
 
 

 

  
Abstract—Time Delay Control(TDC) is a robust nonlinear 
control scheme that uses Time Delay Estimation(TDE). The 
TDC has a very simple structure, and its application on a real 
system needs its stability be guaranteed. The existing work has 
proposed sufficient stability condition of TDC for input/output 
linearizable plants in that it has been assumed that time delay 
was infinitesimal. However, it is impossible to implement 
infinitesimal time delay in a real system. Therefore, in this 
research we propose a new sufficient stability condition of TDC 
for input/output linearizable plants with finite a time delay. It 
can be verified by simulation results that the existing sufficient 
stability condition fails even under small time delays while the 
proposed condition performs well. 

I. INTRODUCTION 

ime Delay Control(TDC) is a control technique that 
estimates and compensates system uncertainty, i.e., 

unmodeled dynamics, parameter variations and disturbances 
by utilizing time-delayed signal of some system variables [1]. 
Owing to the effectiveness and efficiency due to the Time 
-Delayed Estimation (TDE), TDC displays particularly 
robust performance despite its relatively simple gain 
selection procedure, which is attributed to the unusually 
compact structure of TDC. For this reason, we are convinced 
that TDC deserves serious research work to investigate 
further improvements. 

The problem of stability analysis is an important piece of 
work that stands out of many aspects of TDC that demand 
further research. Hence this paper attempts to present a 
refined stability analysis together with a practical stability 
condition useful for control design. Provided below are the 
background and context associated with this research. 

The stability analysis of TDC becomes complicated and 
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difficult due to time delay terms that inevitably appear in the 
closed-loop dynamics. And, it becomes even more 
complicated when the plant to be controlled happens to be a 
nonlinear multivariable system. In [2], necessary and 
sufficient stability condition for Linear Time Invariant (LTI) 
Single Input Single Output (SISO) plants has been presented 
based on Nyquist stability criterion, whereas in [3], sufficient 
condition has been derived from Nyquist stability criterion 
and Kharitonov method. These analyses though complete, 
limited to LTI SISO plants and their application to real 
systems tend to be complicated.  

For nonlinear multivariable plants, on the other hand, 
stability analysis has been presented by Youcef-Toumi [4]. 
The analysis is based on a set of assumptions: time 
delay 0L → ; the plant has exponentially stable zero 
dynamics [5]; and the desired trajectory and its derivatives 
are bounded. The analysis results in a sufficient condition 

1|| || 1− <I - B(x)B  with ( )B x being an input distribution matrix 

obtained during the input/output linearization procedure and 
B  being a constant matrix of TDC, which is relatively easy 
to determine for controller design. || ||i  denotes matrix norm. 

Although the assumption of 0L → is obviously 
unrealizable, it is expected that with a sufficiently small L , 
B  leads to 1|| || 1− <I - B(x)B , that satisfies the condition for 

stability. However, we have observed that this is not the case: 
the closed-loop systems based on B  could actually drive the 
system unstable even with L  as small as 0.001s. As a result, 
we have realized the importance and necessity of addressing 
this issue for the practical implementation of TDC in real 
systems. In this paper, therefore, we are going to present 
stability analysis for the case of finite L  as well as a 
corresponding stability condition having a form similar to 

1|| || 1− <I - B(x)B  that enables a selection of B  to guarantee 

stability. 
This paper is organized as follows. In Section II, we 

briefly review the Input/Output Linearization(IOL) and TDC 
law and deal with the problem of the previous stability 
criterion. Section III describes our stability analysis and 
derivation of the stability condition. In Section IV, we 
examine the stability criterion through simulation. Finally, in 
section V the results are summarized and conclusions are 
drawn. 

