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Convex synthesis of controllers for consensus
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Abstract— We develop convex conditions that are necessary analyzing its dynamics. For example, in [9] it is shown that
and sufficient for the existence of a controller that yields a consensus can be achieved if the controller interconnectio
closed loop that achieves consensus. The conditions generategraph has certain properties. Since they are essentially

controllers with no particular communication structure, but | th thod id f direct
with optimal H. performance on the non-consensus part of analyses, these methods provide no means for a direc

the closed loop. We further explore the conditions to impose Search for a controller while optimizing a performance
topology on the interconnection structure generated by the criterion.

controllers. This is achieved by restricting a certain Lyapunov The objective of this paper is to characteritkeconsensus
matrix to be block diagonal, in order to produce convex achieving controllers, and then to provide synthesis migho
synthesis results. . . . . .
to impose topological information structure on the regagiti
I. INTRODUCTION controllers. In this way we allow, in principle, for a broad
Recently there has been a large interest in the coordingéarch for possible “protocols” that achieve consensus.
tion of groups of mobile agents, some examples are [4], [SAnother departure worth mentioning; in [7], [9] the focus is
[7], [9]. One very important problem in that setting is thaton systems composed of one dimensional dynamical agents,
of agreement, or consensus, between the agents. A systeffile here we develop an approach that allows to tackle
composed of subsystems (or agents) achieves consensystems with higher-order dynamics modelling each agent.
with respect to a certain state variable of interest if foy an  The paper is organized as follows. In Section Il we review
set of initial conditions, the value of that variable for kac some results needed for our discussion. Most importantly,
agent converges to the same value for all agents. we present the concept from [9], which says that consensus
Research on this problem started in the field of computé$ equivalent to stability with respect to an invariant mani
science, but only recently acceptable proofs of convergentold. Then in Section Il we develop necessary and sufficient
for consensus protocols have been made. Moreover, thtnear Matrix Inequality (LMI) conditions for consensus
connection between physical consensus phenomena presamlysis in a system. In their most direct form, these
in schooling fish, flocking birds, herds, have motivated¢onditions do not yield convex synthesis, but after a sigtab
investigation of such properties, along with potentiallapp transformation we are able in Section IV to obtain LMI
cations in the design of controllers for systems composegbnditions for state-feedback synthesis achieving casen
of agents such as formation flight [4], [5], [6], platoons ofThe same transformation can be used to incorporat&an
vehicles [12], large segmented telescopes [8]. For exampleerformance condition on the synthesis as a convex con-
in [7] and some references therein a motivating example 8raint. Both LMI conditions are necessary and sufficient,
the heading of agents moving in the plane with constaiiberefore totally characterizing the class of all conenl
velocity. The authors prove that a “nearest-neighbor” typthat achieve consensus. Even though the conditions are
of rule guarantees that the system achieves a consensusdmvex, they provide no means to directly impose a certain
the headings, as long as the graph that defines the interc@@mmunication topology. That issue is tackled in Section
nections remains connected most of the time. In much of, in which we use decentralized Lyapunov functions [1],
that and other work in this area, the focus is on relatin{g] to develop convex sufficient conditions for synthesis of
graph-theoretical tools to consensus of the intercondectstructured controllers for consensus, also witlannorm
system. One such example is in [4], where a decentralizedjective. An illustrative example is presented in Section
control is used to yield a system that stabilizes a formatioVl, and some concluding remarks are made in Section VII.
therefore achieving consensus. Also the work in [9] shows
that for the case where each agent has scalar dynamics,
a protocol defined by the Laplacian of the interconnection We consider a systeri composed ofV interconnected
graph yields a system that achieves consensus even undggents, where each agent is assumed to have the following
the assumption of bounded control, or in the presence gtate space description:
time delay in the links. . 1 2
Most o¥ the work in this area (e.g, [7], [9]) involves i = Auwi+ B wi + B u; +ZAU“TJ‘ @
imposing a priori a specific control law and subsequently i
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Il. PRELIMINARIES AND BACKGROUND



