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Abstract—We present a complexity measure for studying frequently refer to our work orconnectivity graphg5],
the structural complexity of multi-agent robot formations. We [6], [7] of robot formations in order to make this notion
base this measure on the total information flow in the system, concrete.

which is due to sensory percepti'on and gommunicqtion among When formulating a measure of complexity for robot
agents. We show that from an information theoretic point of g }
view, perception and communication are fundamentally the formations, it need not produce an absolute order on all
same. We show how the information flows depends on different connectivity graphs (although the order has to be observed
protocols and that the broadcast protocol corresponds to the in its own class e.g. among all rings, all stars, all complete
worst case complexity for a given formation. graphs). This means that we are more interested in relative
complexity. For this program to be considered successful,
we should thus at least be able to differentiate betvwesn
When designing control strategies for distributed, multicomplexformations andvery simpleones.
agent robot systems, it is vitally important that the number Given the above mentioned considerations, we will define
of prescribed local interactions is managed in a scalabke complexity measure of robot formations, related to the
manner. In other words, it should be possible to add nesomplexity of its connectivity graphs. This paper is orga-
robots to the system without causing a significant increse nized as follows: We will first introduce connectivity graph
the communication and computational burdens of the indaf formations in Section Il. Following this, we will discuss
vidual robots. On the other hand, an additional requiremettie equivalence between perception and communication
when designing multi-agent coordination strategies shoufrom an information theoretic point of view, in Section
be that enough local interactions are present in order td. Then, we will propose a definition of the intrinsic
ensure the proper execution of the task at hand. complexity of robot formations, in Section IV and explain
Hence, a fundamental question that arises when studyiiitg relation to the complexity of graphs.
suc_h muI‘t‘i-agent §y?tems Is h.O.W to propt_erly _defint_e the II. FORMATIONS AND CONNECTIVITY GRAPHS
notion of “complexity”. The traditional, algorithmic natn )
of the complexity of a system is related to how difficult !N order to see how a graph-based complexity measure
it is to describeit. Therefore, most of the measures ofiS @Ppropriate when studying multi-agent formation, we, in
complexity are closely related to thdgorithmic Informa- this sect|o_n,_ recall some previous results_ and definitions
tion Content(AIC) in a system [1]. However, as noted pf connectivity graphs: The techmcal details can be found
in the molecular chemistry literature [2], [3], [4], theren [3]. [6], [7] but we include this treatment for the sake
is an inherent difference betweetescriptive complexity Of clarity. Throughout this paper it will be assumed that
and structural complexity where the latter measures thethe robots are planar, and that they can interact with
interactions, size, and asymmetry in the physical strectyrN€ighboring robots (through perception or communication)
A similar program can be carried out within the context ofnat are no further than away. _
formation control. It is clear that when talking about robot 1he configuration space”™ (R?) of the robot formation
formations, any measure of the complexity of the formalS made up of all ordered-tuples inR?, with the property
tions should take into account the size of the formatiorfl@t N0 two points coincide. The evolution of the formation
the number of communication links or interactions in th&an be represented as a trajectdfy: Ry — CY(R?),
formation, and possibly also the degree of symmetry in thgsually written asr(t) = (Xy(t), Xz(t),... Xn(t)) to
formation. signify time evolution. The spatial relationship between

Molecular chemists have mainly described the structur&PPOtS can be represented as a graph in which the vertices
complexity of molecules by defining measures on theiff the graph represent the robots, and the pair of vertices on

corresponding graphs [2]. Fortunately, there is a corrach edge tells us that the corresponding robots are within
sponding notion of formation graphs, induced by robof€NSOr rangé of each othet. ,
formations, [5], [6], [7], [8], [9], [10], where the structa Definition 2.1 (Connectivity Graph of a Formation):
information in the formation is captured. Therefore, itmee L6t 9~ denote the space of all possible graphs that can

appropriate t_o SIUdy_ the structural compl_exity of multeag ~ IHere, s is used to signify the limited effective range of the sensars a
robot formations with reference to their graphs. We willwell as the range within which a communication channel is abés!
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be formed onN verticesV = {vi,v2,...,un}. Then Zy, x Zy, - x Zn,, C RN, where N; € N for 1 <
we can define a functioy : CV(R?) — Gy, with 4 < N. Here, the stater; is assumed to be described by
DN (F(t) = G(t), whereG(t) = (V,E(t)) € Gy is the y;. Each componeny; of Y is encoded independently of
connectivity graphof the formation F(¢t). Furthermore, other components, and each symbol in each component
v; € V represents robat at positionX;, and£(t) denotes is equally likely. i.e.p;(y;) = NL Then, we would like
the edges of the graph, with,;(t) = e;;(¢t) € £(t) if and to ask the following question: Does there always exist a
only if ||X;(t) — X;(t)]| <46, ¢ #j. virtual sensorS’ which provides the same information as
o . . the communication channéf?

