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Abstract— This article addresses the optimal (minimum-
time/energy) trajectory design for rapid output transitio ns, i.e.
changing the output from one value to another, in linear systems.
Furthermore, the output is required to be maintained constant
(e.g. without vibration) outside the transition time interval. The
output-transition problem is posed as a linear quadratic minimum-
time (LQMT) optimal control problem, which avoids bang-bang
controllers that result from solving the traditional time- optimal
problem. Additionally, the LQMT approach allows the time-opt imal
requirement to be traded off with the energy requirement by selecting
appropriated weighting factors. Current methods transform this
LQMT output-transition problem into a state-transition prob lem
by constraining the initial and final state of the output-transition
interval. However, the choice of the initial and final states can be ad
hoc and the resulting control law may not be optimal. In contrast,
the proposed approach directly solves the LQMT output-transition
problem by optimally choosing the initial and final states tominimize
the output-transition cost. The novelty of the proposed approach is
that inputs are not applied just during the output-transiti on time
interval; rather, inputs are also applied before the beginning of and
after the end of the output-transition time interval (these inputs
are called pre- and post-actuation). The method is illustrated using
a flexible structure model, and simulation results show substantial
reduction in output-transition cost when compared with the cost of
standard state-transition-based approaches, which do notuse pre-
and post-actuation.

I. I NTRODUCTION

This article proposes a feedforward trajectory design for rapid
output transitions in linear systems. It is noted that the output-
transition problem (i.e., changing the output of a system from one
value to another) is a fundamental control problem, which appears
in a wide range flexible structure applications. For example, such
problems arise in (I) rapidly positioning the end-point of large-
scale space manipulators (Refs. [1], [2], [3]); (II) positioning of
read/write heads of disk-drive servo systems, which are relatively
medium-scale flexible structures (Refs. [4], [5]); and (III) nano-
scale positioning and manipulation using relatively small-scale
piezo-actuators (Refs. [6], [7]). When performing fast maneuvers
with flexible structures, it is critical to suppress residual vibrations
that cause a loss of positioning precision. For example, in disk-
drive applications, read and write operations cannot be performed
(before and after the output transition) if the output position
is not precisely maintained at the desired track. Such residual
vibrations may take a prohibitively long time to settle down and
are undesirable because the system cannot perform the next task
until the vibrations reduce to an acceptable level. Therefore, it is
important to achieve output transitions that are fast and do not
cause residual vibrations. This article studies such vibration-free
(rest-to-rest) output transitions, where the output is maintained
at a constant value outside the output-transition time interval
[ti, tf ], as shown in Figure 1. The main contribution of this
article is the direct solution of the optimal (minimum-time/energy)
output-transition (OOT) problem for linear systems. The method
is illustrated on a flexible structure model and simulation results
are presented.
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Fig. 1. Output-Transition Problem.

Existing techniques solve such optimal output-transition prob-
lem by first transforming it into a state-transition problem. In
particular, output transitions without residual vibrations can be
obtained by requiring that the flexible system maneuvers between
equilibrium (rigid-body or rest) configurations. (These equilibrium
states,x andx, are chosen to result in the initial and final output
values,y and y, respectively.) Once the boundary states at the
beginning and end of output transition (x(ti), and x(tf )) are
chosen to be the rest (equilibrium) states, i.e.x(ti) = x, and
x(tf ) = x, then a solution to the optimal output-transition problem
can be found by solving the standard (minimum-time/energy)
state-transition (SST) problem, Refs. [8], [9], [10]. However, the
optimal SST solution found with this choice of the rest-to-rest
boundary states{x(ti) = x, x(tf ) = x} may not lead to
the optimal output-transition (OOT) solution. On the other hand,
arbitrary choices of the boundary states{x(ti), x(tf )} are also
not acceptable; they may not allow the output to be maintained
at a constant value after the completion of the output-transition
(i.e., without residual vibrations) for any choice of bounded inputs.
Therefore, the existing state-to-state transition approaches cannot
be used to directly solve the optimal output-transition problem.

In this article, the criterion used for choosing an optimal input
to achieve the optimal output transition is obtained by adding
a quadratic weight on the input to the time needed to achieve
the output transition. This approach is referred to as a linear
quadratic minimum-time (LQMT) problem (Refs. [8], [9], [10]).
The LQMT approach avoids the bang-bang controller that results
from the solution of traditional time-optimal problem, Refs. [1]-
[4], [11]. The bang-bang controller tends to rapidly switch the
control input between its maximum and minimum values [11].
Such rapid switching is undesirable since it tends to violate system
constraints such as actuator bandwidth limitations and acceptable
vibration levels required to avoid structural failure. In contrast,
posing the OOT problem using the LQMT criterion allows one to
balance the time-optimal requirement with the energy requirement
without having to use a bang-bang controller. The solution to this
optimal (LQMT) output-transition problem is presented in this
article.

