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Information Structures
to Control Formation Splitting and Merging

Tolga Eren Brian D. O. Anderson A. Stephen Morse Walter Whiteley Peter N. Belhumeur

Abstract— This paper focuses on developing techniques and networks may differ in physical interconnections, distances
strategies for the analysis and design of sensor and network petween agents, transmission rates, and signal types. Rigid
topologies required to achieve rigid formations of mobile ¢4 mations with the minimum number of sensing and com-

autonomous agents for cooperative tasks. These strategies icati link ired t hi iidit led
ensure minimum number of changes in the set of sensing munication links required 1o achieve rigidity are calle

and communication links between agents during splitting and Minimally rigid formations We refer the reader to the
merging operations. That is, in splitting, all the links between companion paper by Eren et al. [5] for an introduction to
agents in the same post-split sub-formation are preserved and rigid formations.

a minimum number of links are inserted into each post-split  r4rmations of autonomous agents usually operate under
sub-formation to regain minimal rigidity. In merging, all the . . e

links in each pre-merged rigid sub-formation are preserved tlme-varylng conditions where sensor qnd network topolo-
and a minimum number of links are inserted between sub- dies need to be restructured. Such conditions can be changes
formations to create one single post-merged minimally rigid in the environment, obstacles along the trajectories of agents
formation. or departures of agents from formation. In this paper, we
focus on such topological changes during “operations” on
o ) ) formations. By aroperation we mean missions and maneu-

A formation is defined as a group of mobile agents grg that include agent departures, splitting, and merging,

moving in real 2- or 3-dimensional space. This papefnich result in changes in agent set and/or interconnection
addresses “rigid formations.” A formation isgid if the ¢\ cture of sensing and communication links.

distance between each pair of agents does not changgsrst \ve consider the problem of splitting rigid forma-

over time, at least under ideal conditions. In the contex},.q By splitting, we mean creating two or more rigid

of this paper, "agents” are considered to be autonomous,: oyt sub-formations from a rigid pre-split formation.

vghlcles su_ch as autonomous _underwater vehicles (Auy%hen a formation encounters an obstacle, splitting may be

microsatellites, uninhabited air vehicles (UAVS), mobil&,gefy| o maneuver around the obstacle. Instead of all agents

ground-based robqts. . _-moving to the same side of the obstacle, it might be more
A key element in all future multi-agent systems will geicient in terms of trajectory lengths of agents, if some

be the role of sensor and communications networks as a@ents move to one side of the obstacle and the others move
integral part of coordination. In a rigid formation, d|stance§O the other side.

betwegn agents are held fixed by measurements .and. None strategy to solve the splitting problem would be
formation gathered through “sensing and communicatiofetermining entirely new sets of links for the post-split

links” between agents. One of the challenges in building, , tormations. Olfati-Saber and Murray present such a
sensor and communications networks between agents diaieqy [7]. When splitting a rigid formation, it is necessary
the_ topology 9f the network. Bytppology WE mMean 5 preak the links between agents belonging to different
the interconnection structure of sensing and communlcau%st_spm sub-formations. However we can preserve a link
links among agents. Two networks have the same t0pologyyeen two agents belonging to the same sub-formation.
if the interconnection structure is the same, although ﬂ@enerating entirely new sets of links for post-split sub-
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Fig. 1. Arrigid formation is split into two sub-formations by removing the Fig. 2. Two rigid sub-formations are merged to form one single
links shown with dashed edges, i.e., (1,6), (3,6), (4,6), (4,7), (4,8), (5,6)igid formation. Finding the new links to be inserted between these two
(5,7), (5,10), which results in two non-rigid sub-formations. The splittingformations, which will make the whole formation rigid, is the merging
problem is to find the new links that need to be inserted into each nomproblem.
rigid post-split sub-formation so that each post-split sub-formation regains
rigidity. In this example, the new links are (3,5), (6,10) shown with double
lines.

