonian system consists of an interconnection of som8y symmetrizing the pairing we obtain a symmetric bilinear
subsystems, which are represented as Hamiltonian systefosm (( , )) on F x £ defined as
with boundary ports. The input-output relation is given by a 11 9 9 142 9 r1
power-conserving interconnection called a Dirac structure. (e, () = Celf7)+ () @)
Recently, in the framework a treatment of dlst_nbuted- Definition 2.2: Let F and & be linear spaces with the
pararneter. systems.has bgen proposed [1]. T_he Dlrac_ SmE)%"lring (| ). We denote an orthogonal complement with
ture is defined py differential forms on a spatial domain o espect to the bilinear fornf , ) by L. A Dirac structure
the system and its boundary. The definition based on Stokqga linear subspac® C F x £ such thatD = DL,
theorem is called a Stokes-Dirac Structure. The structure

means the power-conserving property, namely the changepefinition 2.3: Let Z be ann-dimensional smooth man-
of the interior energy is equal to the power supplied to thg, 4 with a smooth (n — 1)-dimensional boundanpz,

system through its boundary. representing the space of energy variables. 2&tZ) be

In this paper, an extension of the Stokes-Dirac structure ifferential k-forms on Z. A pairing betweem € QF(Z2)
presented. The standard Stokes-Dirac structure is definedfyd 3 ¢ O"—*(2) is given by

using an exterior derivative operator to describe the relation

between flows and efforts. The proposed extension allows (Bla) = / BAa. 3

the structure to use not only exterior derivative operators, z

but Hodge star operators and their composite operators alSimilarly, there is a pairing between c Q*(92) and 3 €

The structure means that there are higher order differentigh—*-1(92) is given by

relations between energy variables, and it makes some

geometric properties clear. (Bla) = BAa. 4)
Finally, two examples are presented. One is about Euler- 02

Bernoulli equation. This is the case that a system represen-Definition 2.4:Let 7, , and &, , be linear spaces satis-

tation is both an asymmetry and an infinite, then the proof d¥ing p + ¢ = n + 1 given by

the Stokes-Dirac structure can not be performed. We show Fpq:=P(Z) x QUZ) x Q"P(dZ),

that the Stokes-Dirac structure with the higher order gives a T onep n—gq n—gq (5)

X . . : Epg =QVRP(Z) x Q"UZ) x Q"TI(0Z) .
symmetric form. And it expresses same geometric relations.

Another example is a treatment of Electromagnetic wavket (fp, fg, fo) € Fpq @and(ep, eq, ) € £ 4 - By (3) and
equations. (4), (2) yields the bilinear form

(s Sarepreq Joren), (fy o 15 €5 egs £5€5) )
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I1l. | NCIDENTAL PROBLEMS ((fh et fi.e), (2 €% fied) )

A general modeling method with a Stokes-Dirac structure= (e% Af2+--+ed Af2 +E3NfI+-- .+egm/\f21m)
has not been introduced yet. The difficulty may be close /Z
to an existence of a Hamiltonian of systems in terms of n ( LA 2 el A g2
analytical mechanics. Then we intend to expand and to 07 o1 A Jo1 o1 A Jol
formalize it first. In this section we introduce a more sys- 9 1 9 1

) e e ¢ .11
tematic treatment of multi variables systems and a definition Fen At ten Afu) - (D)
procedure of the higher order differential energy variableBy the first equation of (8), each term of (11) is written as
And we discuss about these properties.
ei N fi =€ A (airer + - + Giom €2m)

A. Multi variables systems — ey Aagrer et €5 A Qg € - (12)

Generally a practlca_l system CO”?'StS of SOme POWRK: can immediately know that the diagonal element of the
ports. Then let us consider a formulation of multi variables

systems with the Stokes-Dirac structure. matrix A is zero all. By substitution (12) into (11) we have
. . . 2m  2m
Lemma 3.1:Let 7' and & be linear spaces satisfying Z Z

LAa e+ el 2 e Aa,el
p+q=mn-+1 given by [/Z(ev A aijej +ej Aagiep + e A\ aije;

i=1 j=i+1
m l
F= (2 x012)) " x (27 02) + €5 Najie}) +/ (ebr A i+ i A fo) |+ (13)
m 1 (7) -
&= (Q”‘p(Z) X Q”‘q(Z)) X (Q"‘%@Z)) . wherek = 2m(i — 1)+ j +i(i + 1)/2. Each non-zero term

which is determined by, j) in (13) is corresponding to
Considerm pairs of energy variables and its dual ¢h one Stokes-Dirac structure.

