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Abstract— This paper derives closed form solutions for the
parameters of a time-delay filter designed to be robust to
uncertainties in frequencies to be cancelled. It is shown that
the slope of the magnitude plot of the two time-delay filter
is zero at the nominal frequency indicating that it is a local
maximum. This information is used for deriving the solution
of the parameters of the time-delay filter in closed form. Three
time-delay filters are also designed which force a zero of the
filter to be located at the nominal frequency of the system.
The applicability of the proposed technique for the control of
multi-mode systems is also illustrated.

I. INTRODUCTION

Vibration attenuation by shaping input to underdamped
systems has been addressed by numerous researchers [1],
[2], [3], [4] besides others. There has been an increased
interest in the development of techniques to desensitize the
controllers to uncertainties in the system model. Singer and
Seering [2] proposed a technique to design a sequence of
impulses with the objective of forcing the variation of the
sensitivity of the residual energy of the system with respect
to modeled damping or frequency to zero. The resulting
controllers were called Input Shapers. Singh and Vadali
[3] illustrated that robustness to modeling errors can be
achieved by cascading multiple time-delay filters designed
to cancel the nominal poles of the system. Singhose et al.
[5], proposed a technique which they referred to as Multi-
Hump Extra-Insensitive Input shaper where they determine
the amplitudes of the impulses so as to maximize the
uncertain domain where the residual vibration is below
a specified threshold. Singh [6] proposed an optimization
problem where the maximum magnitude of the residual
energy in an uncertain domain is minimized. In this paper,
the minimax problem is first addressed for a single mode
system. In numerous applications, there exists one dominant
mode which is the main contributor to the residual energy
of the maneuvering structure. Thus, there is a motivation
to derive the optimal time-delay filter which minimizes the
maximum magnitude of the transfer function of the time-
delay filter, in closed form. A simple technique for handling
multiple modes is also proposed. The resulting filter is
designed by addressing the problem as a series of single
mode problems.

Section 2 focuses on the development of closed form
solutions for the parameters of minimax time-delay filters.
The development is then modified to permit differential
weighting of the limiting and nominal frequencies. In Sec-

tion 3, a simple approach is proposed to permit using the
solution of the undamped systems to system with damping.
The approach to design minimax filters for multimode
systems is described in Section 4. The paper concludes with
some remarks in the final section.

II. OPTIMAL MINIMAX FILTERS FOR UNDAMPED
SYSTEMS

A. Two Time-Delay Filter
A time-delay filter to modify the reference input to a

system to attenuate residual vibrations is shown in Figure 1.
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Fig. 1. Time-Delay Filter

The transfer function of the time-delay filter is given by
the equation

A0 + A1exp(−sT1) + A2exp(−sT2) (1)

which is used to prefilter inputs to a system characterized
by un-damped modes. The frequency of the mode to be
cancelled is uncertain, but the region of uncertainty is
known. Assume that the nominal frequency is ω0 and the
uncertain frequency ω lies in the range

ωl ≤ ω ≤ 2ω0 − ωl (2)

implying that the uncertainty is symmetric about the nom-
inal frequency. To minimize, the maximum magnitude of
the magnitude plot of the time-delay filter in the region
of uncertainty, we require that the magnitude of the time-
delay filter at the boundary be equal to that at the nominal
frequency. Assuming further that

T1 =
π

ω0
, and T2 =

2π

ω0
, (3)

the magnitude of the transfer function of the time-delay
filter can be shown to be

F (ω) = A2
0 + A2

1 + A2
2 + 2A0A1cos(

ω

ω0
π)+

2A0A2cos(
2ω

ω0
π) + 2A1A2cos(

ω

ω0
π). (4)

The location of the maximum of F (ω) can be determined
from the equation

dF (ω)

dω
= −2A0A1

π

ω0
sin(

ω

ω0
π) − 2A0A2

2π

ω0
sin(

2ω

ω0
π)−
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Fig. 2. Sensitivity Curve

2A1A2
π

ω0
sin(

ω

ω0
π) = 0. (5)