approach we develop here allows us to merge two rigid sub-

formations with different types of combinations of inserting
Splitting can be achieved by removing the links betweelinks including their strategy. Furthermore the approach in
agents belonging to different post-split sub-formations whil¢his paper also solves the merging problem in 3-dimensional
preserving the links between agents belonging to the sarapace.
post-split sub-formations. In this example, the links (1,6), The splitting and merging problems can be considered as
(3,6), (4,6), (4,7), (4,8), (5,6), (5,7), (5,10) (shown withspecial cases of the “minimal cover problem.” Tinégnimal
dashed lines) are removed. This results in two non-rigidover problems basically to find new links to insert into a
post-split sub-formations. The splitting problem is to findhon-rigid formation so that it becomes rigid. To solve the
new sets of links to insert into each non-rigid post-split subminimal cover problem, we develop a novel procedure. This
formation resulting in rigid post-split sub-formations. In thisprocedure can be used for creating minimally rigid post-split
example, those new links af8,5) and (6, 10) shown with  sub-formations from non-rigid post-split sub-formations and
double lines. also for creating a minimally rigid post-merged formation
Second, we address merging rigid sub-formations. Bfrom rigid pre-merged sub-formations.
merging we mean inserting links between these rigid sub- The paper is organized as follows: We address the min-
formations which results in a single post-merged rigid forimal cover problem in§ll. Splitting rigid formations and
mation. During a merging operation, it is a natural startingnerging rigid sub-formations are addressedllhand §IV,
point to preserve the links in each pre-merged rigid sulrespectively.
formation. Hence a reasonable goal is to create a new post-
merged rigid formation by inserting a minimum number of
links between sub-formations. A merging operation, for ex- Before giving the definition of the minimal cover prob-
ample, can be used to create one single rigid formation aftlam, we state our assumption:
split sub-formations pass around an obstacle. To motivate Assumption: Let G = (V, £) represent the underlying
our discussion of merging a rigid formation, we have thgraph of each post-split formation in the splitting problem
following example: in d-space ¢=2,3), and the union of the underlying graphs
Example: Consider two rigid sub-formations in 3- of pre-merged sub-formations in the merging problem in
dimensional space as shown in Figure 2. We would liké-space {=2,3). In splitting, we assume th&t= (V, L) C
to merge these two formations resulting in a single rigicc = (V,£), whereG = (V, L) is a graph created by
formation in such a way that all pairs of links in eacha Henneberg sequence dhspace {=2,3) as explained in
formation are preserved and a minimum number of linkthe companion paper [5]. In splitting; refers to the pre-
is inserted between these two sub-formations. split rigid formation created by a Henneberg sequence. In
Merging rigid bodies has been studied in rigidity theorymerging, we assume that each pre-merged rigid subgraph is
We refer the reader to Whiteley [8] for a detailed explacreated by a Henneberg sequence.
nation. Here, we use a different approach to find the new We note that the assumption is not a limitation on pre-
links for merging formations. This approach can be usesplit and pre-merged graphs in 2-dimensional space since
for both splitting and merging formations. there is a Henneberg sequence for all minimally rigid
The approach in this paper is based on the strategigsaphs in 2-dimensional space. However, the assumption
developed in Eren et al. [4]. Olfati-Saber and Murray gavés a limitation on pre-split and pre-merged graphs in 3-
an approach to merging sub-formations in 2-dimensionalimensional space since it is currently unknown whether
space so that the resulting formation is rigid [7]. Thehere is a Henneberg sequence for all minimally rigid graphs
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in 3-dimensional space as explained in the companion pap®t—6 independent edges in 3-dimensional space, whése

[5]. Theminimal cover problenis to find a set of new edges the number of vertices. The resulting graph with the vertex
to be inserted into grapi& = (V, £) so that the resulting set) and those independent edges is the minimal cover
graph G* = (V,L*) after insertions, is minimally rigid. of G. This approach works based on random ftrials. If a
Note thatG andG* have the same vertex set. We have th@ew randomly generated edge gives us a set of independent
following lemma. edges then it turns out to be a success, otherwise it is a

