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Robust Stabilization for Singular Systems with
Time-Delays and Saturating Controls

Wu-Neng Zhou, Ren-Quan Lu, Hong-Ye Su, and Jian Chu, Member, IEEE

Abstract—We studied the delay-dependent stabilization
problem for a class of uncertain singular system with
time-delays and saturating controls. Theorems derived give
sufficient conditions for delay-dependent stabilization of the
singular systems with a combination of saturating controls and
multiple time-delays in both state and control; we assumed the
delays to be constant bounded but unknown, moreover, the
uncertainties are also described to be unknown but bounded
and the nonlinear terms included in the systems are fallen into a
set. Under these sufficient conditions, the solution of the
uncertain singular system is regular, impulse free, and locally
asymptotically stable for all admissible uncertainties.
Furthermore, the results based on several Linear Matrix
Inequalities (LMIs) are developed to guarantee stability and be
computed effectively. Finally, we advance an example to
demonstrate the superiority of this method.

I. INTRODUCTION

ONYTOL of singular systems has been extensively

studied in the past years due to the fact that singular
systems better describe physical systems than regular ones. A
great number of results based on the theory of regular
systems (or state-space systems) have been extended to the
area of singular systems [1]-[2]. Recently, robust stability
and robust stabilization for uncertain singular systems with
time-delays have been considered [3]-[5].

Moreover, the problem of stabilizing linear systems with
saturating controls has been widely studied these last years
because of its practical interest [6] and [7]. However, to the
best of our knowledge, the problems of robust stabilization
for uncertain singular system included both time-delays and
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saturating controls have not been fully investigated yet.

In this paper, we concerned with the delay-dependent
robust stabilization of a continuous-time subject to multiple
time-delays in both state and control, saturating controls and
nonlinear terms. The synthesis problem addressed is to
design a memoryless state feedback control law such that the
resulting closed-loop system is regular, impulse free and
stable for all admissible uncertainties, and a sufficient
condition for the existence of such a control law is presented
in terms of several linear matrix inequalities (LMIs).

II. SYSTEM DESCRIPTION AND DEFINITIONS

Consider the following uncertain singular systems with
time-delays and saturating controls described by

(2): ES(0) = (4 + A, )0+ D (4, + A4, (x.0)
xx(t=h(1))+ E,, f(c(2)) + B, yw(t)
+ (B, + AB, (x,1)u'(t)
3 (B, + 8B, ()t~ g,(0).

u'(t) = sat(u()),x(t) = ¢(t), t €[—1,0],0(¢) = Cx(¢)
sat(u(t)) = [sat(u, () sat(u,(t)) --- sat(u, (1)),

where x(f) € R" is the state vector, u(¢) € R" is control

)

input vector to the actuator (emitted from the designed
controller), u'(f) € R" is the control input vector to the plant,

w(t) € R” is the disturbance input vector from L,[0,) . The
matrix £ € R™" may be singular, we shall assume that
rank E = r < n . The matrices 4,, 4,,E,,, B,,,B,, and B,, are

known real constant matrices with appropriate dimensions.
The matrices AA4,(e),AA4,(¢),AB,,(») and AB, (e) are

time-invariant ~ matrices  representing norm-bounded
parameter uncertainties, and are assumed to be of the
following form:

[A4,(e) A4(e) AB,(s) AB, ()]
=GF(x,t)(H, H, H, H,]

where G,H ,H,,H, and H, are known real constant

@

matrices with appropriate dimensions. The uncertain matrix
F(x(2),t) with Lebesgue measurable elements satisfies
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FI(x(0),0)F (x(1),)) < 1. 3

The input vector is assumed to satisfy actuator limitations,
ie. u(t)eU c R™ with

U ={u(t) € R";—uy;) Sy (6) Sutgg,tyy > 0,i=1,--,m} (4)

The actuator is described by the nonlinearity

Uyi) ifug, () > uy,
sat(ug, () =u,, () i —ug,) Sug (1) Sug, %)
—Uy,y 1w, (1) <—uy,

h,(t)and g,(¢) are unknown scalars denoting the delays in

the state and control, respectively, and it is assumed that
there exist positive numbers /,g and 7 such that

0<h(t),g(t)<hg<r (6)
for all ¢+, i=1---,k .
continuous initial function defined in the Banach space C,.

