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Feedback Stabilization over Signal-to-Noise Ratio Constrained
Channels
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Abstract—There has recently been significant interest in LTI system,
feedback stabilization problems over communication channels,

including several with bit rate limited feedback. Motivated X(t + 1) = AX(t) + Bu(t),
by considering one source of such bit rate limits, we study Vi=0,1,2,... (1)
the problem of stabilization over a signal-to-noise ratio (SNR) y(t) = CxX(1),

constrained channel. We discuss both continuous and discrete
time cases, and show that for either state feedback, or for through a digital channel of limited bit rate capacity.

output feedback delay-free, minimum phase plants, there are  Namely, for stabilization to be feasible, it is necessary and

limitations on the ability to stabilize an unstable plant over ; ; ; i
an SNR constrained channel. These limitations in fact match iﬁg:ﬁgg that the data ratR (bits per interval) satisfies the

precisely those that might have been inferred by considering
the associated ideal Shannon capacity bit rate over the same
channel. R > Z log, il bits per interval (2)

=

I. INTRODUCTION
where ; are the unstable eigenvalues of the mathix

This paper discusses a feedback control system in whighyir and Evans [6] obtained this result by considering
the measured information about the plant is fed back e stapilization of the noiseless discrete-time system (1)
the controller via a noisy channel. Such a setting arisegy feedback through a quantized channel in which the
e.g., when sensors are far from the controller and have {,antizer is seen as an information encoder. They showed
communicate through a (possibly wweless_) cqmmumcatlomat (2) is necessary and figient for the existence of a
network. Feedback control over communication networkssding and control law that gives exponential convergence
has been the general theme of a significant number of recgjitine state to the origin from a random initial state.
studies focusing on fierent aspects of the problem, par- 114 main motivation for the work in this paper is the
ticularly stabilization with quantizationfiects and limited observation that a bit rate limitation may be due to chan-
commumcaﬂon data rates, €.9., see [,1]_[8]‘, ) nel signal to noise ratio (SNR) limitations. We therefore

Fig. 1 sh_ows_aba_\s_lc feedback _con_flguratlon_ of FhIS YP&onsider SNR constrained channels and restrict all pre-
Generally, if using digital conjmumcatlon_s, the link involves, post- signal processing involved in the communication
some pre- and post-processing of the signals sent througly g, gescribed above to LTI filtering and D-A and A-D
communication channel, e.g., filtering, analog-to-digital (A e gperations. Thus, the communication link reduces to
D) conversion, coding, modulation, decoding, demodulatiogg nisy channel itself. Our aim in this simplified setting

and digital-to-analog (D-A) conversion. is to quantify the fundamental limitations arising from
Reference a simple ideal channel model that embodies two of the
Input e u y Output fundamental limiting factors in communications: noise and
Controller Plant fixed power constraints. Other fundamental limiting factors
- s [ ) Vo oo | in the p_roblem of cc_)ntrol over a comr_nunica}tion link include
‘ Procesgngﬁ Channel Ep,ocesg{,;z : bandwidth constraints (c.f. [9]), variable time delays, and
********************** missing data and quantizatioffects, which are beyond the

l Communication link ]

scope of this paper.
Fig. 1. Control system with feedback over a communication link The rest of the paper is as follows. We begin in Section Il
by considering the state feedback continuous-time case.
The case of error and delay free digital communication§/sing a minimum energy formulation, for a given channel
is a scenario of particular interest studied by Nair and Evari¥ise intensity, we are able to exhibit the minimum signal
[6]. These authors give a necessary anflicient condition energy required for stabilization. We follow this by an

for the asymptotic feedback stabilizability of a discrete-timgquivalent result for the output feedback case when the plant
is minimum phase. In Section Il we repeat this analysis for
J.H. Braslavsky and R.H. Middleton are with the Centre for Complexhe discrete-time case for both state and output feedback
Dyne}mic Systems and Control, The University of Newcastle, Australiagcenarios. FinaIIy, we briefly discuss possible extensions of
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II. ContiNvous-TIME FEEDBACK CHANNELS where the pair A, B) is stabilizable and the state is

A common model of a continuous-time communicatiorvailable for feedback. The matrix state feedback gd&in
channel is represented in Fig. 2. Such a model is charactét-assumed to asymptotically stabilize the system, and we

ized by the linear input-output relation suppose that the computed control sigyalis fed back
through a AWGN channel with a power constraifit >
r(t) = y(t) + n(t), teR{,

“y5||2RMS' We formalize the statement of this problem.
where R{ denotes the positive real line including 0, and
n(t) is a continuous-time zero-mean additive white Gaussian
noise (AWGN) with intensityd, i.e.,

E{n(t)} =0, E{n{®n(r)} = st - 7), 3

where E{-} represents the expectation operator, a(tjl is
the unitary impulse.