Lemma 1. The edge set of a graph = (V, £) that satisfies failure.

the assumption of the minimal cover problem is a set ¢k Planar Case

independent edges. We present a systematic strategy to solve the planar
We refer the reader to Eren [2] and Eren et al. [3] for th&hinimal cover problem. We note that the knowledge of
proofs of the lemmas and theorems in this paper. the original Henneberg sequence (i.e. the sequence used to

The minimal cover problem can be posed using concepféateG = (V, £)) is needed to solve the minimal cover
from lattice theory. LetG denote the set of all simple problem in 3-dimensional space. The resulting algorithm
graphsG = (V, £) with vertex setV including the graph has linear time complexity. On the other hand, this infor-
with empty edge set which is called thegigeless graph mfati(?n is nqt needed in. g—dimensional space. If we use
Containment denoted byc, is a relation onG such that this information of the original Henneberg sequence in 2-
Gy = (V, L) is contained inGy = (V, L2) if L1 C L. dimensional space, we have a linear time algorithm. If we
Containment is a partial ordering ai and the complete do not use it, we have an exponential time algorithm. In
graph and edgeless graph agés largest and smallest this section, which is on planar case, we present the strategy
elements with respect to this ordering (see for exampl@at does not use the inforr_nation qf th_e original .Henneberg
MacLane and Birkhoff [6]). Every grap in G is contained S€duence. In the next section, wh_|ch is on spatial case, we
in at least one rigid graph. We are interested in minimall resent the strategy that uses the information of Fhe original
rigid graphs inG that containG, and we call such a ennebe_rg sequence. First, we state_the following Ie_mma,
minimally rigid graph aminimal cover The set of edges then we introduce two types of reduction steps that will be
we want to preserve is represented By used in the sequel.

We can define the minimal cover problem in terms of emma 2. Let G = (V, £) denote a graph satisfying the
partial ordering and graph rigidity. Suppose that a grapfssumption of the minimal cover problem in 2-dimensional
G = (V,£) € ¢, which satisfies the assumption ofspace. Then there exists a vertex of degre® less inG.
the minimal cover problem, is given. The minimal cover .
problem is to find someG* = (V,£*) € G such that  Reduction Step - Type I: Let G = (V, £) be a graph
G ¢ G* and G* is minimally rigid. In other words, we satl_sfylng_ the assumpthn of the minimal cover problem in
want to find a set of new edges, namdly..,, between the 2-dimensional space. Lébe a vertex of degreg(i), where

vertices of)’ to add to the sef such that the resulting graph #(¢) € {0.1,2}. Suppose that we create a set2of p(i)
G* = (V,£*) is minimally rigid, where£* = £ U Lpop. M€W edges incident tband denote this set of new edges by

Note thatG* is not necessarily unique. Li,..- LetG' = (V, L) denote this new graph wher® =
Generic rigidity is directly related to the rank of a matrix< Y Lin...- We register;, ., to use in subsequent steps.

[5]. As such, it has all the “exchange properties” associatddj €@n be easily verified that’ is |ndepgnder}t. Now Ie/t us

with the independence of rows of a matrix [8]. For example[¢MOVe? anc/J al/'/ the edges incident toin G’ = (V’§ )-

we note that minimally rigid graphs are also maximally-6t G” = (', £”) denote thiseduced graptwhere)’ =

independent graphs, corresponding to bases in vector spakes (i} and £” = £’ {all edges incident ta}. It can

as minimal spanning sets and maximal independent sefg@in be verified that the edge set®f = (1', L") is also

Given any independent set of edggsvhich is a subset of mdependent. Therefore there exists a vertex of degree

a basis (maximally independent set of edgéspr a vertex €SS InG” by Lemma 2.

