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Delay-dependent robust output feedback stabilization of uncertain
state-delayed systems with saturating actuators

Ammar Haurani, Hannah H. Michalska, Benoit Boulet

Abstract. The robust output feedback stabilization problem
for state-delayed systems with time-varying delays and
saturating actuators is addressed here. The systems
considered are continuous-time, with  parametric
uncertainties entering all the matrices in the system
representation. A saturating control law is designed and a
region of initial conditions is specified within which local
asymptotic stability of the closed-loop system is ensured.
The designed controller is dependent on the time-delay and
its rate of change. The controller is constructed in terms of
the solution to a set of matrix inequalities.

1. Introduction

In recent years, much work has been devoted to the
analysis and synthesis of controllers for state-delayed
systems with or without parametric uncertainties; see [1]
for earlier work. To the authors best knowledge, the issue
of output feedback stabilization of uncertain state-delayed
systems with saturating control was only addressed in [2].

In this context, the contribution of this paper can be
summarized as follows:

e A delay-dependent robust output feedback
stabilization problem is addressed for state-delayed systems
in full generality, including actuators constraints and norm-
bounded parametric uncertainties entering all the matrices
in the system representation.

e In attempt to make the approach the Ieast
conservative, unlike in [2], the most efficient descriptor
model transformation and Lyapunov-Krasovskii functional
are employed, as in [3].

e The least conservative model for the actuator
saturation; see [4], as delivered by the differential
inclusions approach is employed here.

e The value of the time-delay as well as its rate of
change are taken into account in the design method
presented and further permit to reduce the conservativeness
of the approach.

e The method developed here is applied to an
example system which was previously used in [5], and
shows that the new design yields less conservative results,
in that stabilization is ensured for a larger set of initial
conditions.

2. Problem statement
Consider the following uncertain time-delay system:

x(t)=A(t)x(t)+ 4, (t)x(t=h(t))+ B(t)u, (1),
y(£)=C(t)x(t)+D(t)uy (1),  u, (t)=sat(u(t)),
sat (u(t)) = [sat (ul (t)) sat(u2 (t)) sat(um (t))]
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x(ty+w)=0(v), Yy €[~h.0]. (4,.0) e R xC; (1)
where x(¢)e R" is the state vector, y(¢)e R’ is the output
vector, u(7) e R" is the control input vector to the actuator
(generated from the designed controller), u, ()€ R" is

the control input vector to the plant. The time-delay /4 is a
function of time and is assumed to be continuously
differentiable, with its amplitude and rate of change
bounded as follows:

0<h(t)<h,,, 0<h(t)<p<l,

where #_,

forall 120 (2)
and o are given positive constants. The
uncertain matrices A(t), 4,(¢), B(t), C(¢) and D(r)
are:

A(t)=A+AA(1), 4, (t)= A, +AA4, (1), B(t)=B+AB(1),
C(t)=C+AC(t), D(t)=D+AD(t) 3)
where the matrices 4, 4,, B, C and D are real, and are
assumed to be known exactly. The matrices
AA(1), A4, (t), AB(tr), AC(t) and AD(r) are real-

valued, represent the norm-bounded parameter
uncertainties, and are assumed to be of the following form:

AA(I,‘) AB(I) | H,
et aoio) e &1
A4, (1)=H,F,(t)E, 4)
where F(t)eR™ and F,(tf)eR" are real, uncertain

and time-varying matrices with Lebesgue measurable
entries which, additionally, meet the following

requirements:  F(¢)F' (t)<I and F,(t)F, (1)<I. The
matrices H,, H., H,, E,, E, and E, are known and
real, and characterize the way in which the uncertain
parameters in F(¢) and F, (¢) enter the nominal matrices
A, 4,, B, C and D.

Finally, the following is assumed to hold:

Assumption 1: (A4+ 4,,B) is stabilizable and (C,4) is
detectable.

