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Abstract − A controller that is characterized by its robustness 
against modeling errors and its high disturbance rejection 
capability is developed for integrating processes with time 
delay. The proposed controller structure, similarly to several 
controllers proposed in the literature, includes two loops, one 
for set-point tracking and the second for disturbance rejection. 
Simulation results illustrate the good response of the proposed 
scheme with respect to existing results. 

I. INTRODUCTION 
In process control, two typical kinds of processes exist. 

One can be described by a time constant plus time delay 
model, and the other, by an integrator plus time delay 
model. For a process consisting of a time constant and a 
time delay, many controllers have been developed. For 
example, for relatively small time delay, the conventional 
controller (PID) is better, if large time delays are present, 
the (SP) is an effective compensator [1]. However, neither 
the PID controller nor the Smith Predictor (SP) can be used 
directly for the integrator process with time delay in the 
presence of load disturbance, which cannot be rejected by 
both control techniques. Independently of the PID 
parameters used in the SP, a load disturbance will always 
result in a steady state error. 

To solve the problem of the SP, [2] has proposed a 
modification of the SP, which yields zero steady state error 
for integrating plants. The main disadvantage of this control 
system design technique is that the set point and load 
disturbance responses are very oscillatory and the response 
of the system tends to be slow [3]. 

To overcome the problems associated with [2], [3] 
proposed a new SP. A convenient property of this controller 
is that it decouples the set point response from the load 
response and hence faster set point response and better load 
disturbance rejection can be obtained. Nevertheless, the 
controller has large number of adjustable parameters and 
there are no effective rules to direct the user to tune them 
[4], [5]. 

[4] investigated this problem, and improved the results of 
[3], by reducing the parameters to only two adjustable 
parameters. Moreover, the proposed method provides a 
systematic method for tuning these parameters. However, 
the scheme of [4] includes a positive feedback loop that is a 
potential instability source [6], resulting in limited 
robustness. 

[5] proposed a controller based on a simple and 
straightforward modification of the SP, which produces 
similar results as [3]; but is much easier to tune. However, 
the set point and load responses are no longer separated 
from each other and consequently they cannot be 
independently optimized, resulting in limited robustness [6]. 

The authors of [5] introduced another modification of their 
scheme in [13] that further improved their controller. 

[7] also proposed another modification of [2] to overcome 
the controller problem proposed by [3]. The controller offers 
similar robustness and better performance than the others. 
The disadvantage of this control system design technique is 
that the parameters of the controller need to be retuned if a 
mismatch between the model and the actual plant exists. 

The authors of [6] proposed another scheme, which is a 
further development of the Smith Predictor of [3]. This 
method has fast set-point tracking, efficient load disturbance 
rejection, and better robustness than previous methods.  

In [10], the internal model principle and control structure 
of the Smith Predictor (IMPACT) is proposed. The concept 
of internal model consists of incorporating the disturbance 
or/and plant models into the control portion of the system. 
[10] succeeds in minimizing the effects of immeasurable 
external disturbances on the steady-state value of controlled 
variable, and increasing the system robustness with respect 
to changes or uncertainties in the plant parameters. 

In our work [11], we carried out a comparative simulation 
study of the previously published papers described above. 
The major concern was to compare between the methods 
according to the following criteria: 

1. Their sensitivity to the relative value of the time 
delay to the system time constant 

2. Their sensitivity to modeling errors in the time delay, 
whether it is over-estimated or under-estimated 

The simulations of [11] showed that the best responses 
according to the above criteria are the work of [5], [6] and 
[10]. However, even for these methods, the robustness and 
speed of response, especially due to a load disturbance, 
seems to still require further improvement. 

II. PROPOSED METHOD 
In this section, a new dead time compensation technique 

for integrating plants with long time delay (IPTD) is 
presented to improve existing schemes robustness and speed 
of response. The proposed method, as will soon be clear is 
characterized by: 
1. A double compensator structure as in [3] and [4], for set 

point tracking and for disturbance rejection. 
2. The disturbance controller can be interpreted as a 

disturbance estimator, which in steady-state gives the 
required control action to cancel load disturbances and 
to overcome the main drawback of the Smith Predictor. 

3. A disturbance cancellation component: This is the major 
improvement proposed in this work. This cancellation is 
inspired by a simple plant inversion idea. 

4. A clear quantification of the compromise between 
system robustness and performance quality pointed out 



 

in [10] and [12]. System robustness can be improved by 
tuning a single parameter, but the price paid is in system 
response speed. 