setV, a set of edged is a minimal cover ofZ, if the union Reduction Step - Type II: Let G = (V, £) be a graph

of 7 and 7 is a (new) basis3’ for V. satllsfymg. the assumptloq of the minimal cover problem in
One crude approach to solve the minimal cover problerdimensional space. Let be a vertex of degreg and

is based on the “generate and test” method. It is as follow@diacent to a set of vertices denoted &y We remove:

Given a graphG = (V,£) € G, we test whether with and its three edgeg and create a new e_dge (precisely one

the addition of a new edge, the graphG = (V,L U edge) between arbitrary vertlces,M,; forming a reduced

{e}) is independent or not. If it is then we addto L. graphG’ = (V,vﬁ,/) where)’ = V\ {i} and£' = L\ { all

For testing independence, one could contemplate pickirfd'9€S mudent/t@} U { a new edge between the vertices in

coordinate positions for the vertices at random, and forming:} Such thatC’ is a set of independent e/dgésTherefore

a numerical rigidity matrix and testing additional rows oft'€re exists a vertex of degréeor less inG’ by Lemma 2.

it. We repeat adding such new edges until we have a S€liThe existence of such a new edge can be seen from the proof of the

of 2n — 3 independent edges i+dimensional space, and edge splitting operation in Whiteley [8].

Tnew tnew
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Now we present a reduction sequence in which thB. Spatial Case
two types of reduction steps previously described are used-tl-he approach in the Planar Minimal Cover Theorem can

?Sd malndstepsa Th|sd sequence IS l;sed to rgduce a setyQl ranslated to 3-dimensional space with an additional
independent edges down to a set of two vertices connectgg, jition in the order of the reduction sequence. The reason

by andedge. h behind this condition is that if a reduction sequence similar
Reduction SequenceSuppose that a grap = (V, £) to the planar case is applied then there is a possibility of

satisfying the assumption of the minimal cover problem o, ching 5 graph with a set of vertices all of which are of

2-dimensional space is given. From Lemma 2 it follows thafio a0 5 I the conjectures for adding a 5-valent vertex
there exists a vertex of degree 3 or les§&inHence, at least ¢

fth ) i minimally rigid graphs that we explain in the companion
one of the reduction steps (type | or type II) can be app 'eg)aper [5] are proven, then the reduction sequence presented

0G. NOtefthﬁt the rt(ajduc_ed graphs we olbta|_n (;;\fter adpplyln%r the planar case can be easily extended to 3-dimensional
any one of these reduction steps are also independent. ce. Since this is a long-standing unsolved problem, to get

aPFr’]'y tr|1ese two types ofhs_,lteps repe?tegly ”gt'l we are leff ,nq those difficulties, we present an alternative reduction
with only two vertices. While we apply the reduction stepga, ,ence with an additional condition in the ordering of

to the vertices, we number those vertices in a descendipgy,ction sequence. We have the following lemma in 3-
orderasn,n—1,n—2, ..., 4, 3. For example, we numberdimensional space

the vertex removed in the first reduction step withwe

number the vertex removed at the second reduction stégmma 4. Let G = (V, £) denote a graph satisfying the

with n — 1 and so on until we are left with two vertices. assumption of the minimal cover problem in 3-dimensional

The last vertex on which a reduction step is applied ispace. Then there exists a vertex(bf degree 4 or less.

Z;Jeznr?uer;ebde\r,\g:jhvfi:[r-]r ihneijri]ctgse ;’ (Z?]/ dl iStégghrEt}irrgle/\Ilzga\;eprl?/cte}"Ee Th.e two reduction steps present_ed for the planar case can
. . TP e directly extended for 3-dimensional space.

reduction step type | on a vertéxwe keep registering its

e s of e . a cescied n reucton sep ype, SIS SIP e LLELE 0 ve o genn
I. Depending on the initial set of independent edges, the 9 P P

may or may not be left an edge between the last two Vertic%e—dmensmnal space. Lebe a vertex of degreg(i), where

€s. )
after the execution of the reduction sequence. If there is rﬁiz) €10, 1’.2’ ?.’}' Suppose that we (_:reate a setof p(i)
new edges incident tband denote this set of new edges by

edge between them at the end pf th_e reduction sequen > Let@ = (v, £) denote this new graph whe —
we create such an edge and register iCas . If there is new . .
Trew inen- WWE register; to use in subsequent steps.

