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Abstract— This  article addresses the optimal (minimum-
time/energy) trajectory design for rapid output transitions, i.e.
changing the output from one value to another, in linear systms.
Furthermore, the output is required to be maintained constant
(e.g. without vibration) outside the transition time interval. The
output-transition problem is posed as a linear quadratic mhimum-
time (LQMT) optimal control problem, which avoids bang-bang
controllers that result from solving the traditional time- optimal
problem. Additionally, the LQMT approach allows the time-optimal
requirement to be traded off with the energy requirement by ®lecting
appropriated weighting factors. Current methods transform this
LOMT output-transition problem into a state-transition prob lem
by constraining the initial and final state of the output-transition
interval. However, the choice of the initial and final states an be ad
hoc and the resulting control law may not be optimal. In contrast,
the proposed approach directly solves the LQMT output-transiion
problem by optimally choosing the initial and final states tominimize
the output-transition cost. The novelty of the proposed apmach is
that inputs are not applied just during the output-transiti on time
interval; rather, inputs are also applied before the beginnng of and
after the end of the output-transition time interval (these inputs
are called pre- and post-actuation). The method is illustréed using
a flexible structure model, and simulation results show suliantial
reduction in output-transition cost when compared with the cost of
standard state-transition-based approaches, which do notise pre-
and post-actuation.

I. INTRODUCTION
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Fig. 1. Output-Transition Problem.

Existing techniques solve such optimal output-transition prob-
lem by first transforming it into a state-transition problem. In
particular, output transitions without residual vibrations can be
obtained by requiring that the flexible system maneuvers between
equilibrium (rigid-body or rest) configurationsTlfese equilibrium
statesx andz, are chosen to result in the initial and final output
values,y and gy, respectively. Once the boundary states at the
beginning and end of output transitior:(¢;), and z(t;)) are
chosen to be the rest (equilibrium) states, €t;) = z, and
z(ty) = T, then a solution to the optimal output-transition problem
can be found by solving the standard (minimum-time/energy)
state-transition (SST) problem, Refs. [8], [9], [10]. However, the
optimal SST solution found with this choice of the rest-to-rest
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This article proposes a feedforward trajectory design for rapi@oundary states{z(t:;) = z, x(ty) = =} may not lead to
output transitions in linear systems. It is noted that the outputh€ optimal output-transition (OOT) solution. On the other hand,
transition problem (i.e., changing the output of a system from on@'bitrary choices of the boundary statgs(t;), z(ts)} are also
value to another) is a fundamental control problem, which appeaft acceptable; they may not allow the output to be maintained
in a wide range flexible structure applications. For example, suci @ constant value after the completion of the output-transition
problems arise in (I) rapidly positioning the end-point of Iarge-(i-e-: without residual vibrations) for any choice of bounded inputs.
scale space manipulators (Refs. [1], [2], [3]); (Il) positioning of Therefore, the existing state-to-state transition approaches cannot
read/write heads of disk-drive servo systems, which are relativee used to directly solve the optimal output-transition problem.
medium-scale flexible structures (Refs. [4], [5]); and (lll) nano- In this article, the criterion used for choosing an optimal input
scale positioning and manipulation using relatively small-scalt0 achieve the optimal output transition is obtained by adding
piezo-actuators (Refs. [6], [7]). When performing fast manesive @ quadratic weight on the input to the time needed to achieve
with flexible structures, it is critical to suppress residual vibrationghe output transition. This approach is referred to as a linear
that cause a loss of positioning precision. For example, in dislguadratic minimum-time (LQMT) problem (Refs. [8], [9], [10]).
drive applications, read and write operations cannot be performddie LOMT approach avoids the bang-bang controller that results
(before and after the output transition) if the output positiorfrom the solution of traditional time-optimal problem, Refs. [1]-
is not precisely maintained at the desired track. Such residubfl], [11]. The bang-bang controller tends to rapidly switch the
vibrations may take a prohibitively long time to settle down andcontrol input between its maximum and minimum values [11].
are undesirable because the system cannot perform the next t&skch rapid switching is undesirable since it tends to violate system
until the vibrations reduce to an acceptable level. Therefore, it €onstraints such as actuator bandwidth limitations and acceptable
important to achieve output transitions that are fast and do natbration levels required to avoid structural failure. In contrast,
cause residual vibrations. This article studies such vibration-frgeosing the OOT problem using the LQMT criterion allows one to
(rest-to-rest) output transitions, where the output is maintaindeglance the time-optimal requirement with the energy requirement
at a constant value outside the output-transition time intervayithout having to use a bang-bang controller. The solution to this
[ti,t7], as shown in Figure 1. The main contribution of thisoptimal (LQMT) output-transition problem is presented in this
article is the direct solution of the optimal (minimum-time/energy)article.
output-transition (OOT) problem for linear systems. The method A novelty of the proposed output-transition approach, when
is illustrated on a flexible structure model and simulation resultsompared to standard state-transition approaches, is that it uses
are presented. both pre- and post actuation inputs to reduce the transition cost