A novelty of the proposed output-transition approach, when
compared to standard state-transition approaches, is that it uses
both pre- and post actuation inputs to reduce the transition cost
(Refs. [12] and [13]). In particular, the proposed approach uses
an inversion-based control technique to find pre-actuation (t<ti)



inputs that maintain output tracking (y = y) before initiating the
output transition, and similarly to find the post-actuation (t> tf )
inputs to maintain the output at the final value (y) after completing
the output transition. The inversion-based control approach, which
finds the pre- and post-actuation inputs, is then integrated with
the state-transition approach, e.g. in Ref. [8], during the output
transition (between initial transition timeti and final transition
time tf ) to solve the optimal output-transition problem. It is
noted that the proposed approach does not put a constraint on
the boundary states{x(ti), x(tf )}; rather, we exploit the freedom
in the choice of the boundary states to optimally reduce the output-
transition cost. It is shown in this article that the optimal LQMT
output-transition solution substantially reduces both transition time
and input energy required to complete the output transition when
compared to the LQMT state-transition (SST) approach.

This paper is organized as follows. In Section II, the output-
transition problem is formulated. The problem is solved in Section
III. The application to flexible structure model and the simulation
results are presented in Sections IV. Our conclusions are in Section
V.

II. PROBLEM FORMULATION

We consider asquare(same number of inputs as outputs), linear,
time-invariant dynamical system in the state-space form, described
as {

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

, ∀ t ∈ (−∞,∞) (1)

where the system state isx(t) ∈ <n, the input isu(t) ∈ <p, and
the output isy(t) ∈ <p. It is assumed that the system (Eq. 1)
is controllable. Then, the output-transition problem is defined as
following.

Definition 1: The output-transition problem is to find
bounded input-state trajectories[u(·), xref (·)] that satisfy the
system equations in (Eq. 1) and the following two conditions:

1. The output-transition condition:The output is transferred
from an initial valuey to a final valuey within the output-transition
time interval [ti, tf ], and is maintained constant at the desired
value before and after the output transition, i.e.,

yref (t) = y = Cx for ∀ t ≤ ti

yref (t) = y = Cx for ∀ t ≥ tf
(2)

whereyref (t) := Cxref (t), ti and tf denote the times when the
output transition starts and completes, respectively. Furthermore,
the statesx and x denote the initial and final equilibrium states
(i.e., Ax = Ax = 0), which are chosen to result in the desired
initial and final output values (y andy).

2. The delimiting-state condition:The state approaches the
equilibrium configuration as time goes to (plus or minus) infinity,
i.e.,

xref (t) → x as t → −∞; andxref (t) → x as t → ∞. (3)
For controllable systems, there exists at least one input that

achieves the desired output transition, e.g. by setting the state
x(t) = x during the pre-transition time (t ≤ ti) and the state
x(t) = x during the post-transition time (t ≥ tf ) the output-
transition problem becomes a state-transition problem which can
be solved by existing techniques (see, for example, Ref. [14]).
In this article, we want to choose the input that minimizes the
time/energy performance. The optimal output-transition (OOT)
problem is stated as following.

Definition 2: The optimal (linear-quadratic/minimum-time)
output-transition problem (OOT) is to find bounded input-state
trajectories[u(·), xref (·)] and a final transition time (tf ) that solve

the output-transition problem (see Definition 1), and minimizes the
following time/input-energy cost functional,

J{tf , u(t; tf )} = ρ(tf − ti) +

∫ ∞

−∞

u(t)T Ru(t) dt (4)

:= ρTtran + JLQ{tf , u(t; tf )} (5)

where the positive constantρ and the symmetric positive-definite
matrix R represent weighting factors between the elapsed output-
transition time and the input energy, respectively. The time interval
Ttran := tf − ti is the elapsed output-transition time, and the cost
componentJLQ denotes the contribution of the input-energy to the
total cost. Throughout the rest of the article, the initial transition
time (ti) is assumed to be constant.

III. T HE LQMT OUTPUT-TRANSITION (OOT) SOLUTION

We approach the LQMT output-transition problem in two steps.
First, we consider the OOT problem with a fixed final transition
time, and find the optimal input that minimizes the quadratic input-
energy termJLQ, defined in (Eq. 5). Second, theoptimal input-
energy cost (which is treated as a parameterized function of final
transition time) is substituted into the total cost equation (Eq. 4).
Then, we can formulate the OOT problem as a parameterized
optimization problem in the final transition time, i.e.

min
tf ,u

J{tf , u(t; tf )} :=min
tf

{

ρ(tf −ti)+min
u

[JLQ{tf , u(t; tf )}]
}

.