) 2 LUL
already an edge between vertices indexed by 1 and 2, thﬁncan be easily verified that’ is independent. Now let us
remove; and all the edges incident tan G’ = (V, £'). Let

we registerCs, .. = 0. The union of the registered sets of
G" = (V', L") denote thisreduced graphwhere)’ =V \

the new edges iL,., = |, £i,., Wherei denotes the
:‘r:)delﬂ?; t/r;ert(\alir\t:/(i:tisir:?;xo;ed with a type | reduction Ste%} andL” = L'\ {all edges incident ta}. It can be easily

' verified thatG” = (V’, L") also satisfies the assumption of
Theorem 3. (Planar Minimal Cover Theorem) Le& = the minimal cover problem. Therefore there exists a vertex
(V, L) be a graph satisfying the assumption of the minimabdf degree 4 or less is” by Lemma 4.
cover problem in 2-dimensional space. Suppose that weReduction Step - Type II: Let G = (V, £) be a graph
apply the reduction sequence described aboveGoand satisfying the assumption of the minimal cover problem in
find L,c0. ThenG* = (V, L U Ly,¢,y) is @ minimal cover 3-dimensional space. Let be a vertex of degred and
of G. adjacent to a set of vertices denoted kY. We removei
?nd its four edges and create a new edge (precisely one

Note that.Z,,.,, obtained in the reduction sequence is noedge) between arbitrary vertices J¥; forming a reduced

unique because the edgesdn.,, depend on the choice of

! __ !/ ! J— > [
the order of vertices in the reduction sequence. We will ncﬁraph(c.’ N (v ’E_) whereV’ = V\ {i} and L’ = L\ {_aII .
: o A edges incident to} U { a new edge between the vertices in
consider algorithmic complexities in this paper. But one ca

_ PR . e
argue that each time the reduction step type Il is applieg\/l} such thats’ satisfies the assumption of the minimal

5 .
there are up to three possible insertions for a new edge. .”}cigver problem.” Therefore there exists a vertex of degree

. N . . 4%or less inG’ by Lemma 4.
results in an exponential time algorithm for the reduction . . .
Now we present the modified reduction sequence, in

sequence. To overcome this problem, as we explained at . . . .
the beginning of this section, the approach for the spatié(Yh'Ch the two types of reduction steps previously described

case presented in the sequel can be easily applied to e used as main steps. This sequence is used to reduce

planar case. This approach gives a linear time algorithrﬁ‘ graph satisfying the assumption of the minimal cover

Alternatively one can use a polynomial time algorith roplem in 3-dimensional space down to a ?et Of three
called “the pebble game” for the planar case. There is \éertlces. It makes use of the order of vertices in the