A New Stability Analysis of Time Delay Control 
for Input/Output Linearizable Plants 

Je Hyung Jung,  Pyung-Hun Chang  and  Oh-Seok Kwon 

T



 
 

 

II. TDC AND PROBLEM WITH THE EXISTING STABILITY 

CONDITION 

A. Input/Output Linearization 

In this subsection, we briefly describe input/output 
linearization technique [4]-[5]. Consider a general system 
with m inputs, m outputs, and n states, as described by 

 

x = f(x) + G(x)u

y = c(x)

�
                             (1) 

 

where, n∈ℜx  is the state vector, m∈ℜu  is the input vector 
and m∈ ℜy  is the output vector. : n nℜ →ℜf , 

: n n m×ℜ →ℜG , : n mℜ →ℜc  are assumed smooth functions 

of state vector x . And the following jg  denote the jth 

column of matrix G . 
In the input/output linearization procedure, (1) can be 

written in matrix form as  
 

Dy = a(x) + B(x)u                        (2) 
 

where, ( / )i ir rdiag d dt≡D , ( 1, , )ir i m= "  denotes relative 

degree defined in [4]-[5], /i ir rd dt  denotes ir th derivative 

with respect to time, a(x)  and B(x)  are as follows,   
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where, ( ( )) : nL ϕ ℜ →ℜf x  and ( ( )) :
j

nL ϕ ℜ →ℜg x  stand for 

the Lie derivative of ( )ϕ x  with respect to  f(x)  and 
jg (x)  

respectively.  
If B(x)  is nonsingular, then the following control law is 

generated.  

                          -1u = B (x)[-a(x) + v]                            (4) 
 

where, m∈ℜv  is the new input vector and ith component of 
v  is given by 

                       ( ) ( 1)
1

i i

i i

r r
i d i i r i iv y e eγ γ−= + + +"                     (5) 

 

where, the ith component of error vector is defined as 

ii d ie y y−� . 

And, substituting (4) into (2), we obtain the following m 
decoupled linear SISO system. 

 

                                   Dy = v                                  (6) 
 

The ith component of (6) is the error dynamics described 
as follows: 

              ( ) ( 1)
1 0i i

i

r r
i i i r i ie e eγ γ−+ + + ="                      (7) 

in that, if the parameters 1 , ,
ii r iγ γ"  are chosen so that the 

roots of the following characteristic equation lie in the left 
half plane of s, 

                          1
1 0i i

i

r r
i r is s sγ γ−+ + + ="                         (8) 

 

then ie  asymptotically approaches zero. If, in addition, the 

zero dynamics of (1) is exponentially stable and the desired 
trajectory and its derivatives are bounded, then the closed 
system is stable. 

The control law of (4) works only when a(x)  and B(x)  are 

known accurately. If, however, there are uncertainties in the 
model, the system can no longer be linearized as in (6), and 
consequently, closed loop stability of the system can no 
longer be guaranteed either. Therefore, in the following 
subsection, we describe Time Delay Control law [1]-[4],[11] 
which possesses excellent robustness in view of uncertain 
system dynamics, unpredicted disturbances, and parameter 
variations. 

B. Time Delay Control 

The TDC law associated with the input/output 
linearization discussed above [4] is provided here. 

The relationship in (2) can be rearranged to the following 
form, 

                                 Dy = H(x) + Bu                                     (9) 
 

where, H(x)  is given by 
 

                             H(x) = a(x) + (B(x) - B)u                             (10) 
 

and B  is a constant matrix, which is chosen on the basis of 
B(x) . 

Let control input u  be 

                                -1 ˆu = B (-H + v)                                    (11) 
 

where, the ith component of v  is identical to (5) and Ĥ  is 

the estimation of H . If Ĥ = H , then (6) is satisfied. 
TDC uses the following estimation method to 

determine Ĥ . If time delay L  is sufficiently small, then the 
following approximation holds. 

                           
ˆt t t L t L t L≅ − − −H( ) H( ) = H( ) = Dy( ) - Bu( )              (12) 

 

Substituting (12) into (11), we could obtain TDC law as 
follows. 

       -1t t L t L t− −u( ) = u( ) + B (-Dy( ) + v( ))            (13) 
 

According to (13), the advantage of TDC is that it does 
not require any real time computation of nonlinear dynamics 



 
 

 

and the uncertainties, thus, it only needs small computation 
power [1]-[4],[11]. 

C. The existing stability criterion of TDC and its 
drawbacks 

The existing sufficient stability condition of TDC for 
input/output linearizable plants is proposed as follows: under 
the condition that zero dynamics of the plant is exponentially 
stable and the desired trajectory and its derivatives are 
bounded [4], following inequality holds. 