A. Proposed Method Development 
Firstly, a simple idea for disturbance cancellation based 

on a system inversion approach is presented for the case of a 
plant with no time delay. Secondly, the scheme of [3] is 
modified to be able to treat plant inversion but with no time 
delays. Finally the scheme is adapted to remove the 
requirement of implicit plant inversion, which in the case of 
integrating plants with time delay inevitably leads to a non-
causal system with time advance. 

Consider the problem of controlling a plant with transfer 
function Gp(s) by a feedback controller C(s). The plant is 
subjected to a load disturbance D(s) and a set point R(s). 
Assume that the plant is invertible, the output Y(s) is given 
in terms of R(s) and D(s) as: 
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To obtain perfect disturbance rejection, the term )(sγ  
shown in Fig. 1 can be added in the minor loop such that 

)()( 1 sGs p
−γ  is causal. In order to keep the transfer function 

from R(s) to Y(s) unaffected, an additional block )(0 sG  is 
introduced as shown in Fig. 1. 

In the case depicted in Fig. 1, the output Y(s) is given in 
terms of R(s) and D(s) as: 
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It is clear that if )(1 sGp
−  is causal then setting ( 1=γ ) 

will immediately give perfect disturbance cancellation. In 
the general case, it is quite easy to choose )(sγ such that 

)()( 1 sGs p
−γ  is causal, and such that the DC gain from D(s) 

to Y(s) is zero to ensure asymptotic disturbance rejection. 
The same development can be applied to the two 

controller scheme DTC proposed by [3] and for simplicity, 
the plant was supposed to be invertible with no time delay 
as shown in Fig. 2. In this figure F1(s) and F2(s) are two 
transfer functions selected such as to obtain a relation 
between Y(s), R(s) and D(s) similar to (2), namely such that: 
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 (3) 
The output Y(s) is given in terms of R(s) and D(s) as: 
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To get the values of F1 and F2, in order to obtain 
Equation (3), the following conditions must be met: 

0)1()1( 221 =+−+ pp MGFMGFF   (5) 

)1)(1(1 21 pp CGCGFF +−=++ γ   (6) 

From (5), dividing by F2, chosen non zero in the sequel: 
)1()1(1 pp MGMGF +=+   (7) 

This immediately implies that: 11 =F   
By substituting in (6) and rearranging, we obtain: 

)1(2 pCGF +−= γ   (8) 

Clearly the values of F1 and F2, given above, lead to the 
desired transfer function given in (3). In this case, setting 

1=γ  will give perfect disturbance cancellation. 
Finally, in the case of integrating plant with time delay, 

the scheme shown in Fig. 2 is not suitable, because )(1 sG p
−  

is a non-causal plant with time advance. By a simple 
modification of Fig. 2, we obtain )(1

2 sGF p
− , which can be a 

causal system, as shown in Fig. 3, the proposed method. 
 

 
Figure 1: A Simple Control Scheme Idea 

 

 
Figure 2: A Modification to the Scheme of [3] 

 
B. Proposed Method Presentation 

The proposed scheme for controlling the integral plant 
with long time delay is graphically illustrated in Fig. 3. The 
proposed method is a modification of [3] consisting of the 
additional feedback path 1*

2
−GF  from the plant output Y(s) 

to the output of the set point controller )(sC . In order to 



 

keep the transfer function from R(s) to Y(s) unaffected the 
block Go(s) is introduced, where  
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The two controllers C(s) and M(s) are configured to track 
the set point changes and reject the load disturbance, 
respectively. The set-point controller C(s) is designed to be 
a proportional controller in order to obtain a first order 
response for set-point inputs and the load disturbance 
controller )(sM  is designed to be a low-pass filter as will 
be shown later. 
The symbols used in Fig. 3 are compatible with those used 
so far and are detailed as explained next. The process is 
characterized by the transfer function: 
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The process model is composed of two parts, G*(s) and 
L*, which are the estimates of G(s) and L, respectively. 