recent paper_ by Berg and Jordan [1] which addresses thi®tpe existence of such an edge will become clear in the special reduction
kind of algorithms. sequence presented in the sequel.
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Henneberg sequence that was used to create the origidal = £\ (£1 U L3) be the set of all edges whose one end-
graphG = (V, L). vertex is in£; and the other end-vertex is ify. Let G; =
Reduction Sequencelet G = (V,£) be a minimally (Vi,£;) andGs, = (V2, £2). When the graplc = (V, £)
rigid graph created by the vertex addition and edge splits split intoG,; = (V1, £1) andGy = (V2, £L2), all edges in
ting operations in 3-dimensional space, where vertices atg. are removed. Thaplitting problemis to find new sets
indexed{1, 2, ...,n} with respect to their order of addition of edges.,,_,, to insert intoG; and £,,_, to insert into
in the Henneberg sequence.iltlenotes a vertex added by G, such that the resulting graplis; = V1, £, U £4,,,,,)
the edge splitting operation, then let denote the edge andG; = (V», Ly U L5, ) are minimally rigid.
removed in this operation. Let the grah = (V, L) be With the minimal cover problem in mind as defined in
created by removing some of the edges and vertices of thige previous section, the splitting problem reduces to finding
graphG = (V, £). To completeG = (V, £) to a minimally  the minimal covers ofz; = (V1,£;) and Gy = (Va, L2).
rigid graph, we do the following. Starting from the vertexAs detailed in the analysis in the previous section, the
with the highest index, we apply reductions steps type underlying graphs of the resulting post-split sub-formations
and Il repeatedly on the vertices with descending order afetermined by the reduction sequences are minimally rigid
indices. For example, l¢tdenote the vertex with the highestby Theorem 3 and Theorem 6.
index in the remaining graph at some step in the reduction
sequence. I is of degreep(i), wherep(i) < 3, we apply
reduction step type |. Each time we apply the reduction step As we did in the case of the splitting problem, we
type | on a vertex, we keep registering its new set of edgesntroduce a suitable definition of the merging problem in
L;, .. as described in reduction step type I. If the vertex terms of graph rigidity. LetG; = (V;,£;) and G; =
is of degree 4, we then apply reduction step type Il byV>, Ly) be two minimally rigid graphs representing the
inserting the edge;. We continue this until three vertices underlying graphs of two minimally rigid point formations.
are left. Depending on the initial set of independent edge$he merging problemis to find a new set of edges,,..,
there may or may not be three edges left between the Idst insert betweer(z; and G, by choosing one end-vertex
three vertices after the execution of the reduction sequends.V; and the other end-vertex ¥, such that the resulting
If there are not three edges between them at the end of theaphG* = (V1 U Vs, L1 U Lo U Ly,ey) IS minimally rigid.
reduction sequence, we complete the number of edgesAs in the case of splitting, the merging problem reduces to
three and register them & __ . If there are already three finding the minimal cover oz’ = (V; U Vs, £ U L2). We
edges between vertices labelled and 3, then we register exemplify this in the sequel.
L3,.., = 0. The union of the registered sets of the new Example: Let G, = (V1, £1) andG, = (Vs, L) be two
edges isC,.c, = U, Li,.., Wherei denotes the label of the minimally rigid graphs in 2-dimensional space. Suppose that
vertices removed with a type | reduction step and the vertexe apply the reduction sequence first @3 = (Va, £L2)
with index 3. as described irgll-A. Since G, is minimally rigid, we
obtain two vertices connected by an edge at the end of
She reduction sequence dhy without inserting any new
edges. We denote this remaining edge (by;). At this
Theorem 6. (Spatial Minimal Cover Theorem) Le§ = intermediate step, we are left with; = (V1, £,) and the
(V, L) be a graph satisfying the assumption of the minimag¢dge (¢, /) on which we continue applying the reduction
cover problem in 3-dimensional space. Suppose that végquence. Suppose that we apply the reduction step type |
apply the reduction sequence described aboveGoand on i, by inserting an edg¢i, k) wherek € V;. Then we
find Lew. ThenG* = (V, L U L,.c,,) is @ minimal cover apply the reduction step type | ghby inserting the edges
of G. (4, k), (4,1) or by inserting the edges$j,!), (j,r) where
k,l,r € V,. After applying those reduction steps ar, we
are left with the grapiz; = (V1, £1) only, and we apply
the reduction sequence di; without inserting any new
edges. Therefore the two possible combinations of merging
G, and G, create the set of edg€s, k), (,k), (4,1) or
(i, k), (4,1), (4,r). We depict these two different strategies
To find a strategy for splitting a rigid formation into two of merging two rigid sub-formations in Figures 3a and b.
rigid post-split sub-formations, it is convenient to introduce; andG- denote the underlying graphs of these two rigid
a suitable definition of the splitting problem in terms ofpoint formations.
graph rigidity. LetG = (V, £) be a minimally rigid graph. We can pursue a different strategy. L@ = (V1,Lq)
Let V; and V, represent the two subsets ©f such that and Gy, = (V», L) be two minimally rigid graphs in 2-
ViUV, =VandV; NV, = 0. Let £L; C L be the set of dimensional space. Suppose that we apply the reduction
all edges whose both end-vertices ar&inand L, C £ be sequence first o, = (V», £2) as described ifll-A until
the set of all edges whose both end-vertices arbsinLet we are left with three vertices, j, &k connected by three
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Lemma 5. At each reduction step, the vertex with th
highest index is of degree 4 or less.