The movements of the individual r.O.bOtS in the forr_natlon].he answer to this question is affirmative as show below:
may result in the removal or agd|t|on of edge_s in the Proposition 3.1: For any communication link that sat-
graph. Thereforeg(t) is a dynamic structure. It is clear }sfies the assumptions in Problem 3.1, there always exists a

that dlffer'ent formgtlons can produce a wide variety OVirtual sensors’ that provides the same information as the
graphs with N vertices. This includes graphs that have

disconnected subgraphs, or totally disconnected gra| Wcommunlcatmn chaqnel.

no edges. Howevgr, ?he problemyof switching be%(]WeF:ajhrlnS di 2roof: By the setup in Problem 3.1, we have
ferent formations or of finding interesting structures \vith N

a formations can only be tackled if no “sub-formations” I(X;Y) = logy (] [ Na)-

of robots are completely isolated from the rest of the i=1

formation. This means that the connectivity grapft) of e construct our equivalent "virtual sensas” as follows.

the formation7(¢) should always remainonnectedin the | ot the virtual sensor give measuremeiffs € Zy, x
sense of connected graphs) for all time. T, - X T, © RM with resolutions
2 M ’

I1l. PERCEPTIONVS. COMMUNICATION

Ay — max(y;) — min(y;)

g .
Any measure of how complex a certain formation is has N

to capture the amount of information that flows between the fZi—z) = f(xi]iAy) = 1
different agents in a meaningful manner. This exchange of Az
information between agents is due to the two types of locathen it can be directly verified that
interactions among agents, one due to sensory perception of N
neighboring robots and the other due to the communication I(X:2') = H(X;Y) = o (H Ny
channels. When defining complexity measures, one thus ’ ’ 82 bl v

either has to unify these two types of local interactions, or
define two different complexity costs associated with them.
Hence, it is natural to ask whether these interactions rdiffe However, we would like to show the opposite as We”,
fundamentally from each other. If we can show that thergamely the problem of creating a "virtual” communication
is no fundamental difference, it will simplify our task of channelc’ equivalent to a given sensor. [{X; Z) is the
CharacteriZing Comp|EXity in terms of local interactiorﬁ b amount of information gained abonxt by measurement,

not explicitly mentioning the cause of the interactions. Weynd there exists a positive integersuch that
briefly explore this issue in this section.

Since we are interested in this issue from an information k
theoretic point of view, we pose the following problem in
an information theoretic setting. Let,Y be two random
variables. We will denote by/(X;Y), the amount of

QI(X;Y) c Z+,

then we can build a virtual communication changéieusing
any factorization of

information gained abouX by knowingY'. The entropy of E=Fkky..... - ki€ 77T
each random variable will be denoted BYX) and H(Y") ’
respectively, and (X;Y)=H(X) - H(X|Y)=H(Y) — However, it is usually the case th&{X;Y) is a non-

H(Y|X) [11], [12]), whereX|Y andY|X are conditional integer due to the choice of real valued continuous, non-
random variables. If a variableZ of M components is constant distributions. Therefore it may not always be
defined over a finite field, we will refer to its space agossible to construct the virtual channel, using this Kktic
the lattice Zy, x Zg, - X Zy,, C RM to emphasize Butitis clear that the two modes of interaction have no fun-
guantization. damental difference from an information-exchange point of
Problem 3.1: Suppose the state of a systei = view. Therefore, we assume that we can talk about sensors
[x1,22,...777]7 € RM is measured by sens6y, providing and communications channels interchangeably. Note that
the measurement& = [z1, 2o ...20]7 € Zy, X Zy, - x  this similarity is information theoretic and not not phyaic
Zy,, C RM wherek; € N for 1 < k < M. Knowledge There are many issues regarding occlusions and multi-hop
about X is also transmitted by a remote agent over a conprotocols that must be taken into account to show physical
munication channef as a vectoY’ = [y1,vs,...yn]? €  equivalence.
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IV. COMPLEXITY OF ROBOT FORMATIONS then we can define the intrinsic structural complexity of a

We now consider the problem of defining a complexityforrnatlon as follows.