 

                                     -1 1<I - B(x)B                                (14) 

 

where, I  is an m m×  identity matrix and B  is an m m×  
constant matrix chosen on the basis of B(x) . Yet, we have 

observed in simulations and experiments that TDC is 
unstable in spite of satisfying (14). One of such simple tests is 
TDC of a DC motor. Fig. 1 shows the closed loop system of 
DC motor with TDC1, whereas Fig. 2 shows the real part of 
its dominant pole2. Observing Fig. 2, in spite of satisfying 
(14) (in this case, B(x)=1/J , -1B =J ), the system is unstable 

near 1 and the unstable region increases with the time delay. 
This phenomenon occurs as it has been assumed in the 
derivation of (14) that the time delay L  is sufficient small 
( 0L → ). In general, when TDC is applied for a real system, 
we use sampling time interval as time delay L  so it is 
impossible to implement an infinitesimal time delay in a real 
system. Therefore, in the following section , we treat stability 
analysis of TDC for the real system of which time delay L  is 
finite. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Block Diagram of a DC motor with TDC 

III. A NEW TDC STABILITY ANALYSIS 

In this section, under the condition that the plant is 
input/output linearizable [6] and that the zero dynamics of 
the plant is exponentially stable, we will show TDC stability 
analysis for the real system of which time delay L  is finite.  
And using this result, we will derive stability condition and  

 
1 The closed loop system in Fig. 1 may be considered as neutral type 

system if reference input 0r = . In this paper, open loop systems(plants) 
that we deal with have no time delay and are input/output linearizable. 

2 In order to obtain the dominant pole, -Lse  in Fig. 1 was approximated 
by (3,3) Pade′ approximant [12]. 

 
Fig. 2.  Real part of the dominant pole of Fig. 1  

 
criterion i.e., stable range of B . 

A. TDC stability Analysis 

In the subsection II.B, if Ĥ = H , then the ith relation of 
error dynamics is identical to (7). But, in a real system, 
ˆ ≠H H  due to time delay 0L ≠ . Therefore, substituting (11), 

and (12) into (9), the error dynamics of a real system is 
obtained as follows 

 

                     t t t L t−v( ) - Dy( ) = H( ) - H( )                     (15) 
 

If we define error vector ( )tε  as t t tε( ) = v( ) - Dy( ) ,                  

then the relation of ( )i tε  and i ( )e t  would be 
 

                       ( ) ( 1)
i 1 ...i i

i

r r
i i i r i ie e eε γ γ−= + + +                     (16) 

 

(16) can be presented in vector form as follows. 
           

    1 1 p p r rε = De + K D e + ... + K D e + ... + K D e           (17) 

 

where, p p
p ( / )i ir rdiag d dt− −≡D  for p 1, , r= … , r max( )ir≡  for 

1, ,i m= …  and 
1 p r, , , ,K K K" "  are constant diagonal 

matrices defined as 
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. 

If -p<0ir  for p 1, , r= …  and 1, ,i m= … , then set ( -p) 0ir
ie =  

in (17) to express (16). Using (10), (2) and (13), it is possible 
to rearrange (15) as follows. 

 

-1 -1

-1 -1

t t t L t t t L

t t t L t L

t t t L t L

− −
− −

− −

-1 -1ε( ) = (I - B( )B )ε( ) + (I - B( )B )(v( ) - v( ))

       + B( )[(B ( ) - B ( ))Dy( )

- (B ( )a( ) - B ( )a( ))]

    (18) 

 

where, a(x), B(x)  are expressed as functions of time t instead 

of state vector x . 
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When TDC is applied to input/output linearizable plants, 
the error dynamics is expressed as in (18). For this error 
dynamics, we show stability analysis using input/output 
stability in 2L  space [6]-[8]. 

Lemma 1: When TDC is applied to input/output 
linearizable plants, the error dynamics is identical to (17) 
and the following relation is satisfied [6]-[7]. 

 

                                  p p cp22 TT
β β≤ +D e ε   

 

where, 
p p 2|| ||β = G  and cpβ  are constants deciding by initial 

conditions(i.e., (p)
0 2 0 2|| ( ) || ,|| ( ) ||t t t t= =e e ) for p 1, , r= …  and 

pG  is the operator 
p p:G ε D e6 . 

2T
•  denotes the 2

mL  norm 

of ( )t•  truncated at T . 

Proof: The relationship in (17) is regarded as a linear 
decoupled differential equation with input ( )tε . We will 

obtain 2L  gain of the operator p p:G ε D e6  for p 1, , r= … . 

