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( ) ( ) [ ] ( )
max0 max 0,  ,0 ,  , w

h nx t h t R Cψ φ ψ ψ φ ++ = ∀ ∈ − ∈ × ,  (1) Abstract. The robust output feedback stabilization problem 
for state-delayed systems with time-varying delays and 
saturating actuators is addressed here. The systems 
considered are continuous-time, with parametric 
uncertainties entering all the matrices in the system 
representation. A saturating control law is designed and a 
region of initial conditions is specified within which local 
asymptotic stability of the closed-loop system is ensured. 
The designed controller is dependent on the time-delay and 
its rate of change. The controller is constructed in terms of 
the solution to a set of matrix inequalities. 

where ( ) nx t R∈  is the state vector, ( ) ry t R∈  is the output 

vector, ( ) mu t R∈  is the control input vector to the actuator 

(generated from the designed controller), ( ) m
t R∈

h
sau t  is 

the control input vector to the plant. The time-delay  is a 
function of time and is assumed to be continuously 
differentiable, with its amplitude and rate of change 
bounded as follows: 

( ) max0 h t h≤ ≤ ,   ( )h t β0 1≤ ≤ < ,       for all   t       (2) 0≥
 

where  and maxh α  are given positive constants. The 
uncertain matrices ( ) ( ,  h )A t A t , , ( )B t ( )C t  and ( )D t  
are:  

1. Introduction 
 In recent years, much work has been devoted to the 
analysis and synthesis of controllers for state-delayed 
systems with or without parametric uncertainties; see [1] 
for earlier work. To the authors best knowledge, the issue 
of output feedback stabilization of uncertain state-delayed 
systems with saturating control was only addressed in [2]. 

( ) ( )A t A A t= + ∆ , ( ) (h h h )A t A A t= + ∆ , ( ) ( )B t B B t= + ∆ , 

( ) ( )C t C C t= + ∆ , ( )D t D D t= + ∆ ( )                              (3) 
where the matrices A , hA , ,  and  are real, and are 
assumed to be known exactly. The matrices 

B C D

( ) ( ),  hA t A t∆ ∆ , ( )B t∆ ,  and ( )C t∆ ( )D t∆  are real-
valued, represent the norm-bounded parameter 
uncertainties, and are assumed to be of the following form: 

   In this context, the contribution of this paper can be 
summarized as follows: 

• A delay-dependent robust output feedback 
stabilization problem is addressed for state-delayed systems 
in full generality, including actuators constraints and norm-
bounded parametric uncertainties entering all the matrices 
in the system representation.  
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( ) ( )h h h hA t H F t E∆ =                                                       (4) 
• In attempt to make the approach the least 

conservative, unlike in [2], the most efficient descriptor 
model transformation and Lyapunov-Krasovskii functional 
are employed, as in [3].  where ( ) i jF t R ×∈  and ( ) h hi j

hF t R ×∈  are real, uncertain 
and time-varying matrices with Lebesgue measurable 
entries which, additionally, meet the following 
requirements:  ( ) ( )TF t F t I≤  and ( ) ( )T

h hF t F t I≤ . The 
matrices  AH , CH , hH , , AE BE  and  are known and 
real, and characterize the way in which the uncertain 
parameters in 

hE

( )F t  and ( )hF t  enter the nominal matrices 
,  ,  h ,  A A B C D and .  

• The least conservative model for the actuator 
saturation; see [4], as delivered by the differential 
inclusions approach is employed here. 

• The value of the time-delay as well as its rate of 
change are taken into account in the design method 
presented and further permit to reduce the conservativeness 
of the approach.  

• The method developed here is applied to an 
example system which was previously used in [5], and 
shows that the new design yields less conservative results, 
in that stabilization is ensured for a larger set of initial 
conditions.  

Finally, the following is assumed to hold: 
Assumption 1: ( ),hA A B+  is stabilizable and ( ),C A  is 
detectable. 
Assumption 2:  The input vector is subject to amplitude 
constraints, i.e. , with 0

mu U R∈ ⊂
 

2. Problem statement 
   Consider the following uncertain time-delay system: 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )h satx t A t x t A t x t h t B t u t= + − +

( ) ( ) ( ) ( ) ( )sat

,       

y t C t x t D t u t= + ( ),     ( )( )u tsatu t sat= ,  

{ }0 ;   ,  >0,  1...m
i i i iU u R u u u u i m∈ − ≤ ≤ = .             (5) 

( )( ) ( )( ) ( )( ) ( )( )1 2 ... msat u t sat u t sat u t sat u t=    

   The results to be presented are concerned with providing 
sufficient conditions for the design of an observer-based 
dynamic output feedback law for system (1). This law is 
assumed to take the following form: 

