
Feedback Stabilization over Signal-to-Noise Ratio Constrained
Channels

Julio H. Braslavsky, Rick H. Middleton and Jim S. Freudenberg

Abstract— There has recently been significant interest in
feedback stabilization problems over communication channels,
including several with bit rate limited feedback. Motivated
by considering one source of such bit rate limits, we study
the problem of stabilization over a signal-to-noise ratio (SNR)
constrained channel. We discuss both continuous and discrete
time cases, and show that for either state feedback, or for
output feedback delay-free, minimum phase plants, there are
limitations on the ability to stabilize an unstable plant over
an SNR constrained channel. These limitations in fact match
precisely those that might have been inferred by considering
the associated ideal Shannon capacity bit rate over the same
channel.

I. I

This paper discusses a feedback control system in which
the measured information about the plant is fed back to
the controller via a noisy channel. Such a setting arises,
e.g., when sensors are far from the controller and have to
communicate through a (possibly wireless) communication
network. Feedback control over communication networks
has been the general theme of a significant number of recent
studies focusing on different aspects of the problem, par-
ticularly stabilization with quantization effects and limited
communication data rates, e.g., see [1]–[8].

Fig. 1 shows a basic feedback configuration of this type.
Generally, if using digital communications, the link involves
some pre- and post-processing of the signals sent through a
communication channel, e.g., filtering, analog-to-digital (A-
D) conversion, coding, modulation, decoding, demodulation
and digital-to-analog (D-A) conversion.
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Fig. 1. Control system with feedback over a communication link

The case of error and delay free digital communications
is a scenario of particular interest studied by Nair and Evans
[6]. These authors give a necessary and sufficient condition
for the asymptotic feedback stabilizability of a discrete-time
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LTI system,

x(t + 1) = Ax(t) + Bu(t),

y(t) = Cx(t),
∀t = 0,1,2, . . . (1)

through a digital channel of limited bit rate capacity.
Namely, for stabilization to be feasible, it is necessary and
sufficient that the data rateR (bits per interval) satisfies the
condition

R>
∑
|ηi |≥1

log2 |ηi | bits per interval, (2)

where ηi are the unstable eigenvalues of the matrixA.
Nair and Evans [6] obtained this result by considering
the stabilization of the noiseless discrete-time system (1)
by feedback through a quantized channel in which the
quantizer is seen as an information encoder. They showed
that (2) is necessary and sufficient for the existence of a
coding and control law that gives exponential convergence
of the state to the origin from a random initial state.

The main motivation for the work in this paper is the
observation that a bit rate limitation may be due to chan-
nel signal to noise ratio (SNR) limitations. We therefore
consider SNR constrained channels and restrict all pre-
and post- signal processing involved in the communication
link described above to LTI filtering and D-A and A-D
type operations. Thus, the communication link reduces to
the noisy channel itself. Our aim in this simplified setting
is to quantify the fundamental limitations arising from
a simple ideal channel model that embodies two of the
fundamental limiting factors in communications: noise and
fixed power constraints. Other fundamental limiting factors
in the problem of control over a communication link include
bandwidth constraints (c.f. [9]), variable time delays, and
missing data and quantization effects, which are beyond the
scope of this paper.

The rest of the paper is as follows. We begin in Section II
by considering the state feedback continuous-time case.
Using a minimum energy formulation, for a given channel
noise intensity, we are able to exhibit the minimum signal
energy required for stabilization. We follow this by an
equivalent result for the output feedback case when the plant
is minimum phase. In Section III we repeat this analysis for
the discrete-time case for both state and output feedback
scenarios. Finally, we briefly discuss possible extensions of
these results to performance questions, non-minimum phase
plants and other channel limitations.