#(t) is smooth vector-valued

In this paper, every nonlinear term is assumed to be of the
form as follows
[ (e K [0.k,1=1f,(c)|f,0)=0,0<0,f,() -
2 .
<ko; (0, #0)},j=12,+,n
where &, are positive scalars.

The nominal unforced singular delay systems (1) can be
written as

Ex(t) = 4x(0) + Y Ax(t=h(0) + B /(@) (8)

Using the Leibniz-Newton formula [7], then the singular
delay system (8) can be written as

Ex(t) = (4, + Z Ax()+Ey f(o(1))

Al A0+ Y 4 ©
xx(t—h () +0)+E,, f(c(t +0))]dO

x(t) =¢(), t e[-27,0]
Throughout this paper, we shall use the following concepts
and introduce the following useful lemmas.
Definition 1. The singular delay systems (8) is said to be

k

regular and impulse free if the pair (£, 4 +ZA,.) is regular
i=1

and impulse free .

Lemma 1 (Krasovskii theorem [1]). The singular delay
systems (8) is said to be locally asymptotically stable if there
exists a positive definite symmetric matrix P , positive
scalars 7,,7,,7,,v and y, for any initial condition ¢(¢)

€ C’, the trajectories of the singular delay systems (8)
remain confined in the set Q(P,E,y)= {x(t)eR"|
x"(O)P'Ex(t)<y™',y>0' , whereas, for a continuous

function V(x(t),t):R"xR" >R such that

x| <veoO.n<zxo . and if

V(x(t),t) < -, ||x(t)||2 , V(x(1),t) <V (4(0),0).

Definition 2. The uncertain singular systems (X ) is said
to be robustly stable if the systems ( X ) with
u(t)=0,u(t—g,(t))=0,w(t) € L,[0,0) is regular, impulse
free and locally asymptotically stable for all admissible
uncertainties.

Definition 3. The uncertain singular delay systems (X ) is
said to be robustly stabilizable if there exists a linear state

feedback control law u(f) = Ax(¢),A € R™" such that the

resultant closed-loop system is robustly stable in the sense of
Definition 3. In this case, u(¢) = Ax(¢) is said to be a robust

state feedback control law for system (X).
Lemma 2 [8]. Given vector x,y, a positive definite

symmetric matrix R with appropriate dimensions, then for
any scalar ¢ >0, we have

2x"y<ex'Rx+& 'y 'Ry,

Lemma 3 [8]. Given matrices 4,0,E,I" and F(o) of
appropriate dimensions and with ® symmetrical and F (o)
satisfying F' (c)F (o)< I . Then we have:

a) If the following inequality holds,
O+TF(o)E+(TF(0)E) <0
if and only if there exists a scalar & > 0 such that
O+dT +£'E'E<0

b) For any symmetric matrix P >0 and scalar & > 0 such
that e —EPZ" >0, then

(A+TF(0)Z)P(A+TF(0)Z)

< APA" + APE" (¢1 -EPE")'EPA" + AT

III. ANALYSIS OF ROBUST STABILITY

A. Analysis of robust Stability of Systems (8)

The main result is derived as follows, it gives the sufficient
condition of robust stability for the singular delay system
(8).The proof of it is similar to [2] and [9] and is omitted.

Theorem 1. If there exists a series of positive definite
symmetric 0,0,,,0,;,0,,,i =1---k , a matrix P, and the
scalars &,y and 7 such that

EP" =PE" >0 (10a)
W N, tN, 7N,
N Q0 0
M=| <0 (10b)
tN, 0 €, 0
N 0 0 0,
PT
0 >0 (10c)
P I

where
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k k
W= (4, + ZA)P" + P(4 + T 4)

+Téf A0, + 0, +0.)A +€E, El + &' PC"K"KCP'
N, =[P4] - PA'], N, =[PA" PA’ - PA'],
N, =[PC"K"E" PC'K'E! --- PC"K"EL],
Q, :—diag{Qll,le,---,Qlk},K:diag{kl,---kn},
Q, =~diag{ 0,0+ O f» Q= ~diag {0, 0y, Oy |

then the singular delay system (8) is regular, impulse free and
locally asymptotically stable for any initial condition

belonging to the set ®@,={d()||d)|}<S5} with
0=2..(0)/ yr,
where
2
7, =4 (EP")+ % max A, [PA 0, 4,P"]

2

+ 2 max A, [P4] 0,/ AP"]