- === = ==

r VB <Py
O

Fig. 3. State feedback loop

%30

Problem 1 (Continuous-time state feedback stabilization
with a power constraint)Find a static state feedback gain
K such that the closed loop system

- -

Fig. 2. AWGN channel with an input power constraint

The input signaly(t) is assumed a stationary stochastic X(t) = (A - BK)x(t) + Bn(t)
process withroot mean square (RMSilue ys(t) = Kx(t) Q)
1/2
IVllrms = (E{y ()y®H"2. is asymptotically stable and, for a zero-mean white Gaus-

The power of the signaly is defined agly||3,,s and, for our ~Sian noise input (t) with intensity®, the power of the signal
AWGN channel model, is assumed to satisfy the constraiits(t) satisfies the constraint

IYlIZms < P (4) lyslZus < P (8)

for some predetermined valu® > 0. Such a power for a predetermined feasible val@e > 0. o

constraint may arise either from electronic hardware lim- . . .
itations or regulatory constraints introduced to minimize Since the closed loop system in Fig. 3 is asymptotically

interference to other communication system users. stable, the signals(t) produced byn(t) is a stationary
As is well-known [10, pp. 21-22], the power of the Stochastic process with Gaussian distribution. The power

continuous-time stochastic signgl can be expressed in Spectral denslty ofs(t) can then be expressed & (w) =

terms of the autocorrelation matriX,(7) = E{y(t)y'(t +7)},  1(j@)Sn(w)Ti (=]w), whereTk(s) is the closed loop trans-

or the power spectral density fer function betweem(t) andys(t) in Fig. 3, that is,
0 : K(sl - A)1B

- -jor Tk(e) = —> " = 9

Sy(w) f N R/(r)e  dr, k(9) 1+ K(sI-A)1B 9)
as Thus, the power constraint oy in the system of Fig. 3

1 00
IVIZms = trace[Ry(O)] = > trace[ f Sy(w) dw]. (5) May be expressed as
- P > |lysllams = IITklIF, @, (10)

In this section, we will use the notatiofi* and C~ to .
represent respectively the closed right and left halves of ttéherel[Tkllu, denotes thed, norm of the strictly proper,

complex planeC. stable scalar transfer functiork (s), defined as
S 1~ . 1/2
A Statg Feedb;.ack Stabilization o . I Tkllk, = (—f Tk (jo) Tk (- jw) dw) :
We first consider the problem of finding a static state 27 Joo

feedback gairK that stabilizes the loop of Fig. 3, subject The following result gives an explicit expression for the

to a constraint on the power of the computed control sign@west value thaU|TK||2H2 can take over the class of all

Ys. In this problem we assume the system is described Byabilizing gainsK in the closed loop system in Fig. 3.

the state space model

(6) Proposition II.1 Consider the feedback loop of Fig. 3. Let
P, k=1,2,...,m be the eigenvalues of A @'. Then,

INote that a mathematically precise treatment of the continuous-time m
stochastic system would require usel@f calculus etc. on the stochastic . 2
differential equatiordx = Axdt+ Bdu Under appropriate stationarity K- (A—Bllg)fis Hurwitz”TK“ 2 Z 2Re{pyd . (11)
assumptions, this formulation reduces to the analysis here§f1, k=1

X = AX+ Bu,
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Proof: See [12] for details. u cs) P(s) o
From (11), we see that in order to be able to solve

Problem 1, the lowest feasible value Bfin (8) must be r o~
greater than a positive value fixed by the open loop unstable } |
poles of the plant and the intensity of the noise; in other ' Sn  AWGN Channe!
words, the channel SNR must satfsfy ‘