II. C-T F C

A common model of a continuous-time communication
channel is represented in Fig. 2. Such a model is character-
ized by the linear input-output relation

r(t) = y(t) + n(t), t ∈ R+0 ,

whereR+0 denotes the positive real line including 0, and
n(t) is a continuous-time zero-mean additive white Gaussian
noise (AWGN) with intensityΦ, i.e.,

E{n(t)} = 0, E{n′(t)n(τ)} = Φδ(t − τ), (3)

whereE{·} represents the expectation operator, andδ(t) is
the unitary impulse.
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Fig. 2. AWGN channel with an input power constraint

The input signaly(t) is assumed a stationary stochastic
process withroot mean square (RMS)value

‖y‖RMS =
(
E{y′(t)y(t)}

)1/2 .

The powerof the signaly is defined as‖y‖2RMS and, for our
AWGN channel model, is assumed to satisfy the constraint

‖y‖2RMS < P (4)

for some predetermined valueP > 0. Such a power
constraint may arise either from electronic hardware lim-
itations or regulatory constraints introduced to minimize
interference to other communication system users.

As is well-known [10, pp. 21–22], the power of the
continuous-time stochastic signaly can be expressed in
terms of the autocorrelation matrixRy(τ) = E{y(t)y′(t + τ)},
or the power spectral density

Sy(ω) =
∫ ∞

−∞

Ry(τ)e
− jωτdτ,

as

‖y‖2RMS = trace
[
Ry(0)

]
=

1
2π

trace

[∫ ∞

−∞

Sy(ω) dω

]
. (5)

In this section, we will use the notation̄C+ and C̄− to
represent respectively the closed right and left halves of the
complex planeC.

A. State Feedback Stabilization

We first consider the problem of finding a static state
feedback gainK that stabilizes the loop of Fig. 3, subject
to a constraint on the power of the computed control signal
ys. In this problem we assume the system is described by
the state space model1

ẋ = Ax+ Bu, (6)

1Note that a mathematically precise treatment of the continuous-time
stochastic system would require use ofIto calculus, etc. on the stochastic
differential equationdx = Ax dt+ B du. Under appropriate stationarity
assumptions, this formulation reduces to the analysis here [11,§4].

where the pair (A, B) is stabilizable and the statex is
available for feedback. The matrix state feedback gainK
is assumed to asymptotically stabilize the system, and we
suppose that the computed control signalys is fed back
through a AWGN channel with a power constraintP ≥
‖ys‖

2
RMS. We formalize the statement of this problem.
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Fig. 3. State feedback loop

Problem 1 (Continuous-time state feedback stabilization
with a power constraint)Find a static state feedback gain
K such that the closed loop system

ẋ(t) = (A− BK)x(t) + Bn(t)

ys(t) = Kx(t)
(7)

is asymptotically stable and, for a zero-mean white Gaus-
sian noise input n(t) with intensityΦ, the power of the signal
ys(t) satisfies the constraint

‖ys‖
2
RMS < P (8)

for a predetermined feasible valueP > 0. ◦

Since the closed loop system in Fig. 3 is asymptotically
stable, the signalys(t) produced byn(t) is a stationary
stochastic process with Gaussian distribution. The power
spectral density ofys(t) can then be expressed asSys(ω) =
TK( jω)Sn(ω)T′K(− jω), whereTK(s) is the closed loop trans-
fer function betweenn(t) andys(t) in Fig. 3, that is,

TK(s) =
K(sI − A)−1B

1+ K(sI − A)−1B
. (9)

Thus, the power constraint onys in the system of Fig. 3
may be expressed as

P ≥ ‖ys‖
2
RMS = ‖TK‖

2
H2
Φ, (10)

where ‖TK‖H2 denotes theH2 norm of the strictly proper,
stable scalar transfer functionTK(s), defined as

‖TK‖H2 =

(
1
2π

∫ ∞

−∞

TK( jω)TK(− jω) dω

)1/2

.

The following result gives an explicit expression for the
lowest value that‖TK‖

2
H2

can take over the class of all
stabilizing gainsK in the closed loop system in Fig. 3.