(6)
A. Fixed final transition time

In this subsection, we consider the output-transition solution
that minimizes the quadratic input-energy costJLQ, see (Eq. 6)
for a given fixed final transition timetf > ti. In the following, we
assume that the system can be represented in the output-tracking
form or normal form (see Ref. [15]).

Assumption 1:Throughout the rest of the article, we assume
the following. There exist

I.) a state transformationΦ, defined by

x(t) = Φ
[

ξ(t)T ηs(t)
T ηu(t)T ηc(t)

T
]T

:= [Φξ|Φηs |Φηu |Φηc ]
[

ξ(t)T |ηs(t)
T |ηu(t)T |ηc(t)

T
]T

(7)

where the componentξ(t) :=
[

y1(t)
T , . . . , y

(ρ1−1)
1 (t)T , . . .

yp(t)T , . . . , y
(ρp−1)
p (t)T

]

represents the output and its time-
derivatives up to orderρ − 1 (the parametersρ1, ρ2, . . . , ρp

denote the corresponding relative degrees to each output), and
the componentsηs(t), ηu(t), ηc(t) represent the stable, unstable,
and center subspaces of the internal dynamics (see Ref. [15]),
respectively, and

II.) an input law that yields the exact output tracking with the
following general form,

uinv(t) := Usηs(t) + Uuηu(t) + Ucηc(t) + UξYd(t) (8)

where Yd(t) :=
[

ξd(t)T , y
(ρ1)
1d

(t)T , . . . , y
(ρp)
pd

(t)T
]T

with the
subscriptd denoting the desired (or known) values,

III) such that the original system (Eq. 1) can be transformed
into the followingoutput-tracking form(by using the above state
transformationΦ and input lawuinv),

ξ̇(t)= ξ̇d(t)




η̇s(t)
η̇u(t)
η̇c(t)



=





As 0 0
0 Au 0
0 0 Ac









ηs(t)
ηu(t)
ηc(t)



 +





Bs

Bu

Bc



 Yd(t). (9)



Remark 1:Assumption 1 is satisfied if the system has a well-
defined vector relative degree,ρ := [ρ1, ρ2, . . . , ρp], see Ref. [15].

The minimum-energy output-transition cost is computed in two
steps. In the first step, we quantify the control inputs, required
before the initiation of the output-transition (pre-actuation) and
after the completion of the output-transition (post-actuation), that
allow the output to be maintained at constant value before and
after the output-transition interval (i.e, satisfying the conditions for
output-transition problem in Definition 1). Associated with these
pre- and post-actuation inputs, we identify the acceptable set of
the boundary states, i.e. the statexi at the initial transition time
(ti) and the statexf at the final transition time (tf ) that can be
chosen while satisfying the conditions for the output-transition
problem. We note that if the acceptable boundary states{xi, xf}
are specified, the optimal input during the output-transition interval
(ti ≤ t ≤ tf ) can be found by using the standard LQ optimal
control technique (see, for example, Chapter 3 in Ref. [14]).

In the second step, we integrate the pre- and post-actuation
inputs with the optimal state-transition during the output-transition
time interval[ti, tf ] to find the optimal boundary states that yield
the minimum-energy cost. The detailed of the minimum-energy
output-transition solution can be found in Ref. [12], and the results
are briefly stated in the next Theorem.

Theorem 1:Let Assumption 1 be satisfied. Then for any fixed
final transition timetf > ti, we obtain the following results.

I) The pre-actuation input that satisfies the output-tracking
conditions (Eqs. 2 and 3 in Definition 1) is uniquely specified
in terms of the unstable internal state componentηui at the initial
transition time, and is given by

upre(t) := UueAu(t−ti)(ηui − η
u
), for t < ti (10)

where [ξT , ηT

s
, ηT

u
, ηT

c
]T = Φ−1x. Similarly, the post-actuation

input that satisfies the output-tracking conditions (Eqs. 2 and 3 in
Definition 1) is uniquely specified in terms of the stable internal-
state componentηsf

at the final transition time, and is given by

upost(t) := Use
As(t−tf )(ηsf

− ηs), for t > tf (11)

where [ξ
T
, ηT

s , ηT
u , ηT

c ]T = Φ−1xT . Furthermore, the costs
associated with these pre- and post-actuation inputs are equal to

Jpre = (ηui − η
u
)T Wpre(ηui − η

u
) , and

Jpost = (ηsf
− ηs)

T Wpost(ηsf
− ηs)

(12)

whereWpre =
∫ ∞

0
e−AT

u τUT
u RUue−Auτdτ , and

Wpost =
∫ ∞

0
eAT

s τUT
s RUse

Asτdτ .
II) The only components of the boundary states{xi, xf} that

can be varied while satisfying the output-transition conditions
(Eqs. 2 and 3) are the unstable componentηui (of internal state
at the initial transition time) and the stable componentηsf

(of
internal state at the final transition time). Therefore, the acceptable
boundary states{xi, xf} must be chosen as

xi=Φ
[

ξT |ηT

s
|ηT

ui
|ηT

c

]T

and xf=Φ
[

ξ
T |ηT

sf
|ηT

u |ηT
c

]T

(13)

Furthermore, we define theboundary conditionΨ which is the
components of the state, at the initiation and completion of the
output transition, that can be freely varied while satisfying the
conditions for the output-transition problem, i.e.