2

+%mlax 4, [PC"KTELO;'E,,KCP"])

B. Disturbance-Free Case (with w(t)=0)

When w(¢) =0, for the uncertain singular system (X ),
introduce the control law u(¢) = 2Ax(¢), where the control
law gain matrix A € R™" is to be found, and the closed-loop

system is

(Z): Ex(t) = (A + By, N)x(t) + Zk:A[Ax(t —h(1)

+ElOf(G(t))J’_ZB%AA‘x(t_gi(t)) (11

+ By, 1(1) + szfAn(t - g(1)

x(t) =¢(t), t €[-1,0]
where [o] =[e]+A[e]( [0] denoting the matrix), and
1(1) = sat(2Ax(1)) — Ax(),
7t~ g,(1) = sat(2Ax(t - (1) ~ Ax(t — g,(1))
Obviously, the vector function 7(¢) satisfies the following

inequality
n" () < x"(OA Ax(D), 12)
n(t—g, () <x"(t—g (A Ax(t—g, ()
By (4), one has x(¢) € S(u,,1, ) , where
S(uoalm)z{x(t)ERn |{u(t)ERm;_uo(i) (13)

SAGX(0) Sy i =1,

Using the same method as theorem 1 and taking into (12),
(13) and [7], furthermore introducing the idea of generalized
quadratic stability and generalized quadratic stabilization in
[3], one can deduce the following corollary.

’m}

Corollary 1 (Disturbance-free case). If there exist a series
of  positive  definite  symmetric  Q,0,,0,,,0;;

04 Osi» i Ris Ryis Ry Ry Ry, R i =1--+k , a matrix P,
and the &,&,,7,i=L--,k and 7 such that
M, <05 2>20,Z,<0 and the
EP" =PE" >0 hold, then the uncertain singular delay

system (1) is regular, impulse free and locally asymptotically
stable for any initial condition belonging to the set

scalars

expression of

®, = 16011 6(0) < 6} with 5 =2 (D).
iz
where
2
By = A (BT + kil (PATAPT) + 55 max 4, [P,

+ BZOAA)T (Qlii1 + lel )(AOA + BZOAA)PT]
2

+ 2 max A, [PAL (03 + Ry )4, P"]

2
+ T , [PCKTEL (O3 + R)EKCP

3k’

+ max A [P(B,,,A) (O, + R, )(B,,, NP"]

ko’ - -
A, [PBy, A (O +R)

3kt
X(By NP ! ]+T mflx A [P (BZiAA)T

x(Q5' + Ry ) By, M)P']

and
P'E AT
= 5120
A, yug,

[1]

(14a)

i

PT
z,-|¢ ¥ <o
P I

and M, 1is shown in the next page, where N,,Q,,Q, and

(14b)

Q, are the same as theorem 1, and

k k
WA = (AOA + ZAiA + BZOAA + ZBziAA)PT + P(AOA

i=1 i=1

k k k
+ 2147A + BZOAA + ZBMA)T +TZ‘AiA (er
i=1 i=1 i=1

k

+0, +0, +0, + 0y +0) Ay +7) B, NG,
il

10, +0, +0,, + 05 + 0, (B, )

+gE,E), + gflPCTKTKCPT +&B,,,Bix

k k

+&'PA'AP" +) &,B,, B, + Y & PATAP"
i=1 i=1

Nm = [P(Am + BZ()AA)T P(Am + BZUAA)T]’

NZO = [PAIC\ PAT PAATA]

1A2
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Ny =[P(By A" -+ P(By N)' 1= N,
Ny, =[P(By,N)' -+ P(Byy, A)'],

Q, =—diag{Q,.0p,.+.0, }.J = 4.5.6,
Q;:—diag{R Rjz,---,Rjk},j=1,2,~-,6.