Proposition II.1 Consider the feedback loop of Fig. 3. Let
pk, k = 1,2, . . . ,m be the eigenvalues of A inC+. Then,

inf
K : (A− BK) is Hurwitz

‖TK‖
2
H2
=

m∑
k=1

2 Re{pk} . (11)



Proof: See [12] for details.
From (11), we see that in order to be able to solve

Problem 1, the lowest feasible value ofP in (8) must be
greater than a positive value fixed by the open loop unstable
poles of the plant and the intensity of the noise; in other
words, the channel SNR must satisfy2

P

Φ
≥

m∑
k=1

2 Re{pk} . (12)

How does this constraint relate to Nair and Evans’
bound (2) on the lowest data rate required for stabilization?
Suppose that the discrete time system (1) arises as the
discretization with sample intervalT of a continuous-time
system with unstable eigenvaluespi ∈ C

+, i = 1,2, . . . ,m.
Then, the bound (2) establishes that the lowest data rate
required for stabilization must satisfy

R/T > log2 e
∑

Re{pi }≥0

Re{pi} bits per second. (13)

On the other hand, we know that the capacityC of a
continuous-time AWGN channel with infinite bandwidth,
power constraintP ≥ ‖y‖2RMS, and noise spectral densityΦ,
can be made arbitrarily close to [14, p. 250]

C =
P

2Φ
(
log2 e

)
, bits per second. (14)

Note that under (12), the maximum channel capacity (14)
permitted by Shannon’s Theorem must satisfy

C ≥ log2 e
m∑

k=1

Re{pk} bits per second. (15)

Therefore, assuming maximum channel capacity can be
attained, Equation (15) gives the same bound (13) derived
from Nair and Evans’ result.

B. Output Feedback Stabilization

The previous section considered a simplified version of
the feedback system of Fig. 1 in which we were only
concerned about stabilization by static state feedback over
an AWGN channel. In this section, we turn to stabilization
by dynamic output feedback. Under the assumption that
the plant is minimum phase, we will recover in this case
the same bound (12) on the required SNR for stabilization,
again consistent with Nair and Evans’ result.

On using the channel model of Fig. 2, the feedback loop
of Fig. 1 reduces to the LTI loop of Fig. 4, in whichP(s)
andC(s) respectively are the transfer functions of the plant
and the controller, andy(t) is the output of the system. We
assume that the controllerC(s) is such that the feedback
loop of Fig. 4 is asymptotically stable. We also assume that
the plantP(s) is proper and minimum phase (it does not
contain either zeros inC+ or time delays), although it may
be unstable.

2 Note here that we use “SNR” as the ratiosignal power/noise intensity.
Strictly, the SNR in a continuous-time channel should be defined as the
ratio signal power/noise power(e.g., [13,§6.1]), in which the noise power
is WΦ, whereW is the channel bandwidth (assumed infinite in this paper).
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Fig. 4. Simplified continuous-time feedback loop over an AWGN channel

Since the closed loop system is asymptotically stable, the
outputy(t) resulting from the input noisen(t) is a stationary
stochastic process with Gaussian distribution. By using the
power spectral density ofy(t) as in the previous section,

‖y‖2RMS =
1
2π

∫ ∞

−∞

trace
[
G( jω)G′(− jω)

]
Φdω = ‖G‖2H2

Φ,

(16)
whereG(s) is the closed loop transfer function betweenn(t)
andy(t) in Fig. 4

G(s) =
P(s)C(s)

1+ P(s)C(s)
, (17)

and ‖G‖H2 is the H2 norm of G(s), which is finite since
G(s) is stable and strictly proper. Thus to find the lowest
achievable value of‖y‖RMS we have to find the lowest value
of ‖G‖H2 over the class of all stabilizing controllers.

If the plant P(s) is unstable,‖G‖H2 has a positive lower
bound that cannot be further reduced by any choice of the
controller, as we show in the following proposition.

Proposition II.2 Consider the feedback loop of Fig. 4.
Assume that the plant P(s) is proper and minimum phase,
and has m poles pk, k = 1,2, . . . ,m in C+, and that C(s) is
such that the closed-loop is asymptotically stable. Then,

‖G‖2H2
≥

 m∑
k=1

2 Re{pk}

 . (18)

Proof: See Appendix A.
From (14) and Proposition II.2, we have that for the

feedback loop of Fig. 4, stabilization under the power
constraint (4) is only possible if

P ≥ ‖y‖2RMS = ‖G‖
2
H2
Φ ≥

m∑
k=1

2 Re{pk}Φ, (19)

which is the same as (12), and hence yields, together with
Shannon’s Theorem, the same bound (15). Again, assuming
maximum channel capacity is attained, we recover the
bound (13) derived for our continuous-time setting from
Nair and Evans’ result.