(Refs. [12] and [13]). In particular, the proposed approach uses
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inputs that maintain output tracking & y) before initiating the the output-transition problem (see Definition 1), and minimizes the
output transition, and similarly to find the post-actuation-¢;)  following time/input-energy cost functional,
inputs to maintain the output at the final valag &fter completing
the output transition. The inversion-based control approach, which  J{ts,u(t;tf)} = p(ty —t;) +/ u(t)” Ru(t) dt (4)
finds the pre- and post-actuation inputs, is then integrated with -
the state-transition approach, e.g. in Ref. [8], during the output = Plran + Jrity, ultity)} ©)
transition (between initial transition timg and final transition where the positive constaptand the symmetric positive-definite
time ;) to solve the optimal output-transition problem. It is matrix R represent weighting factors between the elapsed output-
noted that the proposed approach does not put a constraint gansition time and the input energy, respectively. The time interval
the boundary stateg(t;), x(ts)}; rather, we exploit the freedom T,,, := t; —t; is the elapsed output-transition time, and the cost
in the choice of the boundary states to optimally reduce the outputomponent/..; denotes the contribution of the input-energy to the
transition cost. It is shown in this article that the optimal LQMTtotal cost. Throughout the rest of the article, the initial transition
output-transition solution substantially reduces both transition timgme (¢;) is assumed to be constant.
and input energy required to complete the output transition when
compared to the LQMT state-transition (SST) approach. [Il. THELQMT OUTPUT-TRANSITION (OOT) SOLUTION
This paper is organized as follows. In Section I, the output- We approach the LQMT output-transition problem in two steps.
transition problem is formulated. The problem is solved in Sectiofirst, we consider the OOT problem with a fixed final transition
Ill. The application to flexible structure model and the simulatiortime, and find the optimal input that minimizes the quadratic input-
results are presented in Sections IV. Our conclusions are in Sectienergy termJ.q, defined in (Eq. 5). Second, thaptimal input-
V. energy cost (which is treated as a parameterized function of final
Il. PROBLEM FORMULATION transition time) is substituted into the total cost equation (Eg. 4).
We consider aquare(same number of inputs as outputs), linear,Then, we can formulate the OOT problem as a parameterized
time-invariant dynamical system in the state-space form, describ@@timization problem in the final transition time, i.e.

i {30 2 PO v @ BRI {olts —tpmin eg{ts ult: )}
Y t = x(t ’ ’ s A
€ ®?, and A. Fixed final transition time ©)

oo

where the system state ig¢) € R", the input isu(t)
the output isy(t) € R*. It is assumed that the system (Eg. 1) In this subsection, we consider the output-transition solution
is controllable Then, the output-transition problem is defined aghat minimizes the quadratic input-energy coslg, see (Eq. 6)
following. for a given fixed final transition time; > ¢;. In the following, we

Definition 1: The output-transition problem is to find assume that the system can be represented in the output-tracking
bounded input-state trajectorigs(-), z,.s(-)] that satisfy the form or normal form (see Ref. [15]).
system equations in (Eg. 1) and the following two conditions: Assumption 1:Throughout the rest of the article, we assume

1. The output-transition conditionThe output is transferred the following. There exist
from an initial valuey to a final valugy within the output-transition I.) a state transformatiof®, defined by
time interval [t;,¢;], and is maintained constant at the desired z(t)= ® {g(t)T ns(@®)" nu(t)” nc(t)T]
value before and after the output transition, i.e., T

per) = y = Co for Vi<t = [@el @0, D1, [P, ] [€0)T Ine(0) 1D Ine®) ] (D)