Ψ :=
[

ηT
sf

ηT
ui

]T

. (14)

III) Given a pair of acceptable boundary states{xi, xf}, the
minimum-energy control input that transfers the system from the

initial statexi to the final statexf within a transition timeTtran =
tf − ti is given by

utran(t) := R−1BT eAT (tf−t)G−1dx, for ti ≤ t ≤ tf (15)

whereG is the invertible controllability grammian, defined by

G :=

∫ tf

ti

eA(tf−τ)BR−1BT eAT (tf−τ)dτ, (16)

anddx denotes the transition-state difference, given by

dx := xf − eA(tf−ti)xi (17)

:= H1f̂ + H2Ψ (18)

where H1 := [Φξ Φηu Φηc −Γξ −Γηs −Γηc ] ,

H2 := [Φηs −Γηu ] ,

[Γξ Γηs Γηu Γηc ] := eA(tf−ti)[Φξ Φηs Φηu Φηc ] ,

and f̂ :=
[

ξ
T

ηT
u ηT

c ξT ηT

s
ηT

c

]T

.

Furthermore, the cost during the output transition when using this
optimal state-transition control input is then equal to

Jtran = dT
x G−1dx. (19)

IV) The optimal input that minimizes the input-energy costJLQ

(defined in Eq. 5) over all acceptable sets of boundary states is
given by

u∗(t; tf )=



















UueAu(t−ti)[η∗
u − η

u
] if t < ti

Use
As(t−tf )[η∗

s − ηs] if t > tf

R−1BT eAT (tf−t)G(tf )−1[x∗
f − eA(tf−ti)x∗

i ]
if ti ≤ t ≤ tf

(20)
where the optimal boundary condition and the optimal boundary
states are given by

Ψ∗ :=

[

η∗
s

η∗
u

]

:=

{

Λ−1b , if Λ is invertible
Λ†b , otherwise

,

x∗
i = Φ

[

ξT ηs
T η∗

u
T ηc

T
]T
, x∗

f = Φ
[

ξ
T

η∗
s

T ηu
T ηc

T
]T

,

respectively. Furthermore, the matrixΛ is defined by

Λ :=

[

Wpost 0
0 Wpre

]

+ HT
2 G−1H2, (21)

andΛ† denotes the pseudo (generalized) inverse ofΛ (Ref. [16]).
This optimal inputu∗(t; tf ) is referred to as the solution to the
minimum input-energy output-transition problem.

V) The minimum input-energy cost for a given final transition
time tf is equal to

J∗
LQ{tf , u∗(t; tf )} := Ψ∗T

ΛΨ∗ − 2Ψ∗T
b + c. (22)

where b :=

[

Wpostηs

Wpreη
u

]

− HT
2 G−1H1f̂ , and

c := ηT
s Wpostηs + ηT

u
Wpreη

u
+ f̂T HT

1 G−1H1f̂ .
(23)

Proof: PartsI) and II) follow directly from Lemmas 3 and
5 in Ref. [12]. PartIII) is derived in Chapter 3 in Ref. [14]. For
partsIV) andV), see Theorem 1 in Ref. [12].

B. Free final transition time

The total LQMT costJ{tf , u(t; tf )} in (Eq. 4) is a functional of
the final transition timetf and the control inputu(t; tf ) where
the notation tf in the input term indicates the parameterized
dependency on the final transition time. If the final transition time
tf is specified, then one can obtain the optimal quadratic costJ∗

LQ

and the optimal control inputu∗(t; tf ) by using Theorem 1. Thus,



by substituting this optimal quadratic term (Eq. 22) into the total
LQMT cost function (Eq 4), the LQMT output-transition problem
can be formulated as a parameterized optimization problem in the
final transition time (as shown in Eq. 6), i.e.

J{tf , u∗(t; tf )}=J(tf )=ρ(tf −ti)+J∗
LQ{tf , u∗(t; tf )}. (24)

As shown in previous Section, the optimal quadratic costJ∗
LQ

directly depends on the boundary stateΨ, which, in turn, is an
implicit function of the final transition timetf . The challenge is
to show the existence of an optimal final transition timet∗f . If
such a solution exists, then one can be computed by minimizing
the total LQMT cost in (Eq. 24) over the parametertf > ti. We
begin by investigating some properties of the optimal quadratic
cost J∗

LQ{tf , u∗(t; tf )} as a parameterized function of the final
transition timetf when tf > ti.