(fisei) € FF' x & (i =1,---,2m). Consider! pairs of Indeed, if all terms of (13) satisfy the Dirac structure then
energy variables and its dual &% (fy;,en;) € F'xE' (i =  the sufficient condition is satisfied.
1,---,1). These variables are related by Assume that (8) holds Dirac structure and that at least one
term of (13) is not satisfied. Then (11) must be nonzero. But
F—A.E |:Fb:| _B.E ®) this is contradiction for the assumption. Thus this shows the
T | By ’ "only if" part. [
where B. Definition of energy variables
F=fi, foml s E=le1, - eom ; _ We now derive a procedure of a higher order differer_1-
(9) tiation of energy variables. We assume that the exterior
Fy=1[for,-, ful s By =levt, - ,en] . derivative operator relates to spatial variables only.

) _ o ) o Energy variables are described by differential forms.
A'is a2m x 2m matrix containing exterior derivative oper- Then, simple multiple operations of the exterior derivative
ators, Hodge star operators and their composite operatofs go not generate these higher order differentiations.
as elementsB is a 2] x 2m matrix containing exterior gecausaiod — 0.
derivative operators, Hodge star operators, their composites , is an exacp-form which is an element of the image
operators and real numbers as elements. Diagonal eleme@@p—l(M)) c P, thendw = 0. Even thoughw is exact,

of A are equal t? Z€ro. . . xw iS not exact i.e.d*w # 0 necessarily, where: is
Leta;; be a(i, j) element of the matrixl. we consider a Hodge star operator. Hence we define the higher order

the small matrixA;; = [al& ]. we haved;; is satisfied  differentiation with the alternate action afand .
a Dirac structure on two pairgf;,e;) and (f;,e;) with We assume that energy variables are defined as the flow

appropriate boundary variables for albndj, if and only £, £, € QF(M) first. There are two sequences according

if, the linear subspace which is defined by (8) is satisfied @ the first operation as the following diagram:
Dirac structure.

e f €
Proof: Let f be a set of a flow ané be a set of an nf fi m h mf
effort such as > QR (M) s QF (M) —E> QR (M) —> -
# g e#H L p# # g H L . ¢ JA ¢
f U 2 fom} e {et »€3m ) (10) ...eQn—k—i-l(M) deQ"—k(M) edQn—k—l(M) -
FE=Aff - Ry el =tehh ey w v w
f2 €1, €3 f2 .
By (1) and (2), we have (14)
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Namely, one of sequences takedirst. allows the structure to use not only exterior derivative

. J . J operators, but Hodge star operators and their composite
fimer—=fa—mer—fo—-. (15)  operators also.

The other taked first.

A. Definitions
— d _ * 7 d _ x =
fi—e—fa—es— fa—---. (16) Lemma 4.1:Let w be a differentialk-form on a smooth
Remark 3.1:If energy variables are one-parameter funct-dimensional manifoldM. Then (xd)™w is a o-form,

tions, or 1-forms and0-forms on a smootH-dimensional Where

manifold, these are unique forms on the manifold respec- k whenm is an even number
tively. In the case of the others the flow and the effort do o = . (19)
. . n—k—1, whenm is an odd number
not take same forms untid x d or d x d * is operated.
Proof: The following diagram summarizes the rela-
tionships between spaces of differential forms.

We consider three types of an equivalent class which

C. Arbitrariness of energy variables

d
provides freedom of representations about energy variables. = QM (M) ——= QT (M) — - (20)
One of freedoms exists on the definition of higher order 2 *|
energy variables. Ifo € QF(M) is an effort, then the flow = QPR (M) <2 QbM< . |

is defined bydw € QF+1(M) in (15). On the other hand
we consider that +dn € QF(M) is a effort, then the flow
is equal to the previous resultv € QF+1(M).

A set of such closed-forms w € Q*(M) is identified __Jn—k—1, whenm is an even number
as de Rham cohomology class denoted by 7= k., whenm is an odd nhumber

Definition 4.1: Let & be an integer number defined by
the converse case of such as

(21)

W =w+dypeQ¥(M), ne Q1 (M). (A7) Definition 4.2: Let & and& be integer numbers defined
by (19) and (21). Let,,, andé,, be binary numbers which