Assumption 2: The input vector is subject to amplitude
constraints, i.e. u € U, c R", with

Uoé{ueRm; —LTiSuiSLTI.,L_[,_>O,i:1..'m}' 5)

The results to be presented are concerned with providing
sufficient conditions for the design of an observer-based
dynamic output feedback law for system (1). This law is
assumed to take the following form:
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u(r)=Kx(r) (6)
where %(¢) e R" is the observer state vector, K € R"" and

L eR"™ are the constant controller and observer gains,
respectively. Using (1), (4) and (7), permits to write,
t)}

L e o o
g e o2

[lfosfn o

Finally, introducing the following definitions,

S0 {igﬂ A LAC A—OLC}’ 4t {/(1; g}’

=>

A A H A A N
AB(t)% HF (t)E, é{ ! }F(t)EB, A(t)2 A+AA(2),
LH,
A, ()2 4,+A4,(t), B(t)2B+AB(¢), K=[0 K] (9)
permits to re-write equation (8) in yet more aggregated
compact form,
()= A(0)&(1)+ 4, (1) (1 =h(1)+ B(1)u, (1),
with u, ()= sat(]%f(t)) . (10)
The robust output feedback stabilization problem with
saturating actuators:

Find a matrix K € R™", a matrix L € R”" and a set of
initial conditions S, R such that the closed-loop
system (10) is asymptotically stable.

3. Main result

The following theorem provides sufficient conditions for
robust output feedback stabilization of the uncertain time-
delay system (10) with control saturation.
Theorem 1. Consider the system (10). Suppose that there
exist, nxn-matrices: Py, P,, P,, B,; i=1..3,
I/Vill ) I/I/iIZ’ I/VLZI’ VV/ZZ 4 l = 1""’4’ Rill ’ Ri12’ RiZl ’ Ri22 ;
i=1,..,3, S=8">0, an mxn matrix K and an nxr
matrix L, and a vector a € R", and a positive scalar 7y,
which together with some suitable positive scalars &, ;

i=1,...,3, satisfy the following matrix conditions:

|:Ell Rl2

P, Plzz:|>0’ A, :P;Tl’ B, :Plglr By :Plgz (11)

Ry, Ry,
3 T T T
R R >0, Ry, =Ry, Ry, =Ry, Ry, =Ry (12)
L %521 322
R, R, R, Ry,
R, R, R, Ry T
T T >0, Rm:Rm’ R, =Ry,
R R R, R
211 221 312
T T
_R212 Ry R321 R,
T
R, =Ry, (13)
Q],/’ QZ . m
7 <0, vi=1,..,2 (14)
L Q, Q,
I R, 0
T .
By Ry  aK |z 0, Vi=l..,m (15)
—2
| 0 QiK(i) yu;
a,€(0,1], Vi=1,..,m (16)
where K(,.) is the i—th row of K, and where,
P Yo, Vo Wan o (T HRL) A (W 4P
Vi, Yo, Yo, hmax(VVl112+317) hmax(VVl”+})lZZ)
\P3II ‘{1312 h I/V27|‘| h I/V272“|
\PJZZ hmz\xW’.’]Z hmax I/VZIZZ
Ql" - _hmanlll _hmanIIZ
_hmale'lZ
h ( JrP2T11) ( +})27;1) W%flA 783EhTEh
h ( st ) ‘max ( mt ) _W;szh
h ( 411+PT ( 421+PT) _W4T11Ah
P (Wil + Py) i (Wi + Pl Wi, (17)
hmax RZ] 1 hmdx RZ 12 0
hmdeZZI _hmdeZ"Z 0
_h R 311 hnuanz 0
hmde? 0
_(l_ﬂ)s+gsE11TEh_
Pl H, +PL LH PrH WIH
20141 4 211 2114 31ty
T T T T
Q _ I)ZIZHA +1)222LHC })212Hh VV312H11 (18)
27 T T T T
PWH,+P,LH. PF,H, W,H,
T T T T
PL,H,+PyLH. PF,H, W,,H,
Q, =diag{-¢1,-&,1,—¢,1} (19)