Rmxm, Bl@) e R™*7, for all i, j. It is straightforward The condition above is not an LMI if and X but the
to generalize the results in this paper for subsystems tfnsformationY = FX turns that inequality in an LMI:
different dimensions, i.e, a totally heterogeneous nekwor . s
The system (1) may have a preexisting communication AX + BpY + XA" + Y B; <0.
structure. A nonzero matrid;; in (1), with i # j, repre- |f the LMI is feasible, the stabilizing feedback matrix can
sents information being sent from subsystgto subsystem pe reconstructed from the feasible solutihand Y by
i computingF = YX L.
Our model assumes the control actienonly influences The same idea applies to state feedbdek control.
the stater;. From a practical point of view, it is a reasonablepefine the performance variabteas:
assumption, since for most networked systems the control
actions taken at one location do not directly influence other z = Ciz+ Diu.
locations. Nevertheless, the local control law could be "We remark thet,
general a function of all the states,zs,...,zx in the
systemY, in other words, the control action need not b -
decentralized, i.eu; = f(z;). _ T |2 = i/ trace(Tow (jo)* Tow (je) ).
Notice that we can stack up the local signals of the sub- 21 J_
systemsGy;, @ = 1,..., N, to form the global version of rqn the following proposition [3] gives LMI conditions
such signals. For example, the global state is for synthesis of a state feedback= Fz controller that
x1(t) achieves a certaiftito norm.
(t) = . Proposition 1 (State Feedbadk, Control): Given vy >
) 0, there exists a static state feedback law= Fz that
v (t) internally stabilizes the system (2) and satisfigs, |3 < v
where z(t) € RN"~n at each timet. Denote by if and only if there exist matriceX > 0, Z andY such
diag(Bf), . 35\})) the block diagonal matrix obtained in that the following inequalities are satisfied
the obvious way. Then the systethdescribes the evolution * * o *
of the global statex(t) of the interconnection of allV AX+ BoY +XA"+Y B2+Bl*Bl <0 G
subsystems, and its state space description is induced by X (e)
the collection of systems: (C:1X+ DY) Z
trace(Z) < ~v. (5)

T = Az + Byw + Bau, (2)
. In this case, a suitable feedbackRs= YX!.
with A A We remark the LMI conditions above can be used to find
1 N the H, optimal state feedback by minimizing

norm of the transfer fromw to z is
edeﬁned by

> 0 (4

A=l ],
Az.v1 AJ;[N B. Consensus
) ) (1) Now we define the main concept in the paper, that of
where B, = diag(B;’,---,By’) and By = consensus or agreement for dynamical systems. Consider
diag(B{”,---,BY’). For the rest of this paper we an autonomous version of the systéiwith local state

will focus on the global state space description (2)space description for each subsystem is given by:
For motivation, the reader should keep in mind the

“interconnection-based” view of the system (2) given by di = Aux; + Y Aijaj, (6)
(2). i
A. LMI control and the global autonomous system given by:

We briefly review some results in linear matrix inequal- T = Ax. @)

ities (LMI) control, see e.g. [3]. We start with stability
analysis and stabilization. A matri is stable if and only
if there exists a symmetric positive definite mati > 0
such that the LMI

Definition 1 (consensus t6): Let S be an orthonormal
matrix in RN"*? for somep. The system (7) achieves con-
sensus to the subspaSe= spar{S} if S is a minimal set
such that for any initial condition, the staté€t) converges
AX +XA* <0 to a point inS.

The definition, extracted from concepts in [9] (and also in
t[_|7]), implies that every point irS is a (marginally) stable
equilibrium point of the equation (7), i.edS = 0, where

S is simply an orthonormal basis fa$, the nullspace of

A. Since the state of the system has to converge to a fixed
(A+ B:F)X + X(A+ BF)" < 0. point (a function of initial conditions only) it follows tha
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is feasible, wherel* stands for the transpose df For state
feedback stabilization of a linear system such as (2) wi
B; = 0, consider the feedbaek= Fz and cast the analysis
condition for the closed loop matrid., = A + B>F:



the system must be marginally stable with no poleg.in Lemma 2: The autonomous system (7) achieves consen-
for w # 0. In other words, the geometric and algebraisus toS in the sense of Definition 1 if and only if
multiplicity of the zero eigenvalues must be the same. i. AS =0, and