It can be seen that ω = ω0 satisfies Equation 5. To deter-
mine the parameters of the minimax time-delay filter, the
magnitude of the time-delay filter at the boundary and the
nominal frequency are equated, resulting in the equation

(A0 + A1cos(
ωl

ω0
π) + A2cos(

2ωl

ω0
π))2 + (A1sin(

ωl

ω0
π)+

A2sin(
2ωl

ω0
π))2 = (A0 + A1cos(π) + A2cos(2π))2. (6)

For undamped systems, we can assume that A2 is equal to
A0. We also require the constraint

A0 + A1 + A2 = 1 (7)

to be satisfied. Solving for A0, we have

1

A0
= 2 +

1

2

1 − cos( 2ωl

ω0

π)

1 + cos( ωl

ω0

π)
. (8)

Calculating the magnitude of the time-delay filter at ω =
2ω0−ωl using the solution for A0 given by Equation 8, we
can show that it is equal to that at the nominal frequency
ω0. Thus, the magnitude of the time-delay filter at the two
limits of the uncertain frequency range and the nominal
frequency are the same.

Figure 2 illustrates the variation of the magnitude of the
transfer function of the time-delay filter which is referred to
as the sensitivity curve, for different uncertain regions. It is
clear from the figure that as the uncertain region decreases,
the maximum magnitude of the sensitivity curve becomes
smaller.

Since, the magnitude of the sensitivity plot at the nominal
frequency is

(A0 + A1cos(π) + A2cos(2π)) = (A0 − A1 + A0) =

(−1 + 4A0) =
1 + cos(πωl

ω0

)

3 − cos(πωl

ω0

)
, (9)

TABLE I
ANALYTICAL AND NUMERICAL MINIMAX SOLUTIONS

Uncertain Range Numerical Cost Closed Form Cost
0.6 < ω < 1.4 0.208818210 0.208818210
0.7 < ω < 1.3 0.114893930 0.114893930
0.8 < ω < 1.2 0.050139709 0.050139711

the uncertain region can be solved given a permissible
maximum magnitude of the sensitivity curve. For a given
magnitude M , the lower bound of the uncertain frequency
range is

ωl =
ω0

π
cos−1(

3M − 1

M + 1
). (10)

or the width of the uncertainty is given by the equation

2(ω0 − ωl) = 2ω0(1 −
1

π
cos−1(

3M − 1

M + 1
)). (11)

It is also clear from Equation 9 that A0 lies in the range

1

4
≤ A0 ≤

1

2
⇒ 0 ≤ M ≤ 1, (12)

since the magnitude of the the sensitivity curve should not
be greater than 1 at the nominal frequency.

The location of poles for the minimax filter can be
solved for by substituting the closed form solutions for the
parameters of the time-delay filter. The equations

A0 + A1cos(ωT ) + A2cos(2ωT ) = 0, (13)

A1sin(ωT ) + A2sin(2ωT )) = 0, (14)

where T = π/ω0, have to be solved to determine the
locations of the zeros of the time-delay filter. Equation 14
can be rewritten as

(1 − 2A0)sin(ωT ) + A0sin(2ωT ) =

sin(ωT )(1 − 2A0 + 2A0cos(ωT )) = 0. (15)

which can be solved resulting in the equation

cos(ωT ) =
2A0 − 1

2A0
. (16)

which satisfies Equation 13 as well. Thus the zeros of the
time delay filter are located at

ω = ±
1

T
cos−1(

2A0 − 1

2A0
) +

2nπ

T

= ±
ω0

π
cos−1(

2A0 − 1

2A0
) + 2nω0

(17)

where n is an integer.
The proposed approach is compared to a numerical

minimax optimization approach for three uncertain intervals
and the results are tabulated in Table I. It can be seen
that the difference between the numerical and the proposed
approach is negligible.