measure for multi-agent robot formations. As explaine Deflntmor: 4'1| (Structlljra_ItCorr}plexnyf of atl_:orgatloi):
above, it makes sense to relate the complexity measu € Xs ruc l;(ra Cgrjsp[éx'y dof' ad o.rma 'on o
to the total amount of information flowing in the system.\**1><*2:--- ) € CT(R%) is defined as:
It should further be noted that this information exchange
among agents is a dynamic quantity and depends on the CF) = ZZFM-(X]-),
distributed algorithm executed by the system. ii#d
. A multi-agent formation IS an evoIvmg structure in bOI.hWhere eachr; ; is defined according to some given com-
time and space. In space, it is dynamic due to the motloljﬁ o ;
. ) unication protocol.

of the robots, which leads to the establishment of new Since. the presen f brotocols imolies that every inter
interactions and the termination of old ones. This Spati%lctioncgnof;cteiz\f:dﬁ?i: gge?;?nstims eesrio; tﬁeﬁrzjxtn €
relationship can be captured by a connectivity graph as exbm lexity is bounded agove by a uantilic) that’assumes that
plained in Section Il. However, the establishment of a locajomPiEXIty . yaq Y e

| interactions are active for all time. This bound is irtfa

interaction does not mean that this interaction is presea complexity associated with Eroadeast protocoldefined
for all time. The information exchange at a particular tim%elowp y P 0

depends orprotocols (e.g. [13], [14]), which may make oo Lo

the information interchange not only non-constant, bup als_ D€finition 4.2 (Synchronous Periodic Broadcast Protocol):
non-deterministic. Therefore, it would be appropriate tooUPPOS€ each agenttransmits its stateX;,; # i to all
refer to a quantity describing the time rate of informatiorPtn€r agents ag’; after every At seconds. The timé’;
exchange. We call this quantity, theformation flow and @Kes to reach ageritis some integer multiplé; ; of At,

refer to the complexity of a formation as the total informa \Wherek; ; is the number of "hops” in the communication.
tion flow in the system. Also, let the measurement;, of remote stateX be

periodically taken everyAt seconds. Then this protocol

A. Protocols and Information Elows of communication among agents is called 8ynchronous
N ) ) Periodic Broadcast Protocol

_ Supposer < R™ is a state' associated W.'th an agent ¢ Ay is the minimum permissible time for information
J, which agent; wants to acquire by perceptl?vn OF COM-gy change in the system (due to either bandwidth, sensor
munication. LetZ;; € Zg, X Zg, --- X Zxy C R be the update interval, or algorithm execution cycle), then we
megsurement of a senssrby agentz. Information _abqut can easily see that protocols of synchronous information
X; is also transmitted by agentover a comwumca‘uon exchange that are more selective than the broadcast protoco
channelC asYj; € Zy, X Zp, -+ x Ly, CR7, Where o4 requit in a decrease of the total information flow. If

pi edN forl<és< ]\ih If we Cons'ge]f.xj.’mzhg ant_d YJfll a5 we denote the complexity of a formation, associated with
random processes, then we can defineitfermation flow ¢ oadcast protocol a8y (), then

as the time rate of information exchange taking place at a

certain agent, i.e. Cu(F) > Cp(F)
W\ = T whereCp(F) is the complexity for some arbitrary protocol.

. Cp(F) therefore gives the worst case complexity associated

Ther(_a are §evera| tgchnical difficulties associated W'talith a particular formation. The information flow of a
the definition in Equation (1). The random processes ale 1 ote stateX. at agenti, according to this protocol, is
always discrete in time, because both the perception and / ’ ’
communication process are discrete. In the most general I(X;:Z;)  I(X;:Y;) .. o
case, the packets arrive (or measurements are taken) ac-Fi;(X;) = Zt = kWAt bits/seci # j.
cording to someorotocol which defines the time of arrival. d
The situation is further complicated by the fact that the From the discussion in Section Ill, it is clear that it
E\fok:mation e;?fhange may be corrl}pletetl)y asynchronouy a\yays possible to create a virtual sensérsuch that

oth among different agents as well as between measur ) _ o ;
ments andgcommunicat?m of the same state for one age Xji¥;) = 1(X;5Z;). Therefore, we will refer to the

. ormation flows with reference to sensors only, and write
The actual communication exchange takes place as a buiist information flow as
after possibly long unequal intervals. But, in this paper,
we assume that the information flow for a single exchange
should be considered as the information gained between two
consecutive exchanges, averaged over the time interval.