Example 1:Consider a system where each agent’'s dy-jj. there exists a matri®® > 0 such that

namics is given b
J Y STAS,P+PSTA*S, < O (11)

Proof: The solution of (10) is given by((t) =
Namely, each system is a scalar integrator. For example, ¢- 45 ¢ B L ST ASLT .
could model the heading particles moving in the plane wit H1¢(0), m(t) = n(0) + fe +7¢(0)dr, that is,
constant velocity [7]. In this case, the subspace in which is totally decoupled fromy. To show necessity, assume
we are interested in achieving consensus is that where #ile Lyapunov inequality (11) is satisfied, then it is clear
the headings coincide, namely, the span of the vector that St AS, is stable and((t) — 0 ast — oo, and

ﬂfi (t) = U; (t)

oo
1 n(t) — n(0) + [ eS1ASL7¢(0)dr. The integral converges

by stability of %jAS 1, and therefore the state(t) =
: S1¢(t) + Sn(t) converges to a point ir§ ast¢ — oc.
1 Conversely, assume the system achieves consensus and
there exists no solutiof® > 0 to the Lyapunov LMI {i).
If a controller u(t) = f(z) is designed in a way that Then it follows thatS* AS, has some eigenvalues with
the system achieves consensus with resped, tthen the real\) > 0. That means it we can always find:&) = ¢,
headings of all subsystems will converge to the same valugch thatlim,_. ., C(t) # 0. Sincex(t) = S, C(t) + Sn(t),
is is clear thatx(¢) will not converge toS, contradicting
Definition 1. ]

We now seek convex conditions for analysis of con- The conditions in Lemma 2 are by itself already convex
sensus for autonomous systems such as (7) in the serg@ditions equivalent to consensus; nevertheless, thexmat
of Definition 1. So assume that the autonomous system is “boxed in” between the basis matri§,. Such a
(7) achieves consensus & We begin by exploring the condition is not very attractive when we are interested in
essential properties of the matuik Define the orthonormal the problem from a synthesis perspective since it poses a
complement of the matrixs as S, i.e, TS, = I and difficulty for convexifying the synthesis problem. The next

Il. CONSENSUS ANALYSIS

S7S = 0. Then, anyz € RV can be written as: theorem gives us a necessary and sufficient condition for

¢ consensus without the presence%f betweenA and the
=[5 5] { ], (8)  Lyapunov function.

K Theorem 3 (LMI for Consensus Analysigyiven a ma-

for uniqgue¢ € R¥"~P andn € RP. Substituting the relation trix S € R~™*P, the autonomous system (7) achieves

(8) in the state space equations (7), we obtain: consensus t& if and only if

¢ ¢ i. AS=0, and
[ S S ] { ; } =A[S. 5] [ ; } =AS1¢, (9 ii. there existsX > 0 such that
where the last equality holds frod.S = 0. Now, since S1(AX +XA%)SL <0 12)

[ S. S | is an invertible (unitary) matrix, its inverse is whereX satisfies:

given by:
-1 S X=5,57X5,57 +557X55". (23)
[ SJ_ S ] = SJ; )
and we can write (9) as: Proof: We first tackle sufficiency. AssumdsS = 0
. ) and there existX > 0 such that the conditionsi)( and
[ C } = [ Si } AS ¢ = (1) are feasible. Then, note tha&S, = 5, 5%7XS,, and
i o substitute that expression in (12) to obtain:
_ S*AS; 0 ¢ . . .
= [ A5, 0 ] [ " } - (10 0> 97 AXS, +STXA™S, =

. STAS,P+PSTA*S
It follows that the eigenvalues of the system above are the 1ASLE A ES) L

union of the eigenvalues of* AS, and the matrix0 € where we have defineR := 57 XS, . Invoking Lemma 2
RP*P. Thus consensus is equivalent to stability§fAS;  we conclude the system achieves consensus.