Jr

[ Wy tNy =Ny N, N, TNy TNy TN, TN, TN, 7N, TNy 7N,]
N © 0 0 0 0 0 0o 0 0 0 0
N, 0 © 0 0 0 0 0 0 0 0 0 0
N 0 0 © 0 0 0 0 0 0 0 0 0
N, 0 0 0, 0 0 0 0 0 0 0 0
NL 0 0 0 0 € 0 0 0 0 0 0 0
M,=|zN/, 0 0 0 0 0 0 0 0 0 0 0 |<0
N 0 0 0 0 0 0 © 0 0 0 0 0
N, 0 0 0 0 0 0 0 £ 0 0 0 0
N0 0 0 0 0 0 0 0 £ 0 0 0
N, 0 0 0 0 0 0 0 0 0 0 0
NL 0 0 0 0 0 0 0 0 0 0 K 0
_z'N(,TA 0 0 0 0 0 0 0 0 0 0 0 2 |
(14¢)

In the following we shall discuss how to solve the control
law gain matrix A in the following analysis by using LMI
technology. = Assume  that there  exist scalars
B B> B;i»6,; >0 and positive definite symmetric matrices

1,,T,T. P,

0>%is % jistji
satisfied:
BzOBZT0 +BzOH4T (,6’01—H3H3T)'1H3B2TO +,B0GGT <T, (15)

such that the following inequalities are

BBl +B,H (BI-H,H, Y H, B, + GG <T, (16)
AiQ/'z’AiT + Ainz’HZTi (:ijl - HZinz’HZTi )-1 HZiQﬁAiT (17)
+f,GG" <T,
BZiZjiBZTi +B2iZﬁH4Tf (5ji1_H4iZjiHj;)71 (18)
T T
xH,Z B, +6,GG" <P,
where Z, > AQJ.,.AT, j=L-+,6,i=1,---,k,and
BJI-HH! >0,B1-H, H] >0, (19)
ﬂUI—Hz,.Qﬂ.HZT,. > O,EJ.[I—HMZJ.,.H;. >0
Using Lemma 3b, we have
BZOABZTOA S 7;)7BZI'ABZT[A S ]—;’ (20)
A[AQ;‘[A[Q < Tj[’BZiAAjSATBZTiA < Pj[
By Corollary 1, (2) and (20), it follows that
M, =M +0,F(x(t),1)®, +(0,F(x(¢),)0,)" <0 (21)

where ©, = diag{G.G,-,G}, ©,=[©, 0 - 0], and
O] =[P(H,+) Hy+HA+Y H,A), 03, O],

0! =[P(H,+H,A), ---, P(H, + H,A)" ,PH,, ---,
PH!, 0, --- 0,PA"H] ,--- ,PA"H],, PA"H!,
-« ,PATH! ,PA"H],, --- ,PA"H] ],
M'=W'—tN,(Q' +Q YN —zN,(Q,' + Q" )N)
— TN, (' + QNI — 7N, (Q; + QT HNT
—TNJ(Q] + QYN — N (@' + QLN

where the matrix », is the matrix N, (i =1,---,6) without
uncertainty in corollary 1, and

_ k k k
W'=(Ay+ Y A +ByA+Y B, AP +P(4,+) 4
i=1 i=1 i=1

k
+ByA+Y BN +&EE, +¢& ' PC"K"KCP"
i=1

6 k 6 k
+7) Y P47y > T +&T,+& PAAP
J=1 i=l j=1 i=l
k k
+Y &, T+ &' PATAP
i=l i=1
By Lemma 3a and (21), we can obtain that there exists a
scalar @ >0 such that

M'+0©,0! +a'010, <0 (22)

For simplicity we introduce the matrix Y e R™"™"

satisfying EY =0 and rank Y =n—r. It’s easy to see that

there exist invertible matrices L, and L, € R™" from the
proof of Theorem 1 such that

— B, P
P:LIPLZT{S1 I_)“}
22

where P, =P >0,B, e R""",B, e R""7" _ On the
other hand, from EY =0 and rank Y =#n—r, it implies that
there exists an invertible matrix [ € R~ such that

Hence
PP I 0
PZLII 11 _12 LTZ' — (L;l r L;l)
0 P, 0 0
P, 0 P
x(L,| " Y+ 22T
({o 1} 2 )+ (L B, )
x(I"[0 1, L) 2 EX+YYT
where

X=1L, [P“ 0 }Lﬁ >0, Y=L' {I_)”}FT
0o I, o
Furthermore
EP" =E(EX+YY") =EXE" =(EX+YY")E" =PE" >0
Define Y =AEX+YY") 2AZ"(X,Y)
Without loss of generality, we can assume that
Z(X,Y)=EX +Y®" is invertible. Define matrix M" , as
shown at the top of the next page, where
W"=(4,+ i@)zT(X,Y) +B, ¥+ ile.\{f +Z(X,Y)
i=1 i=1

k k
(4 + ZA) +(ByW + Z B +5E, By

6 k
+6'Z(X . NCKTKCZI (XY +7 LI P,
Jj=li=1
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[W" N, ©N, N, N, N, N, 7N,
N/
N]
N]
N,
TN!
M"=|tNT
N/
TN,
N/
N,
N!
jNT