B. Three Time-Delay Filter

It can be seen from the two time-delay filter that the
magnitude of the time-delay filter transfer function at the
nominal frequency is nonzero. To force the magnitude at
the nominal frequency to zero, a three time-delay filter is
proposed where the time-delays are assumed to be

T1 =
π

ω0
, T2 =

2π

ω0
, and T3 =

3π

ω0
. (18)

Further, assuming that

A0 = A3, and A1 = A2, (19)

and with the requirement that

A0 + A1 + A2 + A3 = 1, (20)

it can be shown that the magnitude of the transfer function
of the time-delay filter

F (ω) = 8cos3(
ωπ

ω0
)A2

0 + (4A0 − 8A2
0)cos

2(
ωπ

ω0
)+

(
1

2
− 8A2

0)cos(
ωπ

ω0
) +

1

2
− 4A0 + 8A2

0 (21)

is 0 at ω = ω0, the nominal frequency. The location of the
extremum of the sensitivity curve can be shown to be at

ω = ω0 and ω =
ω0

π
cos−1

(

4A0 − 1

4A0

)

+ 2nω0 n=1,2,3...

(22)
which corresponds to the minimum at the nominal fre-
quency. and

ω =
ω0

π
cos−1

(

−
4A0 + 1

12A0

)

+ 2nω0 n=1,2,3... (23)

which corresponds to the maximum. The magnitude of the
sensitivity curve at the maximum is

F

(

ω =
ω0

π
cos−1

(

−
4A0 + 1

12A0

))

=
512A3

0 − 192A2
0 + 24A0 − 1

54A0
.

(24)

Equating the magnitude of the transfer function of the time-
delay filter at the lower limiting frequency to the maximum,
we have

8cos
3(

ωlπ

ω0

)A2

0+(4A0−8A
2

0)cos
2(

ωlπ

ω0

)+(
1

2
−8A

2

0)cos(
ωlπ

ω0

)+

1

2
− 4A0 + 8A

2

0 =
512A3

0 − 192A2

0 + 24A0 − 1

54A0

, (25)

we can solve the cubic equation for A0, resulting in the
solutions

A0 = −
1

3cos(ωlπ
ω0

) − 5
, A0 = −

1

4(1 + 3cos(ωlπ
ω0

))

and A0 = −
1

4(1 + 3cos(ωlπ
ω0

))
. (26)

The second and the third solutions which are identical force
the boundary to be a maximum resulting in a suboptimal
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Fig. 3. Three Time-Delay Filter Parameters
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Fig. 4. Sensitivity Curve

minimax filter. The first solution results in two maxima
which lie within the uncertain interval resulting in the
optimal minimax solution. Figure 3 illustrates the variation
of the gains of the time-delay filter as a function of the nor-
malized uncertain interval. It can be seen that the amplitudes
are always positive as in the two time-delay case. Figure 4
illustrates the variation of the sensitivity curve for different
uncertain regions. Compared to Figure 2, it can be seen that
the maximum magnitude of the three time-delay filter is
significantly smaller than the two time-delay filter. Figure 5
illustrates the variation of the uncertain region as a function
of permissible maximum magnitude of the two and three
time-delay filter. It is clear that as the maximum permissible
magnitude of the time-delay filter M , is increased, the
uncertain region monotonically increases. However, the rate
of increase of the uncertain region of the three time-delay
filter (dashed line) is large compared to the two time-delay
filter in the vicinity of zero permissible magnitude. This
implies that for small permissible magnitude, the uncertain
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Fig. 5. Uncertain Range vs. Permissible Magnitude

region of the three time-delay filter is large.

III. DAMPED SYSTEMS

To design minimax filters for systems characterized by
under-damped behaviour, a simple approach is proposed
which uses a transformation to represent the damped system
as a undamped system in the new space. For a under-
damped system given by the transfer function

G(s) =
ω2

s2 + 2ζωs + ω2
, (27)

we define a transformation

s = p − ζω. (28)

Substituting Equation 28 into Equation 27, we have

G(p) =
ω2

p2 + ω2(1 − ζ2)
, (29)

which represents an undamped system with a natural fre-
quency of ω

√

1 − ζ2. The closed form solution derived
earlier for undamped systems can now be used for this
transformed system. The time-delay filter can then be
transformed back into the original space to arrive at the
minimax filter for the damped system.