As in the planar casef,., obtained in the reduction
sequence is not unique because the edgés,ip, depend
on the choice in the reduction sequence.

I1l. SPLITTING FORMATIONS



edges(,7), (i, k), (j, k). SinceG, is minimally rigid, we G1 Go
obtain these three vertices connected by three edges at the
end of the reduction sequence @a without inserting any
new edges. First, let us insert a new edge’) wherer €

V1. Now, i is of degree 3. Then, we can apply the reduction
step type Il on: by inserting (4, ). Note that while(z, ) (@) (b) (©)

is a new inserted edge which needs to be registered in the

reduction sequence procesg,r) is not. (j,r) is simply @ Fig. 4. Three different strategies of merging rigid sub-formations in 3-
result of reduction step type Il. Now let us insert a new edg@mensional space.

(j,s) to make; of degree 3 where € V;. Then we can
apply the reduction step type Il ghby inserting an edge
(k, s). Note again thatj, s) is a new edge which needs to
be registered in the reduction sequence procesgiu

is not. Then we apply the reduction step type | orby
inserting a new edgék,t) wheret € V. At this stage,
we are only left withG;. Then we continue the reduction
sequence offr;. SinceG; is minimally rigid, the reduction
sequence can be applied without inserting any other ext
edges. Therefore another strategy for merghgand G,

Gy = (V1,£1) and the edgdi, j), (i, k), (4,k) on which
we continue applying the reduction sequence. Suppose that
we apply the reduction step type | on the vertgxby
inserting an edggi,l) wherel € V;. Then we apply
the reduction step type | on the vertgxby inserting the
edges(j,7),(j,s) wherer,s € V;. Then we apply the
F%duction step type | on the vertéxby inserting the edges
(k,t), (k,u), (k,v) wheret,u,v € V;. After applying those
creates the set of edgés r), (j, s), (k,t). We depict this reduction steps on verticesj, k, we are left With the graph
strategy in Figure 3c. Gy, = (V_l,ﬁl) pnly, _and we apply the reduction sequence
It can be verified that six links are needed in 3_on G, without inserting any new edges. Therefore the two
. . - . possible combinations of mergirfg; andG, create the set
dimensional space to merge two minimally rigid sub-

. . . -~ of edges(s,1), (j,7), (4,9), (k,t), (k,u), (k,v). We depict
formations to form a minimally rigid post-merged formation,, . ; s ; . C
provided that we use at least three points in each su his strategy of merging two rigid sub-formations in Figure

formation as an end-point of these six new links. Here, w (8). G andG, denote the underlying graphs of these two

. o . id point formations.
use the solution of the minimal cover problem to determmeg P
these new links. We depict three possible strategies to V. CONCLUDING REMARKS

determine these six links (Figures 4a, b, c) and explain First we note that the reduction strategies developed
one of them in detail (Figure 4a). One can find differenf;, tnis paper can be extended to include other types of
strategies by using a modified version of the idea presentgderations such as vertex splitting. Second, solving the
here by selecting a different combination of vertices anghinimal cover problem for rigid formations, which are not
reduction steps type | and Il. Here, we do not go into eacﬁecessarily minimally rigid, is an open problem.

such combinations because the idea is essentially similar to
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