TN, 1N,
0

TN, z'N(,i

B®

=1
=}
X =}
K =1

S

SR - - - - - )

5

o o0 o o o o oo B o

== R =) 5 ==

=l O = E) oS o o o

S o O o O O 5 ==

o o o o o _5 o oo o o o

oS o © o -? S © O o o o < -%
=1 5 =R A

o o 22 o oo o o oo oo

=} 5 o oo o oo oo oo

= R R
oooooooooo%

Q|
(23)
B k k

W"=(4y+ D A)ZT (X, Y)+ ByW + Y B, ¥ +Z(X,Y)

i=1 i=1

6

k k

X(Ay+ DAY+ (Boy ¥+ 3B, W) 6 B B
i=1 i=1

6 _k

+&'Z(X,Y)C'K'KCZ" (X, V) +7) Y P,

Jj=1 i=1

k k k
+r§6:ZTﬁ +e, Ty +&VW+) e T+ &/¥'V

Jj=1 i=1 i=1 i=1
N, =[Z(X, V)4, +¥Y"B), ---Z(X,Y)A +¥"B} ],
N, =[Z(X, DA Z(X, N4, - Z(X, V)4,
N, =[Z(X,Y)C'K"E!, z(X,Y)C'K"E],

- Z(X,V)C'K"E]],
N,=[¥'B], ---¥'B! ]=N,,
N, =[¥Y"B;, - ¥'B],

Qj :_diag{le’sz"":ij}s
Q) =—diag{R,,,R,,,+,R, },j=1,2,,6.

J1 T
Through the upper analysis, now we can give the main
result in this section.
Theorem 2: If there exist a series of positive definite

symmetric ~ X,0,,R Zj,.,Z. n.T,.T,,P,,V,,0 , a

Ji? Ji? J
matrix Y, v , and the scalars
81782783[7ﬂ07ﬂ[7ﬂj[75j[7a7luj[7}/ and 7 , i=L-k
j=1,--,6 satisfying
EX+YY' >Z, (24a)
Z,20, (24b)
zZ, ¥
>0 (24c)
¥ Z,
B, B" + B,GG" -T, B, H'
20720 0 ., 0 2(; 3 < 0 (24d)
H,B,, H.H, - B,
B, Bl + BGG" -T B H!
2i72i ﬂz . i ZLT 4i < O (246)
H4iB2i H4iH4i _ﬁi[
404"+ p,GG" T, A0,H;,
|: LQ/I i ﬂjl . Ji LQJIT 2i <0 (24f)
HZiniAi H2iniH2i _IBjil

T T T
BZiZjiBZi + 5ijG _ij BZ[ZjiH4i <0 (24g)
H4iZjiBZTi H4iijH4Tf _5;'1'1 -
EZ'(X,Y) Y[,
O >0 (24h)
‘{Ju) Y Uoiy
Z' (XY
© XD (24i)
Z(X,Y) I
M e, o
0] -a'l <0 (24j)
(CH -al

where ©) =[©, 0---0] and O, is defined in (21) setting
P=Z(X,Y), AP" =¥, then the uncertain delay singular
system (1) with the feedback gain A=¥Z'(X,Y) is

robust stable for any initial condition belonging to the set

@, = {g@0)||p0)| <5} with 5= Zm(©) , where
VT,

2

7, = A (EZ" (X, YY) +kid  (P7F)

‘max ‘max
2

A [ Vi )

max

2

+ max 4,
1

‘max [I/Zt + I/41' + V()i]
The positive definite symmetric matrix ¥, and the scalars

;; can be solved by the following matrices inequalities

ol

I, = (Z(X,Y) 4y +¥" By Q' + R N4 Z" (X, Y)
+B,,¥)+ 1,GG" -V,
IT, :(Z(X,Y)AOT +‘1’TBZT0)(Q1;1 +R1;1)(HIZT(X,Y)+H3‘P),
IT,, = (HIZT(X,Y)+H3‘P)T(Q1;1 +R1’,.1)(HIZT(X,Y)
+H W)~ w1
|:®11 ®12:|§0
e, 0,
0, :Z(X,Y)A[T(Qz’[1 +R2’[1)AOZT(X,Y)+;12,.GGT -V,
0, = Z(X,Y)A[T(Qz’[1 + Rz’,.l)Hz,.ZT(X, Y),
0, = Z(X,Y)H;.(in1 +R1;1)H2,.ZT(X,Y)—;¢21.I