and AS = 0. The next Lemma formalizes this statement We now prove necessity. Assume the system (7) achieves
and provides an immediate LMI formulation for consensusonsensus. Then by Lemma 2 the conditions (11) are
analysis. satisfied, in particular there exists a solutiBn> 0 to the
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LMI (11) in Lemma 2. Now, letM > 0 be an arbitrary where we have made use of the orthonormal identities

matrix and define S¥S = 0 and S*S = I. In view of (20), we right
P 0 St multiply (A + B2 YX~1)S =0 by $*XS, and noting that
X=[9. 5] [ 0 M ] [ g } (14)  §5*XS = XS, we can obtain the equivalent condition:
It is clear thatX > 0 and (13) is satisfied. Moreover, we AXS + By YS =0,
again have which is a linear condition in the variablés andY. We
XS, =5, P, (15)

have just proved the following theorem.
and since by assumption the LMI (11) in Lemma 2 is Theorem 4 (Convex synthesis for consenséssume
feasible, we can substitute the relation (15) in that LMIB1 = 0. Then, there exists a state feedback- F such

to arrive at (12): that the system (2) achieves consensus tib and only if
there exist matriceX > 0 and’Y such that
0 > STAS,P+PSIA™S, = i. AXS+ By YS =0
= STAXS, +87XA*S, = ii. ST (AX+XA*"+BY+Y"B;3)S, <0.
= 5% (AX 4+ XAYS,. (16) i X=.5,5%"X5,5% +55*XS55*

The control law can be reconstructed By= YX 1.
We now tackle the design of a state feedback controller
IV. SYNTHESIS FOR CONSENSUS that minimizes thé, norm of the transfer fromw to z in
(1) and such that the closed loop achieves consensus.
Before we look at the general case, let us assume for now
that the open loop matrix satisfiesS = 0, and thatB; is

Assume we are interested in finding a control law=
Fz, such that the closed loop system

&= (A+ BF)x (17) full column rank. We consider the performance variable
achieves consensus. Namely, we want the closed loop ze = C181((t) + Digu(t). (21)
sy_stem to satisfy the conditions in Theorem 3, i.e: If we are looking for a state feedback controller= Fzx,
i (A+ ByF)S =0; since AS = 0, the equality constrainti in Theorem 4 is
ii. there existsX > 0 such that simply given byF'S = 0. That is equivalent to the relation
S% (A + BoF)X + X(A + BoF)*) S, <0, F = FS?%, for someF. Then the performance variable is:
whereX — S, 5% XS, % + SS*XSS". 2 = Cudu(t) + Dipu(t) =
The conditions are not convex in the variabBsX, etc. = G15.¢(t) + Dl?FSLx(t) =
Note that the standard change of variables for state fe&dbac = C15.¢(t) + D1oF((t),

can be used to convexify the inequality)( namely, if we . = . .
defineY — FX, then that inequality becomes: and sinceF'S, = F, we can write the performance variable

as:
ST (A+ BoF)X + X(A+ B,F)) S, =

ze = C18.¢(t) + D12FS1((2).
ST (AX 4+ ByY +XA*+Y*B3)S, < 0,

Intuitively, if AS = 0 the steady state control output will
which is now an LMI inX andY. Now the conditiond)  be zero. In casedS = 0 is not satisfied, then the more
under the change of variabl& = FX becomes suitable definition for performance would be (22), which

o excludes the constant control terms that will be present
(A+ B, YX™)§ =0, (18) in steady state. The reasoning is that since the system is
and is still non convex. Note that Theorem 3 guarantees thafarginally stable we can only hope to minimize the transfer
X = 5,.57X5,57 +557X55", and moreover since the yith respect to the stable part of the statenamelyS, ¢.
matrix [ S, S ] is unitary, we can conclude: That is, for the consensus problem in the general case,

. S§TXS, 0 st 1\ when AS # 0, the meaningful definition for performance

X = ([ Si S| { 0 S$*XS } [ 5 D = variable is:
_ (S1Xs1)™h 0 ST _ 2 = C18,C(t) + D1FS ((t). 22
- [ s s}{ o ex |5 d:” f1 f() 12 ”lc(> ( )h
_ . 1o o oy —1 o uch a definition of performance allows us to prove the
- _SL(SLXSL)_ St S(S_ X?) 5 (_19) following theorem.