After some lengthy, but straight forward calculations, the 
expression of the output Y(s) in terms of the reference R(s) 
and the disturbance D(s) can be found to be as follows: 
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The transfer function of the load disturbance response is: 
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Again, in order to obtain a transfer function equal to that of 
(3), the transfer functions F1(s) and F2(s) have to be chosen 
in a way to meet the following conditions: 
 

  
Figure 3: Proposed Scheme 
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Rearranging (19), and dividing by F2 which will be 

chosen non zero gives: 
*1*

1 )1( sLsLsLsL eMGeeGGMGeF −−−−− +=+   
 (21) 

Or in other words that: 
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Solving (20) for F2 gives that: 
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 However, if perfect modeling is assumed, we obtain, i.e. 

if it is assumed that s
K pGG
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This means that: 
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To guarantee the causality of 1*
2

−GF , )(sγ  is chosen as: 
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Hence the following relationships hold: 
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Then, the output Y(s) in terms of the reference R(s) and 
the disturbance D(s) is given by: 

)(
1

)1()(
1

)( *

**

*

*

*

*
sD

eMG

eGsR
CG
eCGsY

sL

sLsL

−

−−

+

−
+

+
=

γ   (31) 

The previous transfer function resembles the transfer 
function of (3) except the existence of the time delay. 
Substituting from (27), and assuming that the model is given 
by the integrating plant *G  the following transfer function 
is obtained: 
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Although the disturbance cannot be completely rejected, 
its effect is asymptotically rejected. The above expression of 
Y(s) shows that, the set-point response and the load response 
are been decoupled from each other. The performance of 
both set-point tracking and load rejections can be improved 
by separately tuning of the two controllers. 

It is worth pointing out that, if there is a mismatch 
between the model and the process and if the plant is stable 
despite the mismatch, the final value of the output due to a 
step disturbance can be easily found out from the set of 
equations previously presented. For the values of F1 and F2 
above, the output will be given by: 
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This grantees zero steady state error even in the presence 
of uncertainty provided that the system is stable. This can be 
considered as one of the robustness aspects of the proposed 
method. However we do not prove in this work the stability 
of the system when there is a mismatch, we only illustrate it 
with simulations later on. 
C. Proposed Method Tuning 

The set-point controller C(s) is chosen to be a gain 
controller C(s) = Kr , this guarantees a first order set-point 
response. Let *

pK  be the best available estimate of Kp. The 
direct synthesis method is employed. Let Hrd(s) denote the 
desired form of Hr where: 
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where rT  is the desired closed loop time constant. Letting 
Hrd(s)  =Hr(s), then: 
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The tuning formula of the load disturbance estimator 
M(s) is quite similar [13], which is as follows: 
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Kd and Td, are the gain and derivative term, respectively. To 
get Kd and Td, assuming L=L*, then, the stability of the 
proposed method depends on the roots of the equation: 
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(38) can be rewritten as: 
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System stability is guaranteed if we can guarantee that all 
the roots of (38) or equivalently (39) are in the left hand 

side. One way to achieve this requirement is to apply the 
Nyqiust criterion on W(s), since (39) looks like a 
characteristic equation. We will denote by pmφ  the phase 

margin of W(s), which is not in any way the phase margin of 
the proposed system. 

In order to achieve the above mentioned requirement, 
pmφ must be greater than zero. 
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Let the derivative time constant Td be chosen 
proportional to the time delay (L*), with (0 ≤β < 1) the 
proportionality constant, a tuning parameter 

*LTd β=   (43) 
By ignoring the influence of the low pass filter time 
constant Tf  (since 10df TT = ), (42) is given by: 
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Using the approximation pdpd TT ωω ≈− )(tan 1 , then pmφ  

can be written as: 
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Using (43) and (44), one can deduce that: 
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From which it can be seen that: 

2*2* 2
1 pp

p
d

LK
K

ωβ

ω

+
=   (47) 

However, using the fact that: 
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it can be deduced that: 
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Numerous simulations reported in [11] suggest that the 
following: adequate values for β and φpm are: 
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From (32), the disturbance transfer function characteristic 
equation is: 
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Thus, properly choosing α, the speed of disturbance 
rejection can be set. A lower value of α will correspond to a 
faster rejection of disturbance and a lower degree of system 
robustness, and vice versa, as shown later in the simulations. 
Consequently, to improve the system robustness, the speed 
of disturbance response must be slowed down through a 
higher value of time constant α. Numerous simulations, 
reported in [11] show that, the value of the parameter (α) is 
given by: 

*3 LL −∗=α   (54) 

As a summary the design steps of the controller are as 
follows: First a model of the plant, as good as possible 
should be available to provide Kp

*and L*. The designer then 
chooses the desired closed loop reference tracking time 
constant Tr, and the constant α which can be considered as 
the disturbance rejection time constant. The more confident 
the designer is in the model the smaller the value of α he 
can allow, as expressed by (54). However, the tuning of α 
might be difficult to achieve, since beforehand L is 
unknown. An online estimation of α is currently being 
investigated. The set-point controller is given by (35), while 
the disturbance rejection controller is given by (36)(37)(43), 
(50) and (52). 