Wy =(4+4,)" Py + Bl (A+ 4,)+(LC)" Py + P LC
+ Wy A, + AW, +S+EEVE, +(&,+&)E, E,
\Pnz/ :(A+Ah )T Pz]z +(LC) Pzzz +P2THBF/ (Q)K
+ P (A=LC+BT (a)K)+ AW, , + & ELE,T (2)K
\P122,j:(BFj(C_¥)K) lez+lezBF ( )K

+(A4-LC+ BT, (g)K) Py, + P, (A= LC+ BT (2)K)
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T
\P211:P]1T1_PZT11 (A+Ah) Pz]1+ LC) P321+A VV4”,
) LC) ])322 +Ah I/V412

W, =Bl - P+ ( (@)K) Py, +(4-LC+BT (a)K) P,
¥, =Pl —Ph+(BT,()K) Py, +(4-LC+ BT, (a)K) Py,
\Psu = _P311 Psll + hmaxAthl mastllAhn,max 5

Vi, =—Fp _P3€1 > Vi =—Py _Psgz

Under these conditions, system (10) is locally

asymptotically stable for any initial condition ¢(0') in the

‘‘‘‘‘

1
ball @ peC ;o <ol, witho=—  (20)
(0)={=cii loll <} .

I)lll P

h
where, 1, =2, - D + =1 (S
’ [|:P121 Pl22 (l_ﬁ) ( )

2 T g
+= h ﬂ’ (Ahllmax 3]]Ahll,max)

max “ “max

e2y)

4. Numerical example.
Consider system (1) with the following state space

matrices:
0.1 -0.1 50 1 0 1
= ’ = b} C = b} H A = L ’
0.1 -3 01 0 1 201
EA:[l 1], EB:[I 1], u =5, (22)
with all the other matrices being equal to zero. It is exactly
the same example that was used previously in [5], where
the authors using relaxation techniques achieved an initial
state set (assuming zero initial conditions for x ),

290.5 -7.966

-7.966  0.500 }}

The corresponding volume of this set was computed as
log(Vol(DO))zlog( det(Z)):11.61. In an attempt to

7 =2

Doz{x: xTZxSI,Zzlo"[

achieve a larger set of initial conditions guaranteeing
asymptotic stability of the closed-loop system, the
following relaxation schemes were used in the present
paper:

LMIR 1: Given K, L, ¢, and g,, solve for all the P
matrices and y, the problem Min(wTrace(R)+y), such

that the LMIs of Theorem 1 are satisfied, where w is a
column vector whose four entries are weights multiplying
each diagonal entry of matrix P, to form its trace.

LMIR 2: Given all the P matrices, K, ¢ and a,,
solve for L and y the problem Min(;/) , such that the
LMIs of Theorem 1 are satisfied.

Using the above relaxation schemes, the achieved set of
initial conditions (assuming zero initial conditions for x),

. S T P <1 P ——1076 : ) .
1S S =9XL X X=1, ’
. Y VN -4.396 0.355

and the corresponding
log(Vol(Sc)) = log( det(me )) =11.90.

Figure 1 shows the sets of initial conditions achieved in [5]
and in the present paper, where it is seen that there is a
substantial increase in the size of the set of initial
conditions guaranteeing asymptotic stability.

computed  volume is

figure 1: Set S, of initial conditions achieved in this paper

as compared to set D, of [5]

5. Conclusion

The problem formulation employed here is believed to be
the first and the most general considered so far with
reference to the delay-dependent robust output feedback
stabilization of state-delayed systems with saturating
actuators. A major innovation of the approach adopted here
is that the stabilizing control design is made dependent on
both the value of the time-delay as well as on its rate of
change. As it was demonstrated by way of an example, the
result of Theorem 1 ensures stability for larger sets of
initial conditions than previous results obtained in the
literature.
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