With these considerations, we assume that if the informavhere Z; ; = [Z; ;, Z;], in order to emphasize that we are
tion flow is well defined according to a particular protocolreferring to sensors only.

_ 1(XG525)

Fi(X) = S0 @)
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B. Complexity and Connectivity Graphs

We now study the interesting relationship between the
structural complexity defined above and an alternative de-
scription of complexity based on connectivity graphs of
formations. The first interesting connection can be seen
from the definition of the broadcast protocol. The number
k;; defined as the number of hops in the communication
between agents hints at the network topology between the
agents. But,the connectivity graphs defined in Section
Il is exactly this network topologyFurthermore, it may
be reasonable to ask ¥;; is a unique number for any
two agents, since the same information my be exchanged
by different hopping paths. This corresponds to different
paths in the connectivity graph. Since the information flow
in Equation 2 depends o#;;, it must be made clear
what path we are using. But, since we are interested in
distributed multi-agent algorithms, it cannot be assumed
that global information about the network topology (i.€2 th ; <hould further be noted that if

- N ) i ;€ star(v;), the exact
connectivity graph of the formation) is available all th@é 51 of communication ialwaysknown, and the broadcast
to all agents, so that the hopping paths are urfiginstead,

) _ . i to other nodes is not necessary. Therefore we can make this
in the broadcast scenario, the information ab&ytreaches |, g tighter

a remote agent via all possible hopping paths between
them, so that

Fig. 1. 4-chain and complete graph farvertices.

o) < L3 (degoy + Y O

I3 (X) — % I(Xj; Zj,i) ¢ vj€star(v;) J
o p=1 fpig AL wherey”, ctar(uy) 1 = deg(vi). Compare this to the com-

plexity defined on a graply, in the context of molecular

where P;; is the total number of paths, arg,;; is the chemistry [4], given as

length of an individual pathyp. If k;; is the smallest path
between the agents, i.e. a geodesic in the corresponding

ivi deg(v;)
connectivity graph, then = ; J
y grap elte) ZV deg(vi) + VZ ok
Fy(X,) < degfvy) {200 & eV,
R ! kij At whered : V x V — RT is some distance function defined

This is the case since even though multiple paths mayetween vertices. Therefore, we get
reach a robot instar(v;), only one information exchange v
takes place between that robot and rohdturthermore the Cp(F) < EC(@NUE))’

complexity C5(#) is bounded above as where @ 5 (F) is the connectivity graph of the formation.

I(X;; Z4) This relationship leads to the following interesting olvser
Cp(F) <> Zdeg(va‘)#~ tion: The complexity of the connectivity graph of a forma-
i i#d Y tion is a (tight) upper bound for the worst case complexity

We now assume that the states exchanged by all agemtssociated with an arbitrary protocol of communication in a
are of the same type and encoded in the same way. Theraulti-agent formationTherefore the study of the structural
fore I(X;; Z; ;) = ~, i.e. the mutual information is constant complexity of robot formations is closely related to the
for all 7, 5. Also, note thatk;; = 1 if v;,v; make an edge complexity of their connectivity graphs.
in the connectivity graph i.e. when agehtan be directly , .
sensed (or communicated with) without an additional hop>+ Simple and Complex Connectivity Graphs
We can also write this in standard graph theory notation as The complexity measure on connectivity graphs gives a
v; € star(v;) [15], [16]. Using this notation, we have: good comparison between different formations. While it

is difficult to produce an absolute order on all possible
- deg(v;) connectivity graphs, it distinguishes simple graphs from t
Cp(F) < AL Z Z deg(v;) + Z Tj . more complex. We will prove below that the complete graph
v; € v & K is the most complex connectivity graph for a fixed set of
star(vi) star(vi) vertices, whereas &chain [5], which is the line graph (i.e.
2Network discovery may be possible eventually, but not guaezhfor ~ & Hamiltonian path on all vertices), is the least complex
all time. connected connectivity graph. (See Fig 1.)

%
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The conclusion that the complete graph is the most
complex graph is not surprising and conforms to our in- /\’\.
tuition, as it has the maximum number of local interactions e
between any set of vertices. The characterization of the ""‘"‘-—E
most simple graph is however an interesting result and
gives the justification of thé-chaining algorithms that we
have developed as a benchmark problem in our study of
distributed algorithms [5], [6], [7].