From (17), if we consider operator ( -p)
p, : ir

i i iG eε 6  for each 

component in the case of p 0ir − ≥ , then the transfer function 

from input iε  to output ( -p)ir
ie  can be written as 
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              (19) 

 

The 2L  gain of transfer function is defined by [6]-[7]. 
 

                             p, p,2
max ( )i ig j

ω
ω=G                              (20) 

 

and 
pp 2 2|| || || ||i= GG M [6]. Subscript 2i  denotes induced 

matrix 2 norm and ith diagonal term of diagonal matrix 
pGM  

is 
p p,( ) max ( )ii ig j

ω
ω=GM . Therefore, the 2L  gain pβ  of the 

multiple input/multiple output system is obtained as follows 
[6]-[7]. 

                                 p p 2
(p 1, , r)β = =G "                      (21) 

 

Hence, we have [6]-[7] 
 

                   p p cp22
(p 1, , r)

TT
β β≤ + =D e ε "              (22) 

 

This completes the proof of Lemma 1.                                ■  
Definition : We define as follows. 
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Lemma 2: When TDC is applied to input/output 
linearizable plants, if we assume d 2

mL∈Dy  and p d 2
mL∈D y  

for p 1, , r= "  for the desired trajectory and its derivatives 

and 2
mL∈w  for the disturbance, we have 

 

1 1 r r2 2 2
(1 )

T T T
µ δ δ φ− ≤ + + +ε D e D e"  

where, 
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and B  denotes tB( ) , 1 r( ), , ( )q t q t"  are bounded scalar 

functions of time and dQ  is the function of 
p dD y  for 

p 1, , r= " . 

Proof: ∆  and -1 ( )tB  is bounded from the prerequisite 

condition that the plant is input/output linearizable. 
Therefore -1( )tB�  is bounded because -1B�  is the difference of 

-1 ( )tB  between time t  and time t L− .  

We express ( )tQ  in (23) as follows. 
 

          d 1 r( ) ( ) ( ( ), , ( )) ( )qt t t t t= + +Q Q O D e D e w"          (25) 

 

where  

                    d d 1 d r d( ) ( ( ), , ( ))t t t=Q Q D y D y"                         (26) 
 

dQ  is the function of the desired trajectory and its 

derivative i.e., the function of 
p dD y  for p 1, , r= "  and ( )tw  

is disturbance. And, assume qO  as follows [8] 
 

1 r 1 1 r r( ( ), , ( )) ( ) ( ) ( ) ( )q t t q t t q t t≈ + +O D e D e D e D e" "     (27) 

 

where, 1 r( ), , ( )q t q t"  are bounded scalar functions of time. 

We consider (27) for two cases as follows. 
i) 1 r( ), , ( )t tD e D e"  are converging : Naturally, (27) is valid. 

ii) 1 r( ), , ( )t tD e D e"  are diverging: Mathematically, (27) 

does not express 
qO  accurately. But in the context of 

stability, if (25) is diverging, it is possible for 

1 r( ), , ( )t tD e D e"  to express qO  by (27) as (27) is also 

diverging. Therefore, in the diverging case (27) is valid. 
( )tv  and ( )t L−Dy  in (18) can be expressed as 
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Substituting (23), (25), and (28) into (18) and rearranging, 
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Using (27), qO�  in (29) can be expressed as follows. 
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                                                                                        (30) 
 

Substituting (30) into (29) and using the following Euler 
approximation for (29), 

 

[ ]

r r r-1

1 1

1 1 r r

( ) ( ) ( ) , ,

( ) ( ) ( )

( ) ( ) ( )

t t L L t L

t t L L t L

L t L t L t L

− − ≈ −
− − ≈ −

= − − − − − −

D e D e D e

D e D e De

ε K D e K D e

"

"

  (31) 

 

the relationship in (29) can be expressed as follows. 
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We define the norm of each term of (32) as (24), then, from 
(32), we can obtain the following inequality. 
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where, ψ  can be bounded as 
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in that if we assume 
d 2

mL∈Dy , p d 2
mL∈D y  for p 1, , r= "  and 

2
mL∈w , then 

d 2
mL∈Dy� , 

d 2( ) mt L L− ∈Dy , d 2
mL∈Q�  and 2

mL∈w� . 