Proposition 1: The optimal quadratic costJ∗
LQ{tf , u∗(t; tf )},

as defined in (Eq. 22), is a continuous function of the final
transition timetf for all tf > ti.

Proof: First we expand the optimal quadratic cost (Eq. 22)
in terms of individual components as
J∗

LQ{tf , u∗(t; tf )}=Ψ∗(tf )
T
Λ(tf )Ψ∗(tf )−2Ψ∗(tf )

T
b(tf )+c(tf )

= J∗
pre + J∗

tran + J∗
post =

[

η∗
u(tf ) − η

u

]T

Wpre

[

η∗
u(tf ) − η

u

]

+
[

H1(tf )f̂+H2(tf )Ψ∗(tf )
]T

G(tf )−1
[

H1(tf )f̂+H2(tf )Ψ∗(tf )
]

+ [η∗
s (tf ) − ηs]

T
Wpost [η∗

s (tf ) − ηs]

where the dependency on the final transition time is explicitly
shown by the notation(tf ) after the variables. Note that the
matricesH1(tf ) and H2(tf ) are continuous in term oftf since
they are composed of terms from the constant transformation
matrix Φ and from the matrix exponentialeA(tf−ti) which is
continuous intf (see Eq. 18).

The controllability grammianG(tf ), as defined in (Eq. 16),
is continuous intf since the integrand is a continuous function.
Note that if a matrix function is continuous in its variable and
nonsingular, then the inverse of the matrix is also continuous in its
variable (Ref. [17]). Since the controllability of the system implies
that the grammianG(tf ) is nonsingular, the inverse grammian
function G−1(tf ) is also continuous intf . The matricesΛ(tf ),
b(tf ), andc(tf ) (as given in Eqs. 21 and 23) are also continuous
functions of tf since they are products of the matricesH1(tf ),
H2(tf ), and G−1(tf ). The optimal boundary conditionΨ∗ (as
given in Theorem 1) is a product of two continuous matrices.
Therefore the cost functionJ∗

LQ{tf , u∗(t; tf )} is continuous in
the final transition timetf since each components that depend on
tf is continuous intf .

In the following, let the operator‖ · ‖ denotes the Euclidean
norm of a vector and thel2-operator norm (spectral norm) of a
matrix, see Ref. [17].

Proposition 2: Suppose the outputy 6= y, and the boundary
states{xi, xf} are chosen so that satisfy the conditions output-
transition problem (in Definition 1). Then there exist some time
tα
f greater than the initial transition timeti and a constantKα

greater than0 such that magnitude of the transition-state difference
‖dx(tf )‖ > Kα whenever the final transition time is in between
ti < tf < tα

f .
Proof: Since the boundary conditionΨ represents the only

internal-state components that can be varied while satisfying the
conditions for the output-transition problem (see Theorem 1),
the boundary states must be chosen among the acceptable set
described in (Eq. 13). So the transition-state differencedx with

the acceptable boundary states{xi, xf} can be written in terms
of the output-tracking coordinates(ξ, η) as

dx = xf − eA(tf−ti)xi

= Φ

{

[

ξ
T
, ηT

sf
, ηT

u , ηT
c

]T

− Φ−1eA(tf−ti)Φ
[

ξ, ηT

s
, ηT

ui
, ηT

c

]T
}

:= Φ dξ,η.

where the transformationΦ is given in (Eq. 7). Without loss of
generality, assume that the system coordinates are shifted so that
the initial equilibrium state is at the origin, i.e. letx = 0, thus the
transition-state difference becomes

dx = Φ

{

[

ξ
T
, ηT

sf
, ηT

u , ηT
c

]T

− Φ−1eA(tf−ti)Φ
[

0, 0, ηT
ui

, 0
]T

}

.

Next, partition the transition matrixPhi−1eA(tf−ti)Φ (corre-
sponding to the output-tracking coordinate) as

Φ−1eA(tf−ti)Φ :=








Θξξ(tf ) Θξηs(tf ) Θξηu(tf ) Θξηc(tf )
Θηsξ(tf ) Θηsηs(tf ) Θηsηu(tf ) Θηsηc(tf )
Θηuξ(tf ) Θηuηs(tf ) Θηuηu(tf ) Θηuηc(tf )
Θηcξ(tf ) Θηcηs(tf ) Θηcηu(tf ) Θηcηc(tf )









.