III. SIMULATION RESULTS 
All the simulations considered are based on the following 

test problem: starting a zero initial conditions a unit step set-
point change at time t=0 and a step load change d=-0.1 at 
t=100 sec are introduced. Two plants are considered: 
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As in [5], the higher-order process )(2 sG p  is modelled by a 

pure integrator plus time delay (L* = L + Ts) where Ts is the 
sum of time constants of Gp2(s); i.e. here L* is 21.8 sec. The 
set-point closed loop time constant is selected to be Tr = 2. 
A. Proposed Method Simulation Results 
The set-point controller gain is Kr=0.5. For the first plant 
other controller parameters are taken as: Kd = 0.036, Td = 8 
and Tr = 0.8; and the second plant: Kd = 0.033, Td = 8.72 and Tr = 
0.87. 

Figure 4 illustrates the performance of the proposed 
scheme in the ideal case for plant 1 for α  = 1, 10 and 30. It 
appears clearly that the larger the value of α the more 
sluggish is the system. The real advantage of the scheme 
appears when model uncertainty is considered. Figure 5 
shows the performance of the scheme for plant 2 for α  = 1, 
10 and 30.  

To further investigate the performance of the scheme for 
model mismatch, the process model and consequently the 
controller settings are kept unchanged for processes 1 and 2, 
while the process dynamics time delay is changed with 

different percentage. Two different situations can happen, 
L*- L>0 the time delay is overestimated (positive mismatch) 
and L*- L<0, the time delay is underestimated mismatch. 
Figure 6 shows the response at α  = 15, with 20% positive 
and negative mismatch. It can be noticed that a good 
performance in set point and load rejection is obtained, 
indicating the effectiveness and robustness of the proposed 
method. It can be inferred from a close study of the 
simulations results provided that: 

1. The value of α  determines the robustness and speed of 
disturbance rejection in the scheme: the larger α the 
slower the load rejection and the more robust the 
system; the smallerα, the more aggressive the 
controller is. 

2. For the same value of α , if there is a positive 
mismatch, the system is more robust and slower; on the 
contrary if there is a negative mismatch the system is 
less robust and faster. This is due to the fact that in the 
first case, the controller is tuned based on a larger 
delay and has smaller gains; while in the second case it 
is tuned for a smaller value of time delay and has 
larger gains. 

Comparative Simulation Results 
The proposed controller performance is compared to 

some the existing schemes in the literature, especially in 
terms of robustness to mismatch in time delay. 

Figure 7 and Figure 8 show the proposed method (PM) 
performance as compared to the scheme of [10], denoted by 
(MML) for the first plant at 30% positive mismatch in time 
delay estimation, respectively. The scheme is tuned 
according to the tuning rules proposed by its authors, and in 
such a way that a comparison can be made with the 
proposed scheme. The values taken are: set point controller 
gain Kr = 0.5 for a closed loop time constant of 2 sec, order 
of disturbance to reject n = 2 and disturbance rejection time 
constant To = 10. 

As it appears, for the same closed loop requirements, the 
proposed method performs much better that the method of 
[10], even though it appears from the investigation of [11] 
that it is among the most robust scheme available in the 
literature. 

IV. CONCLUSION  
A new method for controlling integral processes with 

long time delay (IPTD) was proposed. The method requires 
a process model and two tuning parameters, a desired closed 
loop time constant and a robustness parameter. Robustness 
to dead time mismatch having the most important effect on 
the performance, a tuning formula can be used to choose 
this parameter if a bound on the mismatch can be evaluated. 
However, because this requirement maybe difficult to 
achieve, an online tuning for this parameter is currently 
under investigation. 



 

 
Figure 4: Proposed Method Performance at ideal case 

 

 
Figure 5: Proposed Method Performance with Dynamic Order Mismatch 

 

 
Figure 6: Proposed Method Performance with 20% Mismatch in Time 

Delay 
 

 
Figure 7: Comparative Simulation for +30% Mismatch in Time Delay 

 
Figure 8: Comparative Simulation for -30% Mismatch in Time Delay 
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