Z 2)
ref(t) = ¥ = CT for Vi >t ( -
yres () Y v = where the componeng(t) := [yl(t)T,...,y§”1 DT, ...
wherey,.s(t) := Cxref(t), t; andty denote the times when the T (Pp—1) /T N
output transition starts and completes, respectively. Furthermor@l’(t) oo Up () represents the output and its time-

the statesz andz denote the initial and final equilibrium states derivatives up to ordep — 1 (the parametersi, ps,....pp
(ie., Az = AT = 0), which are chosen to result in the desireqdenote the corresponding relative degrees to each output), and

initial and final output valuesy(and7). the component@s(t),nu(t),nc(t)_ represent the_stable, unstable,
2. The delimiting-state conditionThe state approaches the @nd center subspaces of the intemnal dynamics (see Ref. [15]),

equilibrium configuration as time goes to (plus or minus) infinity€SPectively, and , , _
ie. II.) an input law that yields the exact output tracking with the

Tref(t) — x ast — —oo; andx,.f(t) — T ast — oo.  (3) following general form,

For controllable systems, there exists at least one input that — w;ny(t) := Usns(t) + Uunu(t) + Uene(t) + UeYa(t)  (8)
achieves the desired output transition, e.g. by setting the state T
z(t) = z during the pre-transition timet (< t;) and the state whereY,(t) := [ﬁd(t)T, yy;l)(t)T,..-, y;‘;p)(t)T] with the
z(t) = T during the post-transition timet (> ty) the output- subscriptd denoting the desired (or known) values,
transition problem becomes a state-transition problem which canlll) such that the original system (Eq. 1) can be transformed
be solved by existing techniques (see, for example, Ref. [14]pto the following output-tracking form(by using the above state
In this article, we want to choose the input that minimizes théransformation® and input lawun.),
time/energy performance. The optimal output-transition (OOT)

problem is stated as following. £(t)= &a(t)

Definition 2: The optimal (linear-quadratic/minimum-time) 7s(t) As 00 ns(t) B,
output-transition problem (OQT) is to find bounded input-state ’?u(t) =10 A, O Mu(t) | + | Bu | Ya(t). (9)
trajectoriegu(-), z,.;(-)] and a final transition timet) that solve 7e(t) 0 0 A [ne(t) Be



Remark 1:Assumption 1 is satisfied if the system has a well4nitial statez; to the final state: ; within a transition timel;,., =
defined vector relative degree;= [p1, p2, - - -, pp|, See Ref. [15]. ¢y — ¢; is given by

The minimum-energy output-transition cost is cpmputed in t_wo Ueran (t) = R—IBTeAT(tf—t)G—ldm, for t;<t<t; (15)
steps. In the first step, we quantify the control inputs, required
before the initiation of the output-transition (pre-actuation) andwhereG is theinvertible controllability grammian, defined by
after the completion of the output-transition (post-actuation), that A 1 AT (e
allow the output to be maintained at constant value before and G = /t MTOBRTB Y M dr, (16)
after the output-transition interval (i.e, satisfying the conditions for )
output-transition problem in Definition 1). Associated with these
pre- and post-actuation inputs, we identify the acceptable set of d, = x5 — ey, 17)
the boundary states, i.e. the stateat the initial transition time = H1f+ Hy ¥ (18)
(t;) and the stater; at the final transition timet() that can be
chosen while satisfying the conditions for the output-transition

andd, denotes the transition-state difference, given by

where H, :=[®¢ Oy, Py, —T¢ —Ty, T,

problem. We note that if the acceptable boundary stétesz s} Hy = [y, —T,],

are specified, the optimal input during the output-transition interval [Te Ty, Ty Tp] i= e (@, @, @, @,.],
(t: <t < ty) can be found by using the standard LQ optimal ; - _r _7 .7 1 77T

control technique (see, for example, Chapter 3 in Ref. [14]). andf:=[& M 7. & ﬂc] :