Fig. 4. Simplified continuous-time feedback loop over an AWGN channel

g > Z 2Re{py} . (12)
k=1

How does this constraint relate to Nair and Evans Since the closed loop system is asymptotically stable, the
bound (2) on the lowest data rate required for stabilization@Utputy(t) resulting from the input noise(t) is a stationary
Suppose that the discrete time system (1) arises as tpchastic process with Gaussian distribution. By using the
discretization with sample intervdl of a continuous-time POWer spectral density of(t) as in the previous section,
system with unstable eigenvalupse C*, i = 1,2,...,m. 1 [

Then, the bound (2) establishes that the lowest data rat@Yllaus = gf trace[G(jw)G' (- jw)] @ dw = ||GI|7, .
required for stabilization must satisfy - (16)

_ : whereG(s) is the closed loop transfer function betwea#t)
R/T > log, e Z Re{p} bits per second (13) andy(t) in Fig. 4

Relpi}>0
On the other hand, we know that the capadityof a G(s) = P(s)C(s) (17)
continuous-time AWGN channel with infinite bandwidth, 1+ P(s)C(9)’

power constrainf® > ||y||§MS, and noise spectral densid,

and ||G is the H, norm of G(s), which is finite since
can be made arbitrarily close to [14, p. 250] 1Sl 2 ()

G(s) is stable and strictly proper. Thus to find the lowest
achievable value dfyllrms We have to find the lowest value
of ||Gll4, over the class of all stabilizing controllers.

Note that under (12), the maximum channel capacity (14) If the plant P(s) is unstable||G||4, has a positive lower
permitted by Shannon’s Theorem must satisfy bound that cannot be further reduced by any choice of the
controller, as we show in the following proposition.

C= % (log,€), bits per second (14)

m
C> Iogzez Re{pk} bits per second (15)
k=1 Proposition 11.2 Consider the feedback loop of Fig. 4.
Therefore, assuming maximum channel capacity can bessume that the plant(B) is proper and minimum phase,
attained, Equation (15) gives the same bound (13) derivethd has m polespk = 1,2,...,m in C*, and that Gs) is

from Nair and Evans’ result. such that the closed-loop is asymptotically stable. Then,
B. Output Feedback Stabilization 5 m

The previous section considered a simplified version of IGllk, = [IZZRe{ p"}]' (18)
the feedback system of Fig. 1 in which we were only =t
concerned about stabilization by static state feedback over Proof: See Appendix A. ]

an AWGN channel. In this section, we turn to stabilization From (14) and Proposition 1.2, we have that for the
by dynamic output feedback. Under the assumption th&¢edback loop of Fig. 4, stabilization under the power
the plant is minimum phase, we will recover in this caseonstraint (4) is only possible if
the same bound (12) on the required SNR for stabilization, m
again consistent with Nair and Evans’ result. 2 _ iR

On using the channel model of Fig. 2, the feedback loop P 2 Wlirus = Gz, ® = kZ:; 2Re(pd O, (19)
of Fig. 1 reduces to the LTI loop of Fig. 4, in whidk(s) L . .
andC(s) respectively are the transfer functions of the planf/hich is ',[he same as (12), and hence yields, together with
and the controller, angit) is the output of the system. We Shannon's Theorem, the same bound (15). Again, assuming
assume that the controll€(s) is such that the feedback Maximum channel capacity is attained, we recover the
loop of Fig. 4 is asymptotically stable. We also assume th@ound (13) derived for our continuous-time setting from
the plantP(s) is proper and minimum phase (it does notNair and Evans’ result.

contain either zeros ift* or time delays), although it may ~ NOté that in the output feedback case,Fs) is non-
be unstable. minimum phasethen ahigher lower bound or1|y||§MS, and

hence also or, should be expected. The lowest channel

? Note here that we use “SNR” as the rasignal powefnoise intensity ~ capacity required would then account not only for the bit
Strictly, the SNR in a continuous-time channel should be defined as the ded f tabilizati fthe | but also f
ratio signal powemoise powere.g., [13,§6.1]), in which the noise power rate needed for stabilization of the loop, but also forthe

is W, whereW is the channel bandwidth (assumed infinite in this paper)performancerequirement on the system output [15].
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lll. Discrere-TiME FEEDBACK CHANNELS in Fig. 5. The state feedback signal is fed back over a

Under the simplifying assumptions that all pre- and pos‘t(jiscrete—time AWGN channel with input power constraint
signal processing involved in the communication link of 2
Fig. 1 are limited to LTI filtering and sampling and hold Wellgws <7 23)
operations, we consider now a discrete-time version for the Under these conditions, we pose the following problem.
problems discussed in the previous sections.