Note that the matrix functionsΘξηu(tf ) and Θηuηu(tf ) are
continuous functions of the final transition timetf with the initial
conditions lim

tf→ti

Θξηu(tf ) = 0 and lim
tf→ti

Θηuηu(tf ) = I, since

lim
tf→ti

Φ−1eA(tf−ti)Φ = I. Then define a new a variable,

ψ(tf ; ηui) =

[

ξ − Θξηu(tf )ηui

ηu − Θηuηu(tf )ηui

]

.

Let σΦ,min denotes the smallest singular value of the transforma-
tion matrix Φ (note thatσΦ,min > 0 since the matrixΦ is non-
singular). Since‖dx‖ ≥ σΦ,min‖dξ,η‖ ≥ σΦ,min‖ψ(tf , ηui)‖,
it suffices to show that if there exists some time instanttα

f > ti

and a constantKα > 0 such that‖ψ(tf , ηui)‖ > Kα/σΦ,min

wheneverti < tf < tα
f , then‖dx‖ > Kα.

By continuity of the matrix function Θξηu(tf ) and
lim

tf→ti

Θξηu(tf ) = 0, there exists some timet1 greater

than the initial transition timeti and a constantε1 with
0 < ε1 < ‖ξ‖/{2(‖ξ‖ + ‖ηu‖)} such that‖Θξηu(tf )‖ < ε1
wheneverti < tf < t1. Next, consider 2 possible cases of the
internal state componentηui .
Case (I):Suppose‖ηui‖ ≤ ‖ξ‖ + ‖ηu‖.

Note that ‖ψ(tf , ηui)‖ ≥ ‖ξ − Θξηu(tf )ηui‖ ≥
∣

∣ ‖ξ‖ − ‖Θξηu(tf )ηui‖
∣

∣ . Since‖Θξηu(tf )ηui‖ ≤ ‖Θξηu(tf )‖·
‖ηui‖ < ‖ξ‖/2, therefore‖ψ(tf , ηui)‖ > ‖ξ‖/2.
Case (II): Suppose‖ηui‖ > ‖ξ‖ + ‖ηu‖.

Since the matrix functionΘηuηu(tf ) is continuous function of
the final transition timetf and lim

tf→ti

Θηuηu(tf ) = I, there exists

some timetI > ti such that the matrixΘηuηu(tf ) is invertible
whenever the final transition timeti < tf < tI . Let σΘ,min(tf )
denotes the smallest singular value of the matrixΘηuηu(tf ). Since
lim

tf→ti

σΘ,min(tf ) = 1, by continuity of the singular value function

there exist some timet2 with ti < t2 < tI and a constantε2
with 0 < ε2 < ε1 such that| σΘ,min(tf ) − 1 | < ε2 whenever
ti < tf < t2. Then

‖Θηuηu(tf )ηui‖ ≥ σΘ,min(tf ) · ‖ηui‖
> (1 − ε2) · (‖ξ‖ + ‖ηu‖)
> (1 − ε1) · (‖ξ‖ + ‖ηu‖)
= (‖ξ‖ + ‖ηu‖) − ε1 · (‖ξ‖ + ‖ηu‖)
> (‖ξ‖ + ‖ηu‖) − ‖ξ‖/2 = ‖ξ‖/2 + ‖ηu‖



Note that ‖ψ(tf , ηui)‖ ≥ ‖ηu − Θηuηu(tf )ηui‖ ≥
| ‖ηu‖ − ‖Θηuηu(tf )ηui‖ | , therefore‖ψ(tf , ηui)‖ > ‖ξ‖/2.

Set tα
f = min{t1, t2} andKα = σΦ,min‖ξ‖/2. Then the state

difference,‖dx‖ > Kα whenever the final transition timeti <
tf < tα

f , which completes the proof.
Remark 2:The smallest singular valueσΘ,min is a specialized

case of the matrix lower bound‖Θηuηu(tf )‖L, see Ref. [18].
The matrix lower bound is also a continuous function of the final
transition time on the interval(ti, tI) by Corollary 4.3 in Ref.
[18].

Proposition 3: Suppose the outputy 6= y, and the boundary
states{xi, xf} are chosen to satisfy the conditions for output-
transition problem (in Definition 1). Then there exist some time
tε
f > ti and a constantKε > 0 such that the optimal quadratic

costJ∗
LQ{tf , u∗(t; tf )} ≥ Kε/(tf − ti) when the final transition

time tf is in between the interval(ti, t
ε
f ].