In the second step, we integrate the pre- and post-actuatigfrthermore, the cost during the output transition when using this
inputs with the optimal state-transition during the output-transitiO@ptimm state-transition control input is then equal to
time intervallt;, t¢] to find the optimal boundary states that yield J —dTal4 (19)
the minimum-energy cost. The detailed of the minimum-energy pran = Ta o
output-transition solution can be found in Ref. [12], and the results IV) The optimal input that minimizes the input-energy cést

are briefly stated in the next Theorem. (defined in Eq. 5) over all acceptable sets of boundary states is
Theorem 1:Let Assumption 1 be satisfied. Then for any fixedgiven by
final transition timet; > ¢;, we obtain the following results. Ue e s —n ] if £ <t

) The pre-actuation input that satisfies the output-tracking . = JU,e®C~t)[pr —7] if t >ty
conditions (Egs. 2 and 3 in Definition 1) is uniquely specified u(tty)= R—lBTeAT@f—t)G(tf)—l[x;; _ eA(tf—ti)m:f]

in terms of the unstable internal state compongptat the initial it ot <t<ts
transition time, and is given by o (20)
Upre (t) 1= U™ (t’m(nui -n,), for t<t, (10)  where the optimal boundary condition and the optimal boundary

states are given by
UM } _ { A~ if Ais invertible

where [¢7, 77, ", n"]" = ®~'z. Similarly, the post-actuation

input that satisfies the output-tracking conditions (Egs. 2 and 3 in ¥* := [

* T : )
Definition 1) is uniquely specified in terms of the stable internal- T ATb o OtherW'_Sf T
state component, at the final transition time, and is given by~ zi = @ (€ n" i 0], 2y =@ [5 U %T] )
Upost (t) := Use™ ) (n,, —77,), for t>t; (11) respectively. Furthermore, the matuxis defined by
— Whpos 0 -
where [€, 77,77, 7717 = & 'z’. Furthermore, the costs A= { 0 ‘ W } +H; G ' Hy, (21)
associated with these pre- and post-actuation inputs are equal to pre
 denotes the pseudo (generalized) inversd ¢Ref. [16])
J e — s — TW e (N — and andA p g . .
Jp . En ‘ _g“))TWP ((17 ‘ _ﬁ_“)) ’ (12)  This optimal inputu*(¢;ty) is referred to as the solution to the
post = sy =1l postllsy =1l minimum input-energy output-transition problem.
whereWy,. = [ e‘AzTUfRUue‘A”dT, and V) The minimum input-energy cost for a given final transition
Wost — fooo AL TUT RU e dr. time ¢ is equal to
I1) The only components of the boundary stafes, zy} that Tioltsu(t;ty)} == 0" AW — 207 Th 1 c. 22)

can be varied while satisfying the output-transition conditions B
(Egs. 2 and 3) are the unstable comporgt (of internal state where b — { WhostTs } — HYG'H,f, and

at the initial transition time) and the stable component (of Woren, R R
internal state at the final transition time). Therefore, the acceptable ¢ =1, WyostTls + 1. Wpren, + [T H{ G~ H:1 f.
boundary state$z;, 2} must be chosen as (23)

T - T Proof: Partsl) andll) follow directly from Lemmas 3 and
=P §T\QST|175L. \QCT] and z;=o [6 Ingf Iﬁflﬁf] (13) 5in Ref. [12]. Partill) is derived in Chapter 3 in Ref. [14]. For

Furthermore, we define thieoundary condition? which is the partslV) andV), see Theorem 1 in Ref. [12]. "

components of the state, at the initiation and completion of thB. Free final transition time
output transition, that can be freely varied while satisfying thq-he total LQMT cost/{ts, u(t;ts)}

- . : in (Eq. 4) is a functional of
conditions for the output-transition problem, i.e.