Note that in the output feedback case, ifP(s) is non-
minimum phase, then ahigher lower bound on‖y‖2RMS, and
hence also onC, should be expected. The lowest channel
capacity required would then account not only for the bit
rate needed for stabilization of the loop, but also for theH2

performancerequirement on the system output [15].



III. D -T F C

Under the simplifying assumptions that all pre- and post-
signal processing involved in the communication link of
Fig. 1 are limited to LTI filtering and sampling and hold
operations, we consider now a discrete-time version for the
problems discussed in the previous sections.

A common model of a discrete-time communication
channel is defined by the linear input-output relation

r(t) = y(t) + n(t), t = 0,1,2, . . . , (20)

in which n(t) represents a zero-mean, discrete-time white
Gaussian noise, and the input signaly(t) is required to
satisfy a power constraint. This channel model, shown in
Fig. 2, is usually referred to as thediscrete-time AWGN
channel, widely used in Communications (e.g., [13,§10];
[14, §10]; [16]), and is also useful to represent roundoff and
quantization effects in A-D/D-A converters [17].

The zero-mean, discrete-time white Gaussian noisen(t)
in (20) is assumed to have intensityΦ, i.e.,

E{n(t)} = 0, E{n′(t)n(τ)} = Φδ(t − τ),

where δ(t − τ) =

1 if t = τ

0 otherwise.
(21)

The input signaly(t) is assumed to be a discrete-time
stationary stochastic process with autocorrelation matrix

Ry(τ) = E{y(t)y′(t + τ)},

and power spectral density

Sy(ω) =
∞∑
−∞

Ry(τ)e
− jωτ, −π ≤ ω ≤ π.

For a discrete-time stochastic signaly(t) we have

‖y‖RMS = E
{
y(t)′y(t)

}1/2 .
Its power ‖y‖2RMS is given by

‖y‖2RMS = trace
[
Ry(0)

]
=

1
2π

trace

[∫ π

−π

Sy(ω) dω

]
. (22)

The input power constraint in the channel model of Fig. 2
is enforced by requiring that‖y‖2RMS be bounded by some
predetermined positive valueP, ‖y‖2RMS < P.

A. State Feedback Stabilization
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Fig. 5. Discrete-time state feedback loop

Consider a discrete-time version of the state feedback
stabilization problem discussed in Section II-A, illustrated

in Fig. 5. The state feedback signalys is fed back over a
discrete-time AWGN channel with input power constraint

‖ys‖
2
RMS < P, (23)

Under these conditions, we pose the following problem.

Problem 2 (State feedback stabilization with a power
constraint) Find a static state feedback gain K such that
the closed loop system

x(t + 1) = (A− BK)x(t) + Bn(t)

ys(t) = Kx(t)
(24)

is asymptotically stable and, for a zero-mean white Gaus-
sian noise input n(t) with intensityΦ, the power of the signal
ys(t) satisfies the constraint

‖ys‖
2
RMS < P (25)

for a predetermined feasible valueP > 0. ◦

Note that the power constraint (23) is a constraint on the
H2 norm of the transfer function betweenn and ys in the
loop of Fig. 5. Indeed, it is well-known [10, p. 23] that the
power of the signalys(t) resulting from the input noisen(t)
is given by

‖ys‖
2
RMS = ‖TK‖

2
H2
Φ, (26)

whereTK(z) is the transfer function

TK(z) = K(zI − A+ BK)−1B, (27)

and‖TK‖H2 now represents theH2 norm of a proper, stable
scalar discrete transfer function, defined as

‖TK‖H2 =

(
1
2π

∫ π

−π

TK(ejθ)TK(e− jθ) dθ

) 1
2

(28)

=

 ∞∑
t=0

|TK(t)|2


1
2

, (29)

whereTK(t) is the discrete-time impulse response of the
transfer functionTK(z).