A common model of a discrete-time communicatiorProblem 2 (State feedback stabilization with a power
channel is defined by the linear input-output relation constraint) Find a static state feedback gain K such that

() = y(t) + n(t), t=0,12.... (20) the closed loop system

in which n(t) represents a zero-mean, discrete-time white X(t+1) = (A= BK)x(®) + Bn(®)
Gaussian noise, and the input signgt) is required to ys(t) = Kx(t)
satisfy a power constraint. This channel model, shown i asymptotically stable and, for a zero-mean white Gaus-

Fig. 2, is usually referred to as thiscrete-time AWGN gjan noise input (t) with intensityd, the power of the signal
channe] widely used in Communications (e.g., [1810]; yt) satisfies the constraint

[14, §10]; [16]), and is also useful to represent rouficgond
quantization fects in A-OD-A converters [17]. llyslZus < P (25)

The zero-mean, discrete-time white Gaussian na{se
in (20) is assumed to have intensity i.e.,

(24)

for a predetermined feasible valye > 0. o

Note that the power constraint (23) is a constraint on the

Ein(®) =0, E(M(Hn(r)} = ©s(t - 7). H, norm of the transfer function betweenandys in the

h st 1 ift=r 21 loop of Fig. 5. Indeed, it is well-known [10, p. 23] that the
where 6(t - 7) = 0 otherwise (1) power of the signays(t) resulting from the input noise(t)
is given by

The input signaly(t) is assumed to be a discrete-time
stationary stochastic process with autocorrelation matrix

Ry(r) = E{y(t)y (t + 7)},
and power spectral density

Isllams = ITxllF, @, (26)
whereTg(2) is the transfer function

Tk(2 = K(zI - A+ BK)™!B, (27)

o0 . and||Tk||ln, now represents thel, norm of a proper, stable
Sy(w) = Z R(n)e", -n<w<m. scalar discrete transfer function, defined as
For a discrete-time stochastic sign) we have Tk, = (% fﬂ Tk (€) Tk (1) dg)z 28)
Wlkuis = E {y(©) Y12, .
Its power |lyl3s is given by = (Z I’TK(I)Iz] : (29)
t=0

IVAws = trace[R,(0)] = % trace

f Sy(w) dw]. (22) where 7k(t) is the discrete-time impulse response of the
d transfer functionTg (2).

The input power constraint in the channel model of Fig. 2 The following proposition states necessary anflisient

is enforced by requiring thaly|2,,s be bounded by some conditions for Problem 2 to be solvable in terms of the

predetermined positive valu®, [lyllzys < P- feasible SNR in the noisy feedback channel with power

. . 3
A. State Feedback Stabilization constraint? and noise powes.

Proposition Ill.1 There exists a state feedback gain K
solving Problem 2 if and only if the power constrai25)

satisfies
— > | | |T]|| — , ( )

mil>1

where{n; : |ni| = 1} are the unstable eigenvalues of A in
Fig. 5. Discrete-time state feedback loop (24)-

. . . . 3In this case, our treatment of SNR is consistent witjnal powemoise
Consider a discrete-time version of the state feedbaggwer’ since in discrete-time the noise power is precisiyrus = .

stabilization problem discussed in Section II-A, illustratedcompare Footnote 2 on Page 3.
4906



Proof. See [12] for details. [ | IV. CoONCLUSIONS
Thus, we see that for the feedback stabilization problem

i neen """ In this paper we have been motivated by control over
to have a solution, the lowest feasible input power constraigf rate limited channels to consider stabilization over

(25) for the AWGN feedback channel must be greater thaﬁNR limited channels. We have considered the simple