For instance, the transfer function of a time-delay filter
designed to cancel the poles of an undamped system (Equa-
tion 29) is given by the equation

F (p) = 1 + exp(−p
π

ω
√

1 − ζ2
) (30)

as shown by Singh and Vadali [3]. Transforming this filter
into the original space, we have

F (s) = 1 + exp(−(s + ζω)
π

ω
√

1 − ζ2
) (31)

which can be rewritten as

F (s) =exp

(

−ζπ
√

1 − ζ2

)(

exp

(

ζπ
√

1 − ζ2

)

+ exp

(

−s
π

ω
√

1 − ζ2

)) (32)

The requirement that the final value of the output of the
time-delay filter subject to a unity step input, be unity, re-
quires scaling of the gains of the time-delay filter, resulting
in the solution

F (s) =
exp( ζπ√

1−ζ2
) + exp(−s π

ω
√

1−ζ2
)

exp( ζπ√
1−ζ2

) + 1
(33)

which is identical to the time-delay filter designed to cancel
the damped poles as shown by Singh and Vadali [3].

Therefore, the closed form solution for the gains of the
two time-delay minimax filter for a damped system with
uncertainty in frequency is given by the equations

A0 =
2(1 + cos( ωl

ω0

π))

5 + 4cos( ωl

ω0

π) − cos( 2ωl

ω0

π)
exp(

2ζπ
√

1 − ζ2
) (34)

A1 =

(

1 − 2
2(1 + cos( ωl

ω0

π))

5 + 4cos( ωl

ω0

π) − cos( 2ωl

ω0

π)

)

exp(
ζπ

√

1 − ζ2
)

(35)
and

A2 =
2(1 + cos( ωl

ω0

π))

5 + 4cos( ωl

ω0

π) − cos( 2ωl

ω0

π)
(36)

and the delay times are

T1 =
π

ω
√

1 − ζ2
and T2 =

2π

ω
√

1 − ζ2
. (37)

and the parameters of the three time-delay minimax filter
for a damped system are given by the equations

A0 =
1

5 − 3cos(ωlπ
ω0

)
exp(

3ζπ
√

1 − ζ2
) (38)

A1 =
1

2

(

1 − 2
1

5 − 3cos(ωlπ
ω0

)

)

exp(
2ζπ

√

1 − ζ2
) (39)

A2 =
1

2

(

1 − 2
1

5 − 3cos(ωlπ
ω0

)

)

exp(
ζπ

√

1 − ζ2
) (40)

A3 =
1

5 − 3cos(ωlπ
ω0

)
(41)

T1 =
π

ω
√

1 − ζ2
, T2 =

2π

ω
√

1 − ζ2
and T3 =

3π

ω
√

1 − ζ2
.

(42)
The gains A0, A1, A2 and A3 have to be normalized which
is achieved by dividing each of the gains by

∑

i Ai

Equations 34-37 and 38-42 are the exact minimax solu-
tions for an uncertain regions which lies along the vertical
line in the complex plane passing through the nominal
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Fig. 6. Filter Comparison

damped poles. This implies that both the damping ratio
and the natural frequency are varying. The optimal solution
when uncertainty exists in the estimated natural frequency
implies that the uncertain region is along a straight line
passing through the damped nominal pole and the origin.
Figure 6 illustrates the difference between the numerical and
the closed form solution for a system with a nominal damp-
ing ratio of 0.1 and uncertainty in the natural frequency
. The difference between the numerical and closed form
increases with increasing uncertainty and it is clear that
the difference is not large and occurs at the limit of the
uncertain region.

IV. MULTI-MODE SYSTEMS

The proposed approach can be used to design robust
filters for systems whose transfer function includes multiple
modes. Time-delay filters are designed for each uncertain
frequency and they are subsequently convolved to arrive at a
time-delay filter which is robust to all uncertain frequencies.