Therefore, φ  is bounded. 

Because 
2T

•  is defined in the 2L  space as follows [6],  
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it satisfies that 
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t L t• − ≤ • . 

Hence, 
2T

ε  is bounded as follows. 
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This completes the proof of Lemma 2.                             ■ 
Lemma 3: When TDC is applied to input/output 

linearizable plants, under the condition that the zero 
dynamics of the plant is exponentially stable, we can obtain 
the sufficient stability condition of TDC for an input/output 
linearizable plant as follows. 
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Proof : From Lemma 2 , if we assume that 1µ < , then we 

obtain the inequality as 
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and combining (22) and (37), then we have r inequalities as 
follows. 
 

1
1 2 2 r r c12 2 2

1 1 1 1

r
r 1 1 r-1 r-1 cr2 2 2

r r r r

1
[  ]+

1 1

             

1
[ ]+

1 1

T T T

T T T

β µδ δ φ β
µ β δ µ β δ

β µδ δ φ β
µ β δ µ β δ

−≤ + + +
− − − −

−≤ + + +
− − − −

D e D e D e

D e D e D e

"

#

"

                                                                                        (39) 

We express (39) in matrix form as follows. 
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where, , ,TE R V  are as follows. 
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Since the entries of matrix R  are all negative, the 
following statements hold [8]: 

1) The spectral radius of R  is less than one; 
2) The inverse matrix -1( )I - R  is a nonnegative matrix. 

3) The leading principal minors of the matrix I - R  are all 



 
 

 

positive. 
Hence, from the condition of det( ) 0>I - R , we have the 

following equation. 

                                    1 1 r r 1µ β δ β δ+ + + <"                      (42) 
 

Note that (42) is based on the assumptions of 1µ <  and 

(38). Then, by satisfying (42), -1( ) 0≥I - R  and letting 

T → ∞ , then 

                                         1( )−≤E I - R V                               (43) 

where, lim T
T →∞

=E E .  

Therefore, satisfying (42), under the condition that zero 
dynamics of the plant is exponentially stable, if d 2

mL∈Dy , 

p d 2
mL∈D y  for p 1, , r= " and 2

mL∈w , then p 2
mL∈D e  for 

p 1, , r= " . 

Hence, (42) is the sufficient stability condition of TDC for 
input/output linearizable plants under the condition of that 
zero dynamics of the plant is exponentially stable. This 
completes the proof of Lemma 3.                                     ■ 

Lets state the TDC stability theorem. 
Theorem: When TDC is applied to input/output 

linearizable plant, if 
 

1. d 2
mL∈Dy  and p d 2

mL∈D y  for p 1, , r= " . 

2. disturbance 2
mL∈w . 

              3. 1 1 r r 1µ β δ β δ+ + + <" , 
 

then, under the condition that zero dynamics of the plant is 
exponentially stable, overall closed system using TDC is 2L  

stable. 
Proof: Through Lemma 3, overall closed system using 

TDC becomes 2L  stable. This completes the proof of 

Theorem.                                                                              ■ 

B. Stability Criterion 

From sufficient stability condition in the previous section, 
we can derive the stability criterion through following 
procedures. 

The symbols µ  and iδ  defined in (24) are bounded as  
 

      
1 02 2

j j+1 1 j j2 2

r 1 r r2 2 2

(1 )

( j=1, ,r-1)

i i

i i

i i i

L c

L c

L c

µ

δ

δ

≤ + +

≤ − +

≤ +

∆ K

∆ K K K

∆ K K

"                 (44) 

 

where, -1∆ = I - BB  which we defined in (23) and 0 r, ,c c"  

are as follows. 
 

1
0 1 2

1
j j 1 j j+1 j 2

1
r r 1 r r 2

|| ||

|| || ( j=1, ,r-1)

|| K ||

i

i

i

c L q

c L q L q q

c L q q

−

−

−

= − −

= + − −

= + −

BB B

BB K B K B B

BB B K B

�
� � "
� �

     (45) 

Substituting (44) into (42) and rearranging it leads to, 
 

    
1 1 r r 1 1 112

r 1 1r 1 r 1 r 0 1 1 r r

(1

)
i

L L

L L c c c

µ β δ β δ λ β λ
β λ β λ λ β β− −

+ + + ≤ + + +

+ + + + + +

∆" "
"

  (46) 

 

where, 
p p 2|| ||iλ = K (p 1, , r)= "  and 

1j j+1 1 j 2|| ||iλ = −K K K  

(j 1, , r-1)= " .   