a positive value fixed by the open loop unstable poles Qfaqe \where there is essentially no encoding or decoding
the plan.t and the Intensity of the noise. , present, and looked at the limits of achievable stabilization
By using the constraint (30) on Shannon's bound on thg¢ jinear controls. For both state feedback and for delay
capacity of a discrete-time AWNG channel [¥10] free minimum phase plants, we obtain results equivalent
to those that would be obtained if delay and error free
digital communication could be performed on the same
) _ channel at Shannon channel capacity. The results include
we recover again Nair and Evans’ bound (2) on the lowegfsth continuous-time and discrete-time channels.
data rate necessary for stabilization, Extensions of this work include looking at output feed-
(32) back non-minimum phase plants where, at least in the
present framework, a deterioration in the achievaHie
o performance suggests that stabilization will be mofgailt
B. Output Feedback Stabilization [15]. In addition, channel bandwidth constraints, and more
We consider the discrete-time output feedback loop pigeneral control performance questions than simple stabiliza-
tured in Fig. 6, in which we have used the AWGN channefion could be considered within the framework suggested in
model of Fig. 2 to represent the noisy feedback channel. Whis paper. More complex questions including the potential
intend to find the lowest value qi@’”ﬁms over the set of all use of time varying or nonlinear elements in the coding and
stabilizing controller<C(z) for a zero-mean, white Gaussiandecoding are also of interest.
noisen(k) with intensity ®.

C= % log, (1 + g) bits per interval (31)

C> Z log; [7il bits per interval.
=1

APPENDIX
y .
A. Proof of Proposition 11.2
Fes - - === - To compute the lowest value diG||y, over the class
: ) : of all stabilizing controllers, we apply a technique used in
! \f INizys < P! reference [18]. This is based on considering the spaces
L_Qn _ _ _ AWGN Channel
_ . H 2
Fig. 6. Simplified discrete-time feedback loop over an AWGN channel Lo = {G(S) . Im |G(Jw)| dw < oo},
_ . inin O
Note that Hz = L, N {G(s) : analytic inC*|
C(AP@E) and the orthogonal complement i,
Y2 =G(2N(2) = ————=—N 33
@=6@N@ = opgN@ (3 )
1 _ . P —
Sincen(t) is white with power spectral densi®,(w) = @, Hz =L2n {G(S) - analytic inC }
the power spectral density of the outpyf) is We start by deriving an expression f@(s) based on a
Sy(w) = IG(“) 2, (34) parameterizati_on of all _sta_bilizing controllers. Represent
P(s) by a coprime factorization
and therefore the output power is N(S)
P(s) = ;
Bp(9)

IViZms =( f |G(ejw)|2dw)cb = IGlI7,®.  (35)
- where N(s) € RH,, (the space of proper, stable, rational
We are thus trying to solve ad, optimization problem.  functions), and

Bo(S) = ﬁ S
Proposition Ill.2 Consider the feedback loop of Fig. 6. P W S+
Assume that the plant(B is minimum phase, strictly proper

with relative degreel, and has m polesipk = 1,2, ..., m, is the Blaschke product of all poles Bfs) in C*. By using
in D, and that G2 is such that the closed loop is the well-known Youla controller parameterization, we can

asymptotically stable. Then, represent any stabilizing controller for the feedback loop in
- Fig. 4 by?
X + B,Q
GlIZ, > -1 36 = —— =
IGI, > i@m} (36) C=YNo' (37)
Proof: See [12] for details. [ | “Dependency ors is omitted to simplify notation when convenient.
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whereQ, X andY are inRH,,, with X andY satisfying the
Bezout identity

NX+BpY =1 (38)
By replacing (37) in (38)G can be expressed as
G = (1- By(Y - NQ) = N(X + ByQ), (39)

where the last equality follows from the fact that- B,Q
andY-NQ are also coprime and satisfy the Bezout identity

N(X + BpQ) + Bp(Y = NQ) = 1.

which, from (41), concludes the proof.

Thus, from (39), the problem of finding the lowest value
of ||Gllu, over the class of stabilizing controllers reduces to[l]
that of finding

_ [2]

Jnf |1~ BpY +BpNQ,,, - (40)
[3]

Now,
[41
inf [[1-BpY + ByNQ|_ = inf [B;*-Y+NQ|? .
QeRH, 2 QeRH. 2 [5]
. -1 2

- QLQT-LO”(:L_ Bp )+(1_Y+ NQ)HLZ’ 6]

=||1- B;}Hﬁz +inf 1Y+ NQP,, (41)
(7]

where the first line follows sincB, is all pass, and the last
line since (1- B,;l) is both strictly proper and anti-stable, [8]
and therefore is iH;. Conversely(1 - Y + NQ) is strictly
proper and stable and thereforeht. [9]
Assuming the plant is minimum phase, then we may take
Q arbitrarily close toN™* (1~ Y). Indeed, because {IY) is 1]
stable, given any > 0, there always exists son@g € RH,,
such thatl|l1 - Y + NQ,|l., < &, which shows in (41) that [11]
infoern, 11— Y + NQJZ, = 0. [12]
On the other hand, note that

-85, = 5 [ (- B (1- Biw)do.