Remark 3.2:We can see that this result corresponds to g equal to 1 or -1 defined by
m

gauge transformation[4]. It is known as a degree of freedo
such that the vector potential is not defined uniquely in —(~1)°?, whenm is an even number
Maxwell's equation for example. This transformation gives €m = (22)
it equivalent physical meanings as long as the relation holds

after applying a exterior derivative. — {—1, whenm is an even number 23)
m o o5 .
Another freedom appears in the case that a result of (=1)7?, whenm is an odd number
an interior product between a flow and an effort is zero | emma 4.2:If we consider equations

equivalently. .
Example 3.1:0ne of the example is treated in [1] as the ~ d(xd)"a A3 = Zem—i d((+d)™ " A (xd)" B)

1, whenm is an odd number

special case of the standard Stokes-Dirac structure for an i=0
ideal isentropic fluid. This is called a modified Stokes-Dirac + Qo ANd(xd)" 3, (24)
structure. m 4 )

|:fp:| _ { 1 de, ] d(xd)"BNa = ;em,i d((xd)™ ' B A (xd)' )

fo dep + 7, * ((xdv) A (xey)) B Ad(sd)™a (25)

— ey A fy=ey Ade, + ey A [ £ % ((xdv) A (xe, . )
f P <*” (( ) >)) then we have following relations.

= ey Ndep. (18) (i) the case that is an even number
The last freedom exists on a modeling of systems with L&t be ak-form and(s be a(n—k—1)-form. If (xd)™
higher order energy variables. That is, there are some cof-8c-form and(«d)™ g is ag-form, then we have
binations to represent higher order terms (eug,,dx =

dwgy = d % dw, = d * wapdr =...). We will show it as a G ==(=1)7, Go==(=1)7. (26)
example in section V. (i) the case that is an odd number
Let o and 8 be k-forms. If (xd)™« and (xd)™( are -
IV. MAIN RESULTS forms, then we have
From Lemma 3.1we only have to verify a Stokes-Dirac Co=Co = (_l)g(aﬂ) . @7)

structure for decomposed structures independently instead
of a whole system. Then we consider the Stokes-Dirac  Proof: The summary proof is showed only. Letbe
structure for such a minimum structure. The extensiomn even number. Therd)™« is ac-form and(xd)™( is a
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o-form. It is easy to show above statements using followingvhere 6 =

properties:
d(xd)"a A (xd)"™ 8

= d((xd)"a A (xd)" " 3) (28)
— (=) (xd)"a ANd(xd)" "™,
(xd)"a Ad(xd)" ™3
= xd(xd)™" ta A d(xd)" ™3 (29)

*
( )n m+1ﬁ/\d(*d)m 1
( )a(a+1 (*d) 1aA *d)n m+16 -

B. Extensions of the Stokes-Dirac structure

We show three types of extensions for the Stokes-Dirac

structure as follows.

Theorem 4.3d(xd)™-type): Let F and £ be linear
spaces satisfying + ¢ = n + 1 given by

F:=QP(Z) x QUZ) x (Q“"”(EJZ))m,

m (30)
£ = Q" P(Z) x OI(Z) x (Q"*Q(E)Z)) .
Let D be a linear subspace df x £ such as
D= {(fpa .fqa €p, Eq, fbla ) fbma €p1, "y ebm) eFx€& |

)Lt ]

fo €0eploz ep1 (xd)"eqloz
foo | _| @(xd)eploz ez | _ | ()" Legloz )
fbm gm(*d>mep|82 €om eq|8Z
(31)
where

| =(=1)7=*tD " whenn is an even number
T Z(21)°G+) | whenn is an odd number
Yq = Co- (32)

ThenD is a Dirac structure.

Theorem 4.4+((dx)™-type): Let F and £ be linear
spaces satisfyingk = n + 1 given by

F = QM2Z) x Q¥(Z) x (Qn—k(aZ))m,

m  (33)
£ = Q" R(Z) x QVR(Z) x (Qn—k(aZ)) .
Let D be a linear subspace df x £ such as
D= {(fpafqaepaeqa fbla t .afbmaebla o '7€bm) e F x & |

2=l <™ ]

So1 Eoep|az eyl (*d)m€q|8Z

foo | | €(xd)eploz evz | | (+d)" egloz !
N : [ : ’

fbm €m (*d)mep|az Cbm €q|6Z

(34)

Olbk=n-k » 0 = Olk=n—k , Jp =
(—1) =Ryl 5, Ay = (1) Pky | - ThenD is
a Dirac structure.

Proof: We consider thap =n — k andg=n—k in
(30). If we replacex(d+)™*1! in (31) with d(xd)™, that is,

#(de)"la A B = (=1)"RRg(xd)™ xa A %3, (35)
then we only have to consider the same relation. =

Theorem 4.54-type): Let F and £ be linear spaces
satisfying2k = n + 1 given by
F=082)xQ¥2),
E=Q"MZ)x Q" Z).
If a linear subspace aof x & is

D ={(fp, farep,eq) € F X E | [fﬂ—{o *}[e”}} 37)

*

(36)

thenD is a Dirac structure.