If right-hand side of (46) is less than 1, the stability can be 
confirmed. Rearranging the condition that the right side of 
(46) is less than 1, we have the range of B  as follows. 

 

1

2
1 1 11 r 1 1r 1 r 1 r

1

1 ( )i

c

L λ β λ β λ β λ λ
−

− −

−<
+ + + + +

I - BB
"

    (47) 

 

and c  is given by 

                                0 1 1 r rc c c cβ β= + + +"                         (48) 
 

where, 0 r, ,c c"  are expressed by (45). 

C. Application Example of the Proposed Stability 
Criterion  

In subsection III.B, we proposed the stable range of B of 
the stability criterion. In this subsection, we demonstrate its 
application by examples. 

For simplicity, we focus on the particular case where 
1) rir =  for 1, ,i m= "  i.e., each relative degree equals to 

the maximum relative degree. 
2) The diagonal constant matrices 

1 r, ,K K"  are chosen 

such a way that the system is critically damped and all the 
diagonal components of each 

1 r, ,K K"  are chosen equally.  

Then, from Lemma 1, p p p1/( )kβ η=  for p 1, , r= "  where, pk  

denotes the diagonal component of 
pK  and pη  is a 

coefficient, which is determined by the maximum relative 
degree r. And c  of (48) is expressed as 

0 1 1 1 r r r/( ) /( )c c c k c kη η= + + +" . In (45), because •�  denotes 

( ) ( )t t L• = • − • −� , if •� ( )d
dt

•=  is bounded, then we can 

express L• ≈ •� � . Using this we can restrict 0 r, ,c c"  of (45) as 

follows. 
 

1
0 12 22

1
j j 1 j 1 j2 2 2 2 22

1
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( ) ( )
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−

−
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−

≤ +

≤ + + +

≤ + +

B B

B B B

B B B

�
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    (49) 

 

where, j 1, , r-1= "  and j r( j 1, , r-1),k k= "  are chosen as 

                     

j j 1 j r r2 2 22 2
j r

1 1
( ) ,

i i ii i
k L q q k L q

η η+ +B B� �� �   (50) 

 



 
 

 

then c  is bounded approximately as follows. 
 

                   
r

1
12 22

1

1
(1 ) ( )
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i i

c L q
η

−

=

≤ + +∑ B B�                (51) 

 

From (47), to satisfy the following equation, 
 

                
1 1 11 r 1 1r 1 r 1 r
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1

12 22
1
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1
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L

L q
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−
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,λ β  i.e., 1 r, ,k k"  can be chosen so that the range of B in 

the stability criterion can be approximated by  
                     

1

2
1 1 11 r 1 1r 1 r 1 r

1

1 ( )i L λ β λ β λ β λ λ
−

− −

<
+ + + + +

I - BB
"

    (53) 

 

In other words, if we choose 1 r, ,k k"  to satisfy (50) and 

(52), then we can express the stability criterion as in (53). 
For the case of r 2= , 1 2 1η η= =  and 1 1kλ = , 2 2kλ = , 

2
11 10.75kλ = . If 1 2,k k  are chosen so as to satisfy (50) and (52), 

then the stability criterion can be expressed as follows. 
 

                              1

2
1

1

1 2.75i k L
− <

+
I - BB                           (54) 

 

For the case of r 4= , 1 4 / 3 3η = , 2 2 / 3η = , 3 4 / 3 3η = , 

4 1η =  and 1 1kλ = , 2 2kλ = , 3 3kλ = , 4 4kλ =  and 
2

11 1(5 ) / 8kλ = , 12 1 2(5 ) / 6k kλ = , 13 1 3(15 ) /16k kλ = , if we 

choose 1 4, ,k k"  to satisfy (50) and (52), then the stability 

criterion can be expressed as follows. 
 

1

2
1

1

1 5.2797i k L
− <

+
I - BB                         (55) 

 

Remark 1: If time delay L  is zero, (53) is equal to 
1

2|| || 1i
− <I - BB , which was suggested by Youcef-Toumi [4]. 