To illustrate the proposed technique, assume that the two
frequencies to be attenuated lie in the range

0.8 ≤ ω1 ≤ 1.2, and 3.6 ≤ ω2 ≤ 4.4, (43)

and the nominal frequencies are selected to be at the
midpoint of the uncertain regions. The transfer functions of
the minimax time-delay filters for each of the frequencies
are

F1(s) = 0.2625 + 0.4749exp(−πs) + 0.2625exp(−2πs)
(44)

and

F2(s) = 0.2531 + 0.4938exp(−
π

4
s) + 0.2531exp(−

2π

4
s).

(45)
Figure 7 illustrates the magnitude plot of the minimax fil-
ters. The dash line and the dash-dot lines are the magnitude
plots of the filters F1(s) and F2(s) respectively. The solid
line is the magnitude plot of the final filter which is

F (s) = F1(s)F2(s). (46)
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Fig. 7. Robust Minimax Control: Multi-Mode System

It can be seen that the filter F (s) is robust to uncertainties
in both the frequencies.

V. PERFORMANCE ANALYSIS

The proposed technique minimizes the maximum mag-
nitude of the transfer function of a time-delay filter given
knowledge of the uncertain domain of the under-damped
mode. From a practical viewpoint, the residual energy of
the maneuvering structure is the metric of interest to control
designers. It is therefore of interest to determine how the
proposed technique for the design of prefilters compares
to the minimax filter designed to minimize the maximum
residual energy over the uncertain domain, a technique
developed by Singh [6]. The residual energy defined by

F =
1

2
ẏT Mẏ +

1

2
yT Ky (47)

where M and K are the mass and stiffness matrices and ẏ
and y are the velocity and position vectors of the system
in consideration, is used to compare the performance of the
two filters.

The two time-delay minimax filter which minimizes the
maximum magnitude of the residual energy is

G(s) = 0.2439 + 0.4554e−3.0527s + 0.3007e−2(3.0527)s

(48)
and the minimax filter using the closed form solution
proposed in this work is

G(s) = 0.2787 + 0.4426e−πs + 0.2787e−2πs (49)

where the uncertain frequency ω lies in the range

0.7 ≤ ω ≤ 1.3. (50)

It can be seen that the time-delay of the filter which
minimizes the residual energy is smaller compared to that
of the closed form solution.

Figure 8 illustrates the variation of the square root of the
residual energy over the uncertain frequency for a two time-
delay filter. It can be seen that the minimax filter designed
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Fig. 8. Filter Performance: 2 Time-Delay Filter
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Fig. 9. Filter Performance: 3 Time-Delay Filter

using the residual energy as the cost, performs better than
the proposed filter.

The next filter which constrains the residual energy to be
zero at the nominal frequency results in the filters

G(s) =0.15 + 0.35e−3.1415s

+0.35e−2(3.1415)s + 0.15e−3(3.1415)s
(51)

for the residual energy cost and

G(s) = 0.1479+0.3521e−πs+0.3521e−2πs+0.1479e−3πs

(52)
for the cost proposed in this work. Figure 9 illustrates that
the difference between the two filters is not very significant
with the proposed prefilter providing a performance which
is better than the filter designed to minimize the maximum
residual energy, over a large segment of the uncertain range.
The benefit of the proposed technique is that the closed
form solution permits its use in real-time filter design which
would be of interest for the design of adaptive filters.

VI. CONCLUSIONS

The contribution of this paper is the development of a
closed form solution to the parameters of a time-delay filter
which minimizes the maximum magnitude of the transfer
function of the time-delay filter. A simple technique to
design minimax time-delay filters for underdamped systems
is proposed. The minimax two time-delay filter results in
non-zero magnitude at the nominal frequency. This mag-
nitude can be reduced by penalizing the magnitude at the
nominal frequency compared to the limiting frequencies in
the uncertain domain. Closed form solutions for the three
time-delay filter are also derived which force the magnitude
at the nominal frequency to zero.
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