Proof: (This following proof is adapted from the LQMT
state-transition solution, see Theorem 2.1 in Ref. [8].) Note that
the optimal quadratic costJ∗

LQ{tf , u∗(t; tf )} can be partitioned
into the pre-transition costJpre, the post-transition costJpost (Eq.
12), and the cost during output transitionJtran, see (Eq. 19). Since
the pre- and post-transition costs are always greater than or equal
to zero, we obtain the inequality

J∗
LQ{tf , u∗(t; tf )} ≥ Jtran{u∗(t; tf )}

=
[

x∗
f − eA(tf−ti)x∗

i

]T

G(tf )−1
[

x∗
f − eA(tf−ti)x∗

i

]

= d∗
x(tf )T G(tf )−1d∗

x(tf ),

where the optimal boundary state{x∗
i , x∗

f} are defined in Theorem
1. Next consider the operator norm of the controllability grammian
G(tf ),

‖G(tf )‖op ≤
∫ tf

ti
‖eA(tf−τ)BR−1BT eAT (tf−τ)‖dτ

=
∫ tf−ti

0
‖eAυBR−1BT eAT υ‖dυ

≤
∫ tf−ti

0
max

υ∈[0,tf−ti]
‖eAυ‖2‖BR−1BT ‖dυ.

Note that the function norm‖eAυ‖ is continuous inυ and
‖eAυ‖ = 1 when υ = 0. So there exist constantsKβ > 1 and
υβ > 0 such that‖eAυ‖ < Kβ whenever0 < υ < υβ . Let the
time tβ

f = ti + vβ , we obtain that, for alltf ∈ (ti, t
β
f ],

‖G(tf )‖op ≤ Kβ‖BR−1BT ‖(tf − ti).

Note that the grammianG(tf ) is symmetric, so the largest
eigenvalue ofG(tf ) equals to the operator norm ofG(tf ) (Ref.
[16]), i.e., for all tf ∈ (ti, t

β
f ],

λmax[G(tf )] = ‖G(tf )‖op ≤ Kβ‖BR−1BT ‖(tf − ti).

Consider the Rayleigh-Ritz inequality,

dx(tf )T G(tf )−1dx(tf ) ≥ λmin[G(tf )−1] ‖dx(tf )‖2

= λmax[G(tf )]−1‖dx(tf )‖2

since G(tf ) is square and symmetric. From Proposition 2,
there existKα > 0 and tα

f > ti such that for all tf ∈
(ti, t

α
f ), ‖dx(tf )‖ > Kα. Set tε

f = min(tα
f , tβ

f ) and Kε =

Kα/
{

Kβ‖BR−1BT ‖
}

, then

J∗
LQ{tf , u∗(t; tf )} ≥ Kε/(tf − ti), for all tf ∈ (0, tε

f ].

Proposition 4: There exists a timeta
f > ti such that the total

cost J{tf , u∗(t; tf )} ≥ J{ta
f , u∗(t, ta

f )} for any tf in the time
interval (ti, t

a
f ].

Proof: For any final transition timetf in the time interval
(ti, t

ε
f ], Proposition 3 states that the total cost

J{tf , u∗(t; tf )} = ρ(tf − ti) + J∗
LQ{tf , u∗(t; tf )}

≥ ρ(tf − ti) + Kε/(tf − ti),

for some constantKε > 0. Set ta
f := min(tε

f , ti + (Kε/ρ)1/2),
then the total costJ{tf , u∗(t; tf )} ≥ J{ta

f , u∗(t, ta
f )} for any tf

in the time interval(ti, t
a
f ] since the lower boundρ(tf − ti) +

Kε/(tf − ti) is monotonically decreasing.
Theorem 2:The solution to the LQMT output-transition prob-

lem (Definition 2) exists, and the optimal final transition time (t∗f )
is either equal to the initial transition time (t∗f = ti) or lies inside
the interval[ta

f , ti + J{ta
f , u∗(t, ta

f )}/ρ] for some timeta
f > ti

defined by Proposition 2.
Proof: If the initial and final output are the same, i.e.y = y,

the solution is trivial with the optimal final transition timet∗f = ti,
i.e. J{tf , u∗(t; tf )} = 0. If the outputy 6= y, then the optimal
final transition timet∗f ≥ ta

f , since from Proposition 4 the total
cost J{tf , u∗(t; tf )} ≥ J{ta

f , u∗(t, ta
f )} for all tf ∈ (ti, t

a
f ]

. Let a time instanttb
f := ti + J{ta

f , u∗(t, ta
f )}/ρ. Then the

optimal t∗f ≤ tb
f since the total costJ{tf , u∗(t; tf )} ≥ ρ(tf −

ti) ≥ J{tb
f , u∗(t, tb

f )} for all tf ≥ tb
f . Therefore, the optimal

final transition timet∗f exists and lies inside the closed interval
[ta

f , tb
f ] since the cost functionalJ{tf , u∗(t; tf )} is continuous

function on a compact interval, which always have a minimum
(see Theorem 3.17.21 in Ref. [17]).