Remark 2:  If time delay L  is large, in order to satisfy (53), 
B  need to be similar to B . 

IV. SIMULATION 

In this section, from the following a simulation, we verify 
the stability criterion proposed in section III. In the following 
simulation, we consider for the case, which was exampled in 
subsection III.C and choose components 1 r, ,k k"  of 

matrices 1 r, ,K K"  to satisfy (50) and (52) in order to apply 

(53) as the stability criterion. 
The plant for simulation is a six degrees of freedom(d.o.f) 

manipulator(PUMA560) [9]. Joint torque vector 6∈ℜτ  of 
this 6 d.o.f manipulator is the input of the plant and if we 
adopt the joint variable vector 6∈ℜθ  as the output of the 

plant and do input/output linearization, then no zero 
dynamics of the plant exists and r 2ir = =  for 1, , 6i = " , so 

we use (54) as the stability criterion. 
When we set -1

6 6=α ×B I , we could plot -1
2|| ||iI - B(x)B  

against α  as shown by the solid line in Fig. 3 for the all state 

vectors ( )T=x θ θ�  within the workspace of the plant. In Fig. 

3, B(x)  is the inverse matrix of the inertial matrix M(θ)  of the 

manipulator  referred in [9]. The dotted line of Fig. 3 denotes 
the boundary of the stability criterion for the case of time 
delay 0.001L = s and 1 10k =  in (54) i.e., 

1
2|| || 0.9732i

− <I - B(x)B . 

For simulation, we consider time delay 0.001L = s, 1 10k = , 

2 25k =  and d d d, ,y y y� ��  as ( / 2) sin( / 2)t
diy e tπ π−= (i=1, ,6)" . 

And, d d d, ,y y y� ��  are in the 2L  space i.e., 6
d d d 2, , L∈y y y� �� . 

Fig. 4 shows the simulation results. In a previous research, 
Youcef-Toumi has proposed 1

2|| || 1i
− <I - B(x)B  as the sufficient 

stability condition. However, we observe the unstable 
response for the case of -1

6 6=α ×B I ( 0.01)α =  satisfying  
1

2|| || 1i
− <I - B(x)B  in as shown in Fig. 4(a). Abovementioned, 

although time delay L  is sufficiently small (not zero) and 
1

2|| || 1i
− <I - B(x)B , the system could still be unstable. Therefore, 

a more general stable range for B  is required for small and 
finite L . 

The 2L  stable responses can be observed in Fig. 4(b), 4(c) 

and 4(d), for B  being selected within the suggested range 
1

2|| || 0.9732i
− <I - B(x)B . Fig. 4(b) and 4(c) are the simulation 

results when -1
6 6=α ×B I ( 0.2, 0.35)α α= =  are chosen at the 

boundaries of the stability criterion. Fig. 4(d) is the 
simulation result when -1

6 6=α ×B I ( 0.3)α = is chosen 

arbitrarily to satisfy 1
2|| || 0.9732i

− <I - B(x)B .  

Hence, from the simulation results, we observe that 
suggested stability criterion for TDC works well for the real 
situation where time delay L  is finite. 

V. CONCLUSION 

In this paper, we have derived the sufficient stability 
condition of the Time Delay Control for input/output 
linearizable plants considering small and finite time delays. 
The performance of the proposed method has been compared 
with the existing sufficient stability criterion 1|| || 1− <I - B(x)B  

proposed by Youcef-Toumi, where he assumed 
infinitesimally small time delay. Through simulation 
example with small and finite time delay, we observed that 
the existing stability condition fails to stabilize the closed 
loop systems, whereas the proposed method works well. In 
real control systems where a finite time delay is introduced 
by the digital device such as computers, DSPs, etc., the 
proposed stability criterion could be extremely important to 
guarantee stable operation. 
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Fig. 3. -1

2|| ||iI - B(x)B  plot for PUMA560 manipulator 

 
 
 

 
(a) -1

6 6= ( 0.01 case)α α× =B I  
 

 
(b) -1

6 6= ( 0.2 case)α α× =B I  
 

 
(c) -1

6 6= ( 0.35 case)α α× =B I  
 

 
(d) -1

6 6= ( 0.3 case)α α× =B I  

Fig. 4. Simulation Results for PUMA560 manipulator 
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