Now making use of this expression in (18) we obtain Theorem 5, State feedback for consensu§jiven
(A+ ByYX 1)S = v > 0, there exists a static state feedback law= Fz

A4S By (S (5 XS 1S 1 5(5°XS) 157 5 — that yields consensus 8 in the system (2) and satisfies
+ 52 < 1(S1X51) 51+ 5( ) ) = || Twwl? <~ if and only if there exist matriceX > 0, Z,
AS 4+ B, YS(S*XS) ™, (20) andY such that the following conditions are satisfied

4936



matrix. That is, some terms in the multiplicatiofiX —*
would have to vanish. That cancellation feature is not

AXS+BYS = 0 .. . .
S1(AX + XA + BaY + Y B + B B*Q)S < 0@ convex. Efficient solutions to such problems typically rely
+ 25* X5 S (1)* - on some form of relaxation of the problem, or consider a
1 1 ° i
> 0 (24) special structure, e.g, [1], [2], [11], [13].
(C1XS1 + D2 YSL)  Z Now assume we impose th& € R****" be a block
trace(Z) < 7. (25 diagonal matrixdiag(Xy, X», X3, X4), with each block

X =8,51XS5,S] +55°XS8* (26) X; € R™*™. Then the resultingt" will have the desired
structure if and only ifY has the desired structure fat.
Specifically, in our4 system case example we obtain:
In this case, a suitable feedbackRs= YX!.

Remark 1:Imposing left nullspace conditions Note F =YX '= »
that consensus with respect to a certdiuarantees that Yu 0 Yz 0 Xy 0,1 00
) . | Yo Yo 0 0 0X;'0 0 |
the nullspace of A+ BF) has dimensiom. Therefore, there =1 ) 0 Yis Yas 0 0X-'0
exists a matrixl' € RY¥"*? such thatT*(A + BF) = 0. Y, 0 0 Yu 0 0 ngl
In some cases it may be interesting to include this as a Fu 0 Fis 0
condition in the synthesis problem. Under the linearizing Foy Foy O 0
transformationY = FX, this condition become%™ (A + - 0 0 Fs3 Fuu
BYX™!) = 0, which is easily turned linear by right Fi, 0 0 Fu
multiplying by X, yielding the condition:
. . This example illustrates the idea behind our approach.
T"AX +T"BY =0, @7 For the general case, |1& = F, denote that a matri¥

By adding condition (27) to those of Theorems 4 or 5Pelongs to the set of prescribed structufes: {F : F;; =
we obtain necessary and sufficient conditions for consensfis€ R™*", for(i, j) € I} (hard zeros in some blocks
synthesis with a specific left nullspace. It can be showldexed by some séf). Then, if in the synthesis conditions
[9] that the left nullspace ofA + BF) plays a role in the of Theorems 4 and 5 we restrict the Lyapunov-like matrix
value to which the state converges. In the particular casé to be block diagonal, ieX = diag(Xy, - -+, Xy ), F will

of integrators modelling headings, whe$eé = [1 1-.-1], have the desired structufe= F, ifand only ifit Y = Y.
forcingT = S yields a system that converges to the averagEhe next two corollaries result immediately from applying

of the initial conditions on the headings. this idea to Theorems 4 and 5. The conservativeness behind
such a restriction on the Lyapunov matrix has been studied
V. SYNTHESIS FOR A GIVEN NETWORK TOPOLOGY in the context of spatially invariant systems in [2], where i