Proof: The proof is the same way as previous subsec-
tion. |

This structure has been induced in [2] and [3] as a part of
Timoshenko beam models. The structure has no boundary
variables.

V. EXAMPLES

In this section, two concrete examples are presented to
clarify the usage of the extended Stokes-Dirac structure.

A. Euler-Bernoulli beam equation
Consider Euler-Bernoulli beam equation

(38)

where w is the displacement of the beam at the spatial
variablez at timet, p is the mass density and! is the
elasticity modulus. The total stored energy is written as

1

L
H(t) = 5/0 p(wt)Q + EI(wm)de.

Let ap = wyedx (fpu = —0wap) be a potential elastic
energy of the bending and let, = %o, (= ¢,1) be an
associated co-energy variable, that is, the stressol.et
kwidx (f1 = —0Oway) be a kinetic energy, that is, the
translational momentum and lef = k! xa, (= eq1) be
a co-energy velocity, where = £-.

Now we consider the representation of (38) with the stan-
dard Stokes-Dirac structure. But it is impossible to construct
the right-hand side of (38) with only these energy variables
corresponding to the left-hand sidg; = —k wydz. If a
new energy variable,, = w.., is defined, then (38) is
written as—x wudr = d - Wagg-

Next the dualf,2 = —wi,..dz Of the energy variable
ep2 Must be defined as well. This yields naturally the effort
eq2 Which is related byf,.. Furthermore the sequence

PWt = *Elwrrrr )

(39)

(40)

* d * d
6’p2_>fp2—>6(12—>.fq2_>ep3—>"'
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is derived by recursive operations. The system representa-Now we introduce the constitutive relations of the

tion given by this procedure is written as medium: H = c?8,B, D = éyE. Then (43) can be written
[ kwpdzr ] [0 00 0[0-d0 07 w ] as
K Wigodx 00000 0-d0 || W dD = p. (47)
K Wiezd| | 0 0 0 0[0 0 0 - || Wea
: 0000loo0o0oO0 : Applying ¢ to (47) we havedydD = xdp. And we have
Wizedz | | 0 d 0 0]0 0 0 0 || wes (41) 10J 182D
sz o 00dO0[0000 || W WD =—-— — 252 (48)
Wzara @l 00070000 | emaz By the calculation ofA = d§ + §d we have
: 00O0O0|0O0O0@O0 : .
T . e T 1 9°D 10J
This is not satisfied with the standard Stokes-Dirac struc- 22 T AD = *dp — ATl (49)

ture. Now, by the proposed extension, (41) is written as Applying ds to (46), (44) yields

K Wy dx 0 d*d}[ Wy } [ 0 *A}[ Wy }
= = 5 42 2
[wmdm} [d*d 0 ||Wsa WA 0 || Way (42) PeoddB = dxJ — gO%Tf . (50)
where A = dé + dd : QP(M) — QP(M) is Laplace-

Beltrami operator and = (—1)"?*"*lx dx : QP(M) — Then we have

Qr—1(M) is an adjoint operator of, then —+A = « x d * 10°B L AB= - geg. (51)

d = (—1)*"=F)d « d. For example we can apply a control c? ot? 2eg

method to (42) using Casimir functional [3]. In free space, (49) and (51) can be written as
Remark 5.1:In the case above\ is considered for a O(dH)| 5| 0 dxd| =B 50

O-form. Then A = dd, namely we used onlyl(xd)™- QdE)|~ ¢ |—dxd 0 |—xD|’ (52)

type. Generally, we have to consider bafftxd)™-type and 5

*(d*)™-type for a calculation ofA. {fbl} { ¢ ;BB} , {ebl} = {_(*d)D*D] . (53)
A differential form w which is satisfyingAw = 0 is Jv2 —c*(*d)* €b2 —*

called a harmonic. This means that a value of a point i§he energy balance is

equal to a mean value around the neighborhood. In (42)
. . & 9 0B oF
there are relations [flowf «*Aw. These can be modified to T c“egB A o +eoE A TR (54)
Aw = [effort]. It is considered thaty is a harmonic form 02
if all efforts are equal to zero. It is considered that of (54) is a energy density of

. . Poynting’s theorem.
B. Electromagnetic wave equations

Maxwell's equations contains an important physical re- VI. CONCLUSIONS

sult that an electromagnetic field travels into a space 35S The extended Stokes-Dirac structure can represent higher

a wave. The formulat|on in terms of 'd|str|but_ed-parameteérder differential relations between energy variables and
port-Hamiltonian systems of Maxwell's equations has been‘ﬁake some geometric properties clear

given already [1]. The other advantage is the property which decomposes

N Let Z bg a ?"d'mens'on‘f’" gamfold \?_ntlr:ja bo(;r}daiz. the whole structure symmetrically into independent ones for
ow we identify contravariant-tensor fields an&-forms. the Stokes-Dirac structure.