the final transition timet; and the control inputu(t;¢7) where
U= [nz" UZY]T (14) the notationt; in the input term indicates the parameterized
f ’ dependency on the final transition time. If the final transition time
lll) Given a pair of acceptable boundary stafes,z;}, the i is specified, then one can obtain the optimal quadratic £pst
minimum-energy control input that transfers the system from thand the optimal control input® (¢; ¢;) by using Theorem 1. Thus,
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by substituting this optimal quadratic term (Eq. 22) into the totathe acceptable boundary statgs;, zs} can be written in terms
LQMT cost function (Eq 4), the LQMT output-transition problem of the output-tracking coordinatdg, ) as

can be formulated as a parameterized optimization problem inthe — ,, — ¢Atr =ty
final transition time (as shown in Eq. 6), i.e. _r T T
* * * = & [5 nT ﬁT ﬁ]A,Qf%Auffn)¢ ¢ nT nr nﬂ
Hipu (tte)=J(tr)=p(ty —ti)+Jro{ts, v (t; tr)}. (24) g s e 20 g0 T de
As shown in previous Section, the optimal quadratic cégt, = ®dey.

directly depends on the boundary stalte which, in turn, is an  \here the transformatio® is given in (Eq. 7). Without loss of
implicit function of the final transition time ;. The challenge is generality, assume that the system coordinates are shifted so that
to show the existence of an optimal final transition titje If  the initial equilibrium state is at the origin, i.e. let= 0, thus the
such a solution exists, then one can be computed by minimizinggnsition-state difference becomes
the total LQMT cost in (Eq. 24) over the parameter> t;. We =T r 1 11T 1 Aty 7
begin by investigating some properties of the optimal quadraticd“ = {[5 ’”Sf’nu’nc}_ S {O’O’nuwo] }
cost Jiqfly, u"(t;1y)} as a parameterized function of the ﬁnalNext, partition the transition matrixPhi~teA¢s~t)& (corre-
transmon.t.lmetf whentf. > bi- . . . sponding to the output-tracking coordinate) as

Proposition 1: The optimal quadratic costq{ts,u"(t;ty)}, C1 A(t—ty)
as defined in (Eq. 22), is a continuous function of the final PO =

transition timet; for all ¢ > ¢;. Oce(ty)  Oen.(tr)  Oceny(ty)  Ogy(ty)
Proof: First we expand the optimal quadratic cost (Eq. 22) One(ty)  Onon,(ty) Oneny(ty)  Ononc(ty)

in terms of individual components as gnus(tf) gnuns (tr) gnunu (tr) gnunc (tr)

Tiqltru (b =0 ) AW (tr) ~27(t) bty +ety) h :ﬁ(tf) o Gr) "c("u;tf) Lo (ff)>

- X o[« _F X _ Note that the matrix function®y,,(tf) and ©,,,, (tf) are

= Jore + Jiran + Jpost = [nu(tf) ﬁu] Wore [n“(tf) ﬂu] continuous functions of the final transition time with the initial

5 T R . " . - : e

+[H () F+ Ha )0 ()] GUtg) ™ [Ha(t) F+ Ha(ty) W (¢)] - conditions lim Oy, (tr) = 0 and limy ©n,, (t7) = I, since

+ 05 (tr) = 7] Whost [03 (t5) — 7] t}igiQ_leA(tf_t'i)q) = I. Then define a new a variable,

where the dependency on the final transition time is explicitly Dts M) = _57 Ocn,, (tf)Nu;

shown by the notation(t;) after the variables. Note that the M = Onyn (L),

matricesH; (t;) and Ha(t;) are continuous in term of; since L€t o min denotes the smallest singular value of the transforma-
they are composed of terms from the constant transformatidipn matrix ® (note thatog,min > 0 since the matrix® is non-
matrix & and from the matrix exponential*(*s~*) which is ~ Singular). Sincelldz| > ow.minllden|| > oo .minllP(ts, nu:)ll;
continuous int; (see Eq. 18). it suffices to show that if there exists some time instght> ¢;