From a practical point of view, the synthesis result iris shown to be equivalent to an IQC in the local state space.
Theorem 4 lacks an important feature, it does not include Corollary 6 (Structured synthesis for consensus):
in the design a restriction in the communication betweeAssume B, = 0, and letxy = {F : F;; = 0 ¢
units. In other words, in general a solution obtained fronR™*", for(i,j) € Z}. Then, there exists a structured state
Theorem 4 would have &ll block state feedback matrix feedbacku = F,z, such that the system (2) achieves
F, i.e, each uniiG; would receive information from every consensus taS if there exist matricesY = Y,, and
other unit in the system. That is a very strong conditioX; > 0, ¢ =1,..., N, such that
and typically undesirable. It would be more interesting to j Axg + ByY, S =0
be able to impose a certain communication structure in thej, s+ (AX + XA+ BY, +Y.B3) S, <0.
system, by designing the structure of the feedback matrix
We address the solution to this problem with an approachl- diag(X1,---, Xy = S.S1diag(Xy,- -, Xn)SLST +
similar to that of [1], [2]. + SSdiag(Xy, -+, Xn)SS".

For example, assume we are dealing with a system com;

i . he control law can be reconstructed by

posed of4 subsystems, and we wish to design a feedba@

; . =Y, diag(X; 4, -, X3
law with the particular structure: X X Lo 27N . _
P Proof: The proof is immediate by substituting the

Fiun 0 Fi3 O restrictedY = Y,, and X = diag(Xy,---,Xx), with
r Fo1 Foo O 0 28) X= {Y :Y,;; =0eR™", for(i,j) € Z} in the original
0 0 Fs3 Fay |’ conditions in Theorem 4. [

Fiu 0 0 Fu Similarly, we can prove the following corollary to the

where the partition is made in the obvious way, withy € St%%riﬁ&?)?a?c%i rﬁg?lj:glci}:hecot)rre]trr%ISfor consensus)Let
mXn H 1 1 H 2

RMXn N_o_vv, assume we wish to find a feasible solution forX Z(F:F, —0cR"™™ for(i,j) € T} be a desired

the conditions in Theorem 4 such théthas the form (28).  structure. Giveny > 0, there exists a static state feedback
Imposing structure irfF' would mean imposing the for- law » = F,z that internally stabilizes the system (2) and

mula for the controllel = YX~! to yield a structured satisfies||7.,||3 < v if there exist matriceZ, Y = Y,,
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and X; > 0, ¢ = 1,...,N, such that the following An application of theH, synthesis method of Theorem
conditions are satisfied 5 results in a controller feedback matrix with the structure
above and with ari, performance o0b.3744.

AXS+ BY,S = 0 : )

ST (AX + XA+ B2Y, + YiBs + BiBi)S. < 0 In order to compare the solution with the best posshje
S*XS (0)* norm generated by this Laplacian, we search ever 0 for
(01XSLL+ D;Y S1) 7 > 0 the smallestH,; norm generated by-« L. After a bisection
x roce(Z) < search overy, the optimalH; norm with this Laplacian is
. o found to be5.6034.
diag(Xl,---,XN) = SJ_SLdiag(Xl,---,XN)SJ_SL—i—
+  SS*diag(Xi,---,XnN)SS . VIl. FUTURE WORK AND CONCLUSIONS

We have derived necessary and sufficient LMIs that
characterize all the state feedback controllers that solve
the problem of consensus. The consequences are twofold;
first, this shows that consensus is a convex problem up
to a problem of structured control design. Second, using
those LMIs, we have showed that an assumption on the
Yhatrix X yields convex conditions for structured synthesis
for consensus. Our results apply to systems composed by a
heterogenous collection of agents (or subsystems), irr othe
é/)vords, the agents may have arbitrary dynamics.

In this case, a suitable feedback is
F, = Y, diag(X;", -, X").

Remark 2: Synthesis for networks of integrators As-
sume each local system is an integraigr= w;, where
z, €R i.e,n=1, A=0,By=TandB; =0in (2). In
[9] it is shown that their solution always accepts a Lyapuno
function P = I. Now sinceA = 0, condition (29) becomes
Y S = 0 and does not depend d. In such a case we can
setM = 1 without loss of generality and obtalK = I,
therefore block diagonal. So any solutions in [9] are als
feasible points for the LMIs of Corollary 6. Acknowledgement
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