The following proposition states necessary and sufficient
conditions for Problem 2 to be solvable in terms of the
feasible SNR in the noisy feedback channel with power
constraintP and noise powerΦ.3

Proposition III.1 There exists a state feedback gain K
solving Problem 2 if and only if the power constraint(25)
satisfies

P

Φ
>

∏
|ηi |≥1

|ηi |
2 − 1

 , (30)

where {ηi : |ηi | ≥ 1} are the unstable eigenvalues of A in
(24).

3In this case, our treatment of SNR is consistent withsignal power/noise
power, since in discrete-time the noise power is precisely‖n‖RMS = Φ.
Compare Footnote 2 on Page 3.



Proof: See [12] for details.
Thus, we see that for the feedback stabilization problem

to have a solution, the lowest feasible input power constraint
(25) for the AWGN feedback channel must be greater than
a positive value fixed by the open loop unstable poles of
the plant and the intensity of the noise.

By using the constraint (30) on Shannon’s bound on the
capacity of a discrete-time AWNG channel [14,§ 10]

C =
1
2

log2

(
1+
P

Φ

)
bits per interval, (31)

we recover again Nair and Evans’ bound (2) on the lowest
data rate necessary for stabilization,

C >
∑
|ηi |≥1

log2 |ηi | bits per interval. (32)

B. Output Feedback Stabilization

We consider the discrete-time output feedback loop pic-
tured in Fig. 6, in which we have used the AWGN channel
model of Fig. 2 to represent the noisy feedback channel. We
intend to find the lowest value of‖y‖2RMS over the set of all
stabilizing controllersC(z) for a zero-mean, white Gaussian
noisen(k) with intensityΦ.
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Fig. 6. Simplified discrete-time feedback loop over an AWGN channel

Note that

Y(z) = G(z)N(z) =
C(z)P(z)

1+C(z)P(z)
N(z) (33)

Sincen(t) is white with power spectral densitySn(ω) = Φ,
the power spectral density of the outputy(t) is

Sy(ω) = |G(ejω)|2Φ, (34)

and therefore the output power is

‖y‖2RMS =

( ∫ π

−π

|G(ejω)|2dω

)
Φ = ‖G‖2H2

Φ. (35)

We are thus trying to solve anH2 optimization problem.

Proposition III.2 Consider the feedback loop of Fig. 6.
Assume that the plant P(z) is minimum phase, strictly proper
with relative degree1, and has m poles pk, k = 1,2, . . . ,m,
in D{, and that C(z) is such that the closed loop is
asymptotically stable. Then,

‖G‖2H2
≥

 m∏
i=1

|pi |
2

 − 1 (36)

Proof: See [12] for details.

IV. C

In this paper we have been motivated by control over
bit rate limited channels to consider stabilization over
SNR limited channels. We have considered the simple
case where there is essentially no encoding or decoding
present, and looked at the limits of achievable stabilization
of linear controls. For both state feedback and for delay
free minimum phase plants, we obtain results equivalent
to those that would be obtained if delay and error free
digital communication could be performed on the same
channel at Shannon channel capacity. The results include
both continuous-time and discrete-time channels.

Extensions of this work include looking at output feed-
back non-minimum phase plants where, at least in the
present framework, a deterioration in the achievableH2

performance suggests that stabilization will be more difficult
[15]. In addition, channel bandwidth constraints, and more
general control performance questions than simple stabiliza-
tion could be considered within the framework suggested in
this paper. More complex questions including the potential
use of time varying or nonlinear elements in the coding and
decoding are also of interest.