  



( ) ( )ˆu t Kx t=                                                                      (6) 

( ) ( ) ( ) ( ) ( ) ( )( )ˆ ˆ ˆsat satx t Ax t Bu t L y t Cx t Du t= + + − −       (7) 
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where ( )ˆ nx t R∈  is the observer state vector, m nK R ×∈  and 

 are the constant controller and observer gains, 
respectively. Using (1), (4) and (7), permits to write, 

n r×L R∈

( )
( )

( )[ ] ( )
( )

0
0

ˆˆ
A

A
C

x t x tHA
F t E

x tLHLC A LCx t

      = +      −      
 

 


111 112 211 212

121 122 221 222

211 221 311 312

212 222 321 322

0T T

T T

R R R R
R R R R
R R R R
R R R R

 
 
  >
 
 
 

, , ,  111 111
TR R= 112 121

TR R=

  122 122
TR R=                                                                        (13) 

1, 2

2 3

0j
T

Ω Ω 
< Ω Ω 

,                                          (14) 1,..., 2mj∀ =
               ( )[ ]

( )( )
( )( )

0
0

0 0 0 ˆ
h h

h h

x t h tA H
F t E

x t h t

 −     + +       −         
  

( )

( )

111 112

121 122

2

0
0

0

T
i i

i ii

P P
P P K

K u

α

α γ

 
 

≥ 
 
  

,     ∀ =                      (15) 1,...,i               ( ) ( )A
B sat

C

HB
F t E u t

LHB
   + +   
     


                       (8) m

Finally, introducing the following definitions, 
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where ( )iK  is the i th−  row of K , and where, 
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permits to re-write equation (8) in yet more aggregated 
compact form, 
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  (17) The robust output feedback stabilization problem with 
saturating actuators:                                                            
 Find a matrix m nK R ×∈

0S ⊂
, a matrix  and a set of 

initial conditions  such that the closed-loop 
system (10) is asymptotically stable. 
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3. Main result 

   The following theorem provides sufficient conditions for 
robust output feedback stabilization of the uncertain time-
delay system (10) with control saturation. 
Theorem 1. Consider the system (10). Suppose that there 
exist, -matrices: n n× 11iP , 12iP , 21iP , 22iP ; 1,...,3i = ,  

, , , ; , , , , ; 
, , an  matrix 

11iW
1,i =

12iW
.,3

21iW
S S=

22iW
0>

1
m
,..., 4

n×

i = 11iR 12iR 21iR 22iR
.. T K  and an n r×  

matrix , and a vector L mRα ∈ , and a positive scalar γ , 
which together with some suitable positive scalars iε ; 

, satisfy the following matrix conditions: 1,i = ...,3

{ }3 1 2, ,diag I I I3ε ε εΩ = − − −                                            (19) 
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     Using the above relaxation schemes, the achieved set of 
initial conditions (assuming zero initial conditions for x̂ ), 

is 6
111 111
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( )( ) ( )

, 

and the corresponding computed volume is 

( )111log det 11.90cVol S Pγ= =log .  

cS

0D

H∞

Figure 1 shows the sets of initial conditions achieved in [5] 
and in the present paper, where it is seen that there is a 
substantial increase in the size of the set of initial 
conditions guaranteeing asymptotic stability. 

  

Under these conditions, system (10) is locally 
asymptotically stable for any initial condition ( )φ σ  in the 
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figure 1: Set  of initial conditions achieved in this paper 
as compared to set  of  [5] 

  
5. Conclusion 4. Numerical example. 

Consider system (1) with the following state space 
matrices: 

0.1 0.1
0.1 3

A
− 

=  − 
, , , 

5 0
0 1

B
 
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1 0
0 1

C
 
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 

11
120AH

 
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 
, 

[ ]1 1AE = ,      [ ]1 1B =E ,      1 5=u ,   1 2=u            (22) 
with all the other matrices being equal to zero. It is exactly 
the same example that was used previously in [5], where 
the authors using relaxation techniques achieved an initial 
state set (assuming zero initial conditions for x̂ ),  

6
0

290.5 7.966
:  1,  10

7.966 0.500
TD x x x − −  = Ζ ≤ Ζ =  −  

.  

The problem formulation employed here is believed to be 
the first and the most general considered so far with 
reference to the delay-dependent robust output feedback 
stabilization of state-delayed systems with saturating 
actuators. A major innovation of the approach adopted here 
is that the stabilizing control design is made dependent on 
both the value of the time-delay as well as on its rate of 
change. As it was demonstrated by way of an example, the 
result of Theorem 1 ensures stability for larger sets of 
initial conditions than previous results obtained in the 
literature.  
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