The energy variables are both the electric field induction
D € Q%(Z) and the magnetic field inductioB € Q%(Z). APPENDIX

The co-energy variables are both the electric field intensity poof of Theorem 4.3The statement follows from the

E€ Ql(Z)Qand the magnetic field intensitif € 2'(Z).  y160f of the standard Stokes-Dirac structure [1]. We will
And J € Q%*(Z2) is the current density and € Q3(2) is denote the linear subspace by

the charge density.

Maxwell’s equations are U= (fp, fysem s fors s Foms €015 > €om) 5
2 2 2 2 2 2 2 (55)
E00E = —p, @3) Y= S epeq fir s foms 1o ) -
JE — 0B 44 First, (( -,- )) is calculated for¥;, ¥5 € D. If this result
T ot (44) is zero, then¥; € D+ showingD c D*. Secondly, we
dB =0, (45) consider a condition ofr; € D+ such that( -, - )) is zero
OF for all U5 € D. Namely,D+ C D, that is,D = D*.
C2é()(;B =J + é(]i } (46) .
ot (i) D c D+
where &, is the electric permittivity [(£o]| = eo,*éou = Let ¥y € D, and consider any, € D. By substitution
gou,u € NY(Z)) andc is the speed of light. of (31) into (6) the right-hand side of (6), transpositions
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of both the second and the fourth term in the first integrabince ef,|az = e§|az = 0, if we substitute both (62) and

yield (57) into (61), then by Stokes’ theorem we have
/z {vqe}) A d(*d)’”ei - d(*d)me?) A eé /Z [fypez A d(*d)mezl, + 'yqef, A d(*d)me;
+ Ygen A d(xd)™e; — d(xd) e, A eﬂ +esNfy+elNfr| =0, (63)
/ ZE [ (xd)™ e 1 A (xd)ie? for all €2, e2 with e2|52 = 2|9z = 0. Clearly, this implies
m—1i §
oz
i=0 f; = 7qd(>«<d)me(11 , fq1 = 'ypd(*d)mezl). (64)

d)™ 2 A (xd)lel| . (56
+(xd)" e A )ep} (°6) Finally, by the substitution (64) into (60) we have

By Lemma 4.2we have
/ [fyqezl, A d(*d)meg + ’ypeé A d(*d)meg
z

d( "162/\6 _Zem i *d m— 1612) (*d>zel>

! + ’yqefJ A d(*d)meé + fypeg A d(*d)me;}} (65)
+ Coe Ad(xd)"e, , (57) m
m q +/ Z{Em_ie}, A (xd)'e2 4 (xd)™ te? /\fb} =0,
d(xd)" e, Neg = emi d((xd)" e, A (xd)'e]) 025 ’
=0 1 m 9 for aII e?,e2. The substitution of both (62) and (57) into
Substitution of (57) and (58) in the first term in (56) yields m
m _/ Em—i [Z d((*d)m 4 2 (*d)z 1)
— /Z [Z €Em—i d((*d)m*ieg A (*d)ie}]) Z N i=0
= + Z d((*d)m_ieé A (*d)ie?,)} (66)

S <<><>>]

i=0
| b [ 3 [enmieh et + et A g] =0
/E)Zem ,{*d A (xd)'e; 92 i=0

Z =0 Hence by Stokes’ theorem we have
+ (xd)™ el A (*d)ie}]} . (59)
. / Zém_i*dng/\(*d)
By Stokes’ theorem we have that (59) is equal to zero. 0z %
(i) DL c D + € (xd)™™ 161 A (xd)’e

We consider a condition of’; € D+ such that the right-
hand side of (6) is zero for all elemenis, € D. Hence by

2
P

— (Em_se} A (xd)ie2 + (xd)™ 2Afb)] —0, (67)

substitution of (31) we have for all ew ei, that is,
/Z [acp A d(xd)™ €2 + ypeh A d(xd)™ 2 i = Em-ilxd)'eyloz , ey = (xd)" egloz . (68)
+ AL e A fﬂ (60) It shows indeedl; € D. u
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