A

A. Proof of Proposition II.2

To compute the lowest value of‖G‖H2 over the class
of all stabilizing controllers, we apply a technique used in
reference [18]. This is based on considering the spaces

L2 =

{
G(s) :

∫ ∞

−∞

|G( jω)|2dω < ∞

}
,

H2 = L2 ∩
{
G(s) : analytic in C̄+

}
and the orthogonal complement ofH2

H⊥2 = L2 ∩
{
G(s) : analytic in C̄−

}
We start by deriving an expression forG(s) based on a
parameterization of all stabilizing controllers. Represent
P(s) by a coprime factorization

P(s) =
N(s)
Bp(s)

,

where N(s) ∈ RH∞ (the space of proper, stable, rational
functions), and

Bp(s) =
m∏

k=1

s− pk

s+ pk

is the Blaschke product of all poles ofP(s) in C+. By using
the well-known Youla controller parameterization, we can
represent any stabilizing controller for the feedback loop in
Fig. 4 by4

C =
X + BpQ

Y− NQ
, (37)

4Dependency ons is omitted to simplify notation when convenient.



whereQ, X andY are inRH∞, with X andY satisfying the
Bezout identity

NX+ BpY = 1. (38)

By replacing (37) in (38),G can be expressed as

G =
(
1− Bp(Y− NQ)

)
= N(X + BpQ), (39)

where the last equality follows from the fact thatX + BpQ
andY−NQ are also coprime and satisfy the Bezout identity

N(X + BpQ) + Bp(Y− NQ) = 1.

Thus, from (39), the problem of finding the lowest value
of ‖G‖H2 over the class of stabilizing controllers reduces to
that of finding

inf
Q∈RH∞

∥∥∥1− BpY+ BpNQ
∥∥∥

H2
. (40)

Now,

inf
Q∈RH∞

∥∥∥1− BpY+ BpNQ
∥∥∥

L2
= inf

Q∈RH∞

∥∥∥B−1
p − Y+ NQ

∥∥∥2

L2
,

= inf
Q∈RH∞

∥∥∥∥(1− B−1
p

)
+ (1− Y+ NQ)

∥∥∥∥2

L2

,

=
∥∥∥1− B−1

p

∥∥∥2

L2
+ inf

Q∈RH∞
‖1− Y+ NQ‖2L2

, (41)

where the first line follows sinceBp is all pass, and the last
line since (1− B−1

p ) is both strictly proper and anti-stable,
and therefore is inH⊥2 . Conversely,(1− Y+ NQ) is strictly
proper and stable and therefore inH2.

Assuming the plant is minimum phase, then we may take
Q arbitrarily close toN−1 (1− Y). Indeed, because (1−Y) is
stable, given anyε > 0, there always exists someQε ∈ RH∞
such that‖1 − Y + NQε‖L2 < ε, which shows in (41) that
inf Q∈RH∞ ‖1− Y+ NQ‖2L2

= 0.

On the other hand, note that

∥∥∥1− B−1
p

∥∥∥2

L2
=

1
2π

∫ ∞

−∞

(
1− B−1

p ( jω)
) (

1− B−1
p (− jω)

)
dω,

=
1
2π

∫ ∞

−∞

(
1− B−1

p ( jω)
) (

1− Bp( jω)
)
dω,

=
1
2π

∫ ∞

−∞

(
1− B−1

p ( jω)
)
+

(
1− Bp( jω)

)
dω,

=
1
π

∫ ∞

−∞

(
1− Bp( jω)

)
dω,

by conjugate symmetry. To finish the proof, we now use
contour integration around the clockwise-oriented contour
in C̄+, which consists of the imaginary axis, closed with a

semi-circular region of arbitrarily large radiusR in C+,∥∥∥1− B−1
p

∥∥∥2

L2
=

[
1
jπ

∮
C̄+

(
1− Bp(s)

)
ds

]
︸                        ︷︷                        ︸
= 0, since (1− Bp) is analytic inC̄+

− lim
R→∞

1
π

∫ − π2

π
2

(
1− Bp

(
Rejθ

))
Rejθdθ

 ,
= − lim

R→∞

1
π

∫ − π2

π
2

(
c1

Rejθ
+

c2

(Rejθ)2
+ · · ·

)
Rejθdθ


(since (1− Bp) is strictly proper),

= c1 , lim
s→∞

(
s
(
1− Bp(s)

))
= 2

m∑
k=1

Re{pk} ,

which, from (41), concludes the proof.
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