IV. EXAMPLE : TWO-MASS/FLEXIBLE ROD SYSTEM

In this example, we consider two masses linked by a flexible
rod, shown in Figure 2, as an illustrative example. The inputu(t)
is the force applied to the massm2 on the left-side of the rod, and
the output is the displacement of the massm1 on the right-side
of the rod. The goal is to change the output (the position of the
massm1) by one unit length with the minimum elapsed time and
minimum input-energy effort.

x1x2

m
u(t)

2
m

1, kr , crmr

Fig. 2. Two-mass/flexible rod system

a) System description:The dynamics of the system, derived
by using a simplified finite element model (FEM) with one element
for the flexible rod, can be represented by

{

[M l] + [Mr]
}

Ẍ(t) + [Cr]Ẋ(t) + [Kr]X(t) =

[

0
1

]

u(t),

(25)

[M l] :=

[

m1 0
0 m2

]

, [Mr] := ρrArlr
6

[

2 1
1 2

]

, [Kr] :=

ArEr

lr

[

1 −1
−1 1

]

and [Cr] := αr[K
r] where X(t) :=

[x1(t) x2(t)]
T is the position vector of the two lumped masses

attached at both ends of the rod,[M l] is the diagonal mass-
matrix term associated with the lumped masses,[Mr] is the mass-
matrix term representing the distributed mass of the rod,[Kr] is
the stiffness matrix,[Cr] is the structural damping matrix, and
the parametersαr, ρr, Ar, Er, and lr represent damping factor,
density, cross-sectional area, elasticity modulus, and length of the
flexible rod, respectively. In the simulations, the system parameters
were chosen to bem1 = m2 = 10kg, mr = ρrArlr

6
= 1kg,

kr = ArEr

lr
= 1.4N/m, and αr = 2.8sec, i.e. corresponding



to the natural frequencyωn = 0.5rad/sec, and the damping
coefficientζ = 0.707 (≈ 1/

√
2) of the flexible mode. The state

of the system is defined asx = [x1 x2 x3 x4]
T wherex3 and

x4 represent the velocities of massesm1 and m2, respectively.
During simulations, the equilibrium states for the output transitions
were chosen to bex = [0 0 0 0]T and x = [1 1 0 0]T . In this
example, the output transition begins at the fixed initial transition
time ti = 10sec. The terminal-time weighted factor is chosen as
ρ = 3000, and the input-energy weighted matrix is chosen as
R = 1.

b) The LQMT output-transition (OOT) solution:The optimal
final transition time (t∗f ) is found as the least elapsed time required
to complete the output transition. As shown in Figure 3(a), the
optimal LQMT output-transition solution occurs when the output-
transition time (tf − ti) is equal to2.85sec, i.e. the optimal final
transition time ist∗f = 12.85sec, and the optimal output-transition
cost isJ∗

OOT = 10565.22. The comparisons between the optimal
quadratic costJ∗

LQ (Eq. 22), the final time penaltyρ(tf − ti), and
the total LQMT output-transition costJOOT (Eq. 4) when the
output-transition time (tf − ti) is varied are also shown in Figure
3(a). The optimal input and output trajectories are presented in
Figure 4(a). It is noted that, for the OOT approach, the pre- and
post-actuation inputs were applied outside the output-transition
interval to maintain the output at constant value (y or y).

c) Comparison to the LQMT solution for state transition
(SST): The conventional LQMT approach (e.g. in Ref. [8]) for
the state transition, between the initial equilibrium statex and
the final equilibrium statex, results in the optimal final transition
time t∗f = 16.3sec, and the corresponding optimal LQMT state-
transition costJ∗

SST = 21637.96. The costs as functions of the
output-transition time are shown in Figure 3(b), and the optimal
SST input and output trajectories when using the state-transition
approach are presented in Figure 4(b).

It is noted that the LQMT output-transition (OOT) approach
substantially reduces the elapsed time required to complete
the output-transition maneuver by54.7% (i.e., from 6.3sec to
2.85sec) and reduce the total cost by51%, when compared to
the LQMT state-transition approach (SST).

V. CONCLUSION

The minimum-time/input-energy output-transition problem was
posed and solved in this article. The approach was applied to a
two-mass/flexible-rod system model, and simulation results were
presented. It was shown that the proposed approach of using
pre- and post-actuation inputs can substantially reduce the overall
time/energy cost of the output transition when compared to current
approaches, such as the state-transition-based approach, that does
not use pre- and post-actuation.
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Fig. 3. The optimal quadratic cost (J∗
LQ), the terminal-time penalty

(ρ(tf − ti)), and the total LQMT cost (Jtotal) when the output-transition
time (tf − ti) is varied: (a) using the LQMT output-transition (OOT)
approach as presented in Section 3, and(b) using the LQMT state-transition
approach (SST) from Ref. [8].
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Fig. 4. The optimal input and output trajectories:(a) using the LQMT
output-transition (OOT) approach as presented in Section 3, and(b) using
the LQMT state-transition approach (SST) from Ref. [8].
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