Consider a connectivity grapliiy = (V,€) on N
vertices, with the complexity measure

C(Gn) = Z deg(v;) + Z deg(v;)

.//T\\.
kij ’
v, €V v Estar(v;) /\\'
My
X

If we add another vertexy.; to Gy, we get a graph on
N +1 verticesGy 1. We can also form new edges between
vn+1 and vertices inl” so that the complexity of the new
graph is perturbed as

C(Gny1) = Y (deg(v) + Adeg(v;)

Fig. 2. Different ways to add a new vertex dg

v, €V
n Z deg(Zj) + Adeg(v)) i deg(UN+1))
vy gstar(vi) ij + Akij ki N+1 We repeat the induction argument for the lower bound as
v;€V well. Suppose it is true that'(dy) < C(G) and we look
+degluy 1) + Z deg(vp) + Adeg(vy,) at the perturbation equation éfy for minimum increase.
AR kmj + Ak ’ (See fig 2.) Since all terms in the perturbation equation

v Estar(vn41)

are non-decreasing, it would be least perturbed, if each
where Adeg(v;) is the change of degree at vertex individual term is minimally increased. In order to produce
caused by the addition of a new vertex, and,,; is a connected graphieg(vny1) > 1. (If connectedness was
the corresponding decrease in the shortest path betweeei required, we would have added another vertex With
vertexesv,, andwv;. degree). For minimum increase, sktg(vyy1) = 1. This

It can be seen that adding a vertex alwaysreaseshe would also mean thaldeg(v;) = 0 for all v; in 6 except
complexity of the graph, as all perturbations are additivedn€. This corresponds to addition of exactly one edge to
It is therefore straightforward to capture the minimum othe old graph,dy. However this edge can be added to
maximum perturbation that can be done by adding a vertefny of the N vertices. Note that this edge addition may

Theorem 4.1:If G is a connected connectivity graph thendisturb the shortest pathk;; between node pairs;, v;.

the complexity ofG is bounded above and below as (The paths cannot be lengthened by edge addition). If that
happens, terms of the foraeg(v)/k will get bigger. The
C(on) <C(G) < C(Kn), only way to avoid this is to add the edges to either end

. . . . of the chain. Therefore\k;; = 0 for all 1 < i,j < N.
where 6y is the 6-chain on NV vertices, andCy is the This also maximizest; v+, for all 1 < i < N so that

complete graph. deg(vni1)/kins1 = 1/k; no1 are minimized for alli <

~ Proof: We prove the theorem by induction. Suppose it EI'hiers)h/ov(/s Jtrhat if {hé eJ(glge is added to a vertex which
is true thatC(G) < C(Ky) for G € Gng. Note that s ot an end point, it results in an addition of degrees as
for any vertexv; in the graph,deg(vi) < N. For Kn, o) a5 a decrease ib;; for some vertices, again resulting
deg(v;) = N for all vertices. Therefore the maximum i, j,crease of complexity. Therefore, the optimal way to

number by which any. degree can be perturbedcm Is add the edge is to add the edge at its ends, which results
1. The perturbation will be maximized if all degrees are, another delta chaifiy 11 -

perturbed byl. Similarly, in Ky, k;; = 1 for all pairs of
vertices. The maximum perturbation will take place when The consequence of this theorem is that thehain is

the relationk;; = 1 still holds for all pairs after addition of the simplest formation that can be formed over a fixed
new vertex, i.e. all vertices are directly connected. It ban number of agents. This perhaps explains why humans like to
easily seen that this can only be accomplished by addingake queues and birds fly ii-formations, both of which
edges between all vertices iy and the new vertex to are essentially-chains and require minimum coordination
make the graphCy ;. This proves thatC'(G) < C(Ky) among individuals. We will use this result in the future to
for all N. justify various §-chaining algorithms that are part of our
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current investigations of connectivity graphs. [4]

V. CONCLUSIONS (5]

In this paper, we have presented a complexity measure for
studying the structural complexity of robot formations. We [g]
have based this complexity measure on the number of local
interactions in the system due to perception and communi—7]
cation. We showed that from an information theoretic point
of view, perception and communication are fundamentally
the same and should therefore not be discriminated whef?
defining local interactions. We also showed that the broad-
cast protocol corresponds to the worst case complexity for a
given formation and serves as an upper bound. We furth
noted that this upper bound is remarkably similar to the
complexity measure of graphs defined in the context dt0]
molecular chemistry. This complexity measure on graphs
was further explored to characterize the most complex ang)
most simple graphs for a fixed number of vertices. We found
that the complete graph and tlaechain are the extremal [t

complexity graphs. [13]
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