= % fa (1- By (jw)) (1 - By(jw)) dw,
- % fa (2 - Byk(j)) + (1 - By(jw)) dov,

-2 [ (- By(io) do

by conjugate symmetry. To finish the proof, we now useis]
contour integration around the clockwise-oriented contour
in C*, which consists of the imaginary axis, closed with a

[14]

[15]

[16]

[17]

semi-circular region of arbitrarily large

1
1, = |55 b (1-Bu(s)a

radil&in C*,

=0, since (I- Bp) is analytic inC*

A . .
Sim |2 [ (- By (R Rev.

o O e O O - T P
- Flemo[ﬂf; (Ré9+(Rég)2+ )Re’ dﬂ]

(since (1-

=c1 2 lim (s(1- By(9))) =2 ) Re(pd,
k=1

By) is strictly proper)

REFERENCES

D. Delchamps, “Stabilizing a linear system with quantized state
feedback,”IEEE Trans. on Automatic Controlol. 35, no. 8, pp.
916-924, August 1990.

S. Tatikonda, A. Sahai, and S. Mitter, “Control of lqg systems
under communication constraints,” Rroc. 37th IEEE CDCvol. 1,
December 1998, pp. 1165 -1170.

R. Brockett and D. Liberzon, “Quantized feedback stabilization of
linear systems,1IEEE Trans. on Automatic Controlol. 45, no. 7,

pp. 1279-1289, June 2000.

N. Elia and S. Mitter, “Stabilization of linear systems with limited
information,” IEEE Trans. on Automatic ControVol. 46, no. 9, pp.
1384-1400, September 2001.

G. Nair and R. Evans, “Mean square stabilisability of stochastic linear
systems with data rate constraints,” Btoc. 41st IEEE CDCLas
Vegas, Nevada, USA, December 2002, pp. 1632-1637.

——, “Exponential stabilisability of finite-dimensional linear systems
with limited data rates,’Automatica vol. 39, no. 4, pp. 585-593,
April 2003.

H. Ishii and B. Francis, “Quadratic stabilization of sampled-data
systems with quantizationAutomatica vol. 39, no. 10, pp. 1793—
1800, 2003.

E. Verriest, “Delay in state feedback control over a network,” in
Proc. 42nd IEEE CDC Maui, Hawaii, USA, December 2003, pp.
1080-1085.

S. Dasgupta, “Control over bandlimited communication channels:
Limitations to stabilizability,” in Proc. 42nd IEEE CDC Maui,
Hawaii, USA, December 2003.

A. Saberi, P. Sannuti, and B. CheHp optimal control
Hall International, 1995.

K. Astrom, Introduction to Stochastic Control Theory New York:
Academic Press, 1970.

Prentice

J. Braslavsky, R. Middleton, and J. Freudenberg. (2003,
September) Feedback stabilisation over signal-to-noise ratio
constrained channels. EEO03038.pdf.gz. [Online]. Available:

ftp://warhol.newcastle.edu.qulyReportg

J. G. Proakis and M. Salehfommunication Systems Engineetring
Prentice-Hall, 1994.

T. Cover and J. Thomaglements of Information Theary John
Wiley & Sons, 1991.

R. Middleton, J. Braslavsky, and J. Freudenberg, “Stabilization of
non-minimum phase plants over signal-to-noise ratio constrained
channels,” inProc. 5th Asian Control Conferenc&lelbourne, Aus-
tralia, July 2004.

G. Forney and G. Ungerboeck, “Modulation and coding for linear
Gaussian channels/JEEE Trans. on Information Theoryol. 44,

no. 6, pp. 2384-2415, October 1998.

R. M. Gray, “Quantization noise spectrdBEE Trans. on Informa-
tion Theory vol. 36, no. 6, pp. 1220-1244, November 1990.

J. Chen, L. Qiu, and O. Toker, “Limitations on maximal tracking
accuracy,”|[EEE Trans. on Automatic Controlol. 45, no. 2, pp.
326-331, February 2000.

4908



	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrM11.2
	Page0: 4903
	Page1: 4904
	Page2: 4905
	Page3: 4906
	Page4: 4907
	Page5: 4908