The controllability grammianG(t;), as defined in (Eq. 16), and a constanf, > 0 such that||¢(tf,7u,)ll > Ka/0s,min
is continuous int; since the integrand is a continuous functionWhenevert; <t; <%, then|[ds|| > Ka.
Note that if a matrix function is continuous in its variable and BY continuity of the matrix function O¢,, (t;) and
nonsingular, then the inverse of the matrix is also continuous in igs}lflﬁi@mu (tf) = 0, there exists some time; greater
variable (Ref. [17]). Since the controllability of the system impliesthan the initial transition timet; and a constante; with
that the grammiar(ts) is nonsingular, the inverse grammian0 < e; < ||€]|/{2(|l€]l + ||7]))} such that||©¢,, (t)]] < e
function G~'(t) is also continuous ity. The matricesA(tf),  whenevert; < t; < t;. Next, consider 2 possible cases of the
b(ts), andc(ty) (as given in Egs. 21 and 23) are also continuousnternal state component, .
functions oft; since they are products of the matricBs(ts), Case (I): Suppose|n., || < ||€]l + ||7]l-
Hs(ts), and G~ '(ts). The optimal boundary conditio®* (as Note that [[¢(ts,mu,)ll > 1€ — Oenu(tr)nu,ll >
given in Theorem 1) is a product of two continuous matrices| ||| — ||O¢n,, (tf)nu, || | . Since||Ocy, (t£)1u, | < Ocn,, (t£)]l-
Therefore the cost functiod;q{t;,u"(t;ts)} is continuous in ||n,, | < ||€||/2, therefore||s(ts, nu,)| > I€]|/2-
the final transition time ; since each components that depend orCase (1l): Suppose|n., || > |I€]| + ||7]I-
ty is continuous inty. u Since the matrix functiom®,,,,,,, (t7) is continuous function of

In the following, let the operatoff - | denotes the Euclidean the final transition time; and lim ©,,,,,(t;) = I, there exists
norm of a vector and thé&-operator norm (spectral norm) of a bt

matrix, see Ref. [17]. . . .
T whenever the final transition timg < ¢ tr. Let oo min(t
Proposition 2: Suppose the outpuj # 7, and the boundary . <ty <tr. Letoomin(ty)
= - denotes the smallest singular value of the ma#¥jy ., (¢5). Since
states{x;, zs} are chosen so that satisfy the conditions output-p. - (t;) = 1, by continuity of the singular value function
transition problem (in Definition 1). Then there exist some time;—¢; @""”" ! - _
t greater than the initial transition time and a constanfc, there exist some timeé; with ¢; < > < t; and a constant,
greater thar such that magnitude of the transition-state differencaVith 0 < e2 < e such that| ge,min(tf) —1 | < e2 whenever

ldz(t;)|| > Ko whenever the final transition time is in betweent: <t < t2. Then

some timet; > ¢; such that the matri©,,,,, (t;) is invertible

by <ty <tF. 1Onun. (E)Mu Nl 2 00min(ts) - [0l
Proof: Since the boundary conditio® represents the only > (1—e)- (€] + [7l)
internal-state components that can be varied while satisfying the = _
> (L=en) - (€l + NIl

conditions for the output-transition problem (see Theorem 1),
the boundary states must be chosen among the acceptable set
described in (Eq. 13). So the transition-state differedgewith

(

(el + lall) = e - (Il + l171)

(el + lmall) = 11El/2 = Nigll/2 + Il
4834
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Note that |[¢(tr,nu)ll = e — Onune Ef)null > Proof: For any final transition time, in the time interval

| 17all = 1Onun (t£)1u; || |, therefore||e(t s, nu,) || > |IE]/2- (t:,t5], Proposition 3 states that the total cost

Sett$ = min{t1,t2} and Ko = oa,min||€]|/2. Then the state - _ « “ly
differer{ce,Hde > K., whenever the final transition timg < Tt w(tts)} ; p(? B i’) +#Q{ff’ut<t’ tr)}
ty < t§, which completes the proof. ] Z plty =) + Ko/t — ),

Remark 2:The smallest singular valuge,:» is a specialized for some constani. > 0. Sett := min(t5,t; + (Kc/p)*/?),
case of the matrix lower bounfl®,,, ., (t)||z, see Ref. [18]. then the total costi{t;,u"(t;t;)} > J{t},u"(t,t})} for anyt,
The matrix lower bound is also a continuous function of the finain the time interval(t;, t¢] since the lower boung(t; — t;) +
transition time on the interva(t;, t;) by Corollary 4.3 in Ref. K./(t; —t;) is monotonically decreasing. [ |
[18]. Theorem 2:The solution to the LQMT output-transition prob-