(25a)

(25b)

V.. C'K'ET
3 . 710 .20 (25¢)
E KC —(Q;, +R;) I
‘PTBzTi (gzl +R;i1 )BZi‘P+,t14iGGT _V:ti lPTBzTi (Ql +R;i1 )1—141'\}’ <0
[¥'B}(Q, +RDH, ¥ I, )
(25d)

Iy, = (H,¥) (O, + R,)H ) = a1
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B0 + R)By Y+ 1, GG -V, W BL(Q + RHP ]
(W' BL(O; +RHH,¥T @, ]
(25¢)
®;2 = (H3‘IJ)T(Q5’,.1 +R5’[1 )(H3‘If) —us, 1

V' B(Q, +R)B, Y+ 1,GG ~V,, VB (O, +RH, Y|

<0
[ B(Q; +RH, ¥ 5,

(25%)
C. Disturbance Case (with w(t)#0 )

When w(t) # 0, we assume that w' (£)w(f) < w;'. In the

conditions described below, the matrices M",®, and @), are
the matrices defined in Theorem 2 with j=1,---,7.
Theorem 3. For given w, >0, if there exist a series of

positive definite
X.0.R,, Z,Z,T,T.T, P

jio “jisjistostisdjisdjis

symmetric
V.0, amatrix ¥,%¥, and
the scalars ¢,¢,,&;,, 5, B ﬁﬁ,&ﬁ,a,yﬁ,y,v,u and 7,

satisfying (35a-i) for i=1,---,k, j=1,---,7 and

W, e o BZ'(XY) 0 0
o’ a1 0 0 0 0
@, 0 -al 0 0 0
Z(X,Y)BL 00 ol N, N, |0
0 0 0 tN! Q0
0 0 0 IN! 0
(26a)
-vw, +uy <0 (26b)
—w, +§Uy <0 (26¢)

where 0 denotes
dimensions, and

the zero matrix with appropriate

~ EZ"(X,Y) 0
VVH :M//+ v ( ) nx12kn :|’

012kn><n 012kn><12kn

N, =[Z(X,Y)BITO Z(X,Y)Blro],
Q7 :_diag{Qﬂ’Qn:”‘aQu}’
Q; =—diag{R71,R72,---,R7k}.

then the feedback gain A=WZ'(X,Y) , the scalar
§ defining in the set @, ={g()||p0)| <5} with

2o (OO —g )

VAL

o , Where 7, is defined in Theorem 2,

and the closed-loop trajectories remain confined in the set
Q(P,E,y) = {x(t) e R'|X" (P Ex(t) <y ",y > 0} .

IV. ILLUSTRATIVE EXAMPLE

Consider an uncertain time-delay singular system (1) with
k =1with an actuator saturated at level 1 and a dynamic
described as follows:
—0.1

E:[—l 1}%:[—1 O}A:{—O.l }W 1)
-2 20 -1 2" 103 02" ’
2 :[0.7} 3 {0.3} 2 {0.1} P {0.4 0.3}
Poo8 P los|t o2 |-03 02)

0.4 -1 1 0.3
= ’C = ,G = ,uo = 10,
0.6 0.6 -2 0.5

K
H, =[02 05],H, =[0.1 02],H,=03,H, =02.

It’s easy to see ®=[1 1] . Applying Theorem 3 to this

uncertain time-delay singular system, it is found, using the
software package LMI lab, that this system is regular,
impulse free and locally asymptotically stable for any
time-delay 7 <0.6684, When 7=0.5, the corresponding

calculation results are as follows:
B [6.0657 4.7504} ~ {—1.1697}

4.7504  6.0657 -2.3394
¥ =[-0.6008 —1.2016],
A=[0.2284 -0.2284], »=1.0953

Hence, the corresponding optimal value of & is 0.7849.
Owing to be out of tuning of parameters, it is obvious to see
that the process of calculation is simple as the method
presented in [7].
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