Proposition 3: Suppose the outpuj # 7, and the boundary lem (Definition 2) exists, and the optimal final transition tin)(
states{x;,z;} are chosen to satisfy the conditions for output-is either equal to the initial transition time;(= ¢;) or lies inside
transition problem (in Definition 1). Then there exist some timehe interval[t}, t; + J{t%, u"(t,t})}/p] for some timet} > ¢;
t5 > t; and a constanf{. > 0 such that the optimal quadratic defined by Proposition 2.
costJio{ty, u"(t;tr)} > Kc/(ty — ti) when the final transition Proof: If the initial and final output are the same, ixe= 7,
time t; is in between the intervalt;, t%]. the solution is trivial with the optimal final transition ting = ¢,

Proof: (This following proof is adapted from the LQMT i.e. J{ts, u"(t;t5)} = 0. If the outputy # 7, then the optimal

state-transition solution, see Theorem 2.1 in Ref. [8].) Note thdinal transition timet; > t%, since from Proposition 4 the total
the optimal quadratic costi o {ts,u*(¢;t5)} can be partitoned cost J{t;,u"(t;t;)} > J{t},u"(t,t3)} for all t; € (17
into the pre-transition cosk,..., the post-transition cost,..: (Eq. . Let a time instantt} := t; + J{t},u"(¢,t})}/p. Then the
12), and the cost during output transitidn...., see (Eq. 19). Since optimal t; < ¢} since the total cosy{ts, u*(t;ts)} > p(t; —
the pre- and post-transition costs are always greater than or equgl > J{t’},u*(t,t‘})} for all t; > t?c. Therefore, the optimal

to zero, we obtain the inequality final transition timet}; exists and lies inside the closed interval
. . . [t},t}] since the cost functional{t;,u"(t;tf)} is continuous
Jioity,u”(tty)} = Jt”"{fp (t:tr)} function on a compact interval, which always have a minimum
= [a3 - eA(tf_ti)xf] Gty [a,-; - eA“f-ti)x;f] (see Theorem 3.17.21 in Ref. [17]). n
* T —1 7%
=dy(ty)" G(ty)” dz(ty), IV. EXAMPLE: TWO-MASS/FLEXIBLE ROD SYSTEM

where the optimal boundary stafe;, «}} are defined in Theorem  In this example, we consider two masses linked by a flexible
1. Next consider the operator norm of the controllability grammiariod, shown in Figure 2, as an illustrative example. The inp)
G(ty), is the force applied to the mass, on the left-side of the rod, and
_ _ _ he output is the displacement of the mass on the right-side
< [t ||pAlts—T) 1T AT (tp—7) t p P h
G or - < ftvﬂ le BRBe lldr of the rod. The goal is to change the output (the position of the

tp—t; || Av — Ty . . L .
= f%f,t. le*”BR™* BT e ||dv massm;) by one unit length with the minimum elapsed time and
< [ x| le**|?|BR™ BT | dv. minimum input-energy effort.
veE[0,ty—t;
—X, X,

Note that the function normjje“?| is continuous inv and u(®)
le?]| = 1 whenv = 0. So there exist constants; > 1 and — m, m, ,k, ,c, m,
vg > 0 such that||e*?|| < Kz whenever) < v < vg. Let the
time ¢} = t; + v, we obtain that, for alt; € (t;,t]],
G lop < K ||BRleTH(t — ) Fig. 2. Two-mass/flexible rod system
Fllop = 125 = a) System descriptionThe dynamics of the system, derived
Note that the grammiarG:(tf) is symmetric, so the largest py ysing a simplified finite element model (FEM) with one element

eigenvalue ofG:(ty) equals to the operator norm 6¥(ts) (Ref.  for the flexible rod, can be represented by
[16]), i.e., for allt; € (t;,t]],

. Y o . _[0o7,
Naa G ()] = G lon < K5I BR-B(ty — 1) {[MH[M ]}X(t)ﬂc IX(t) + [K"IX(t) = { 1 ] (t()z’s)
Consider the Rayleigh-Ritz inequality, (MY = { m(l) m(Q) } | [M7] o= el [ ? é } KT =
do(ty) T Gty) " da(ts) > Amin[G(tr) ™) llda(ty)]? 1 - . .
— A |Gl ) Aeby o } and [C"] := «.[K"] where X(t) :=

) ) ] B [z1(t) x2(t)]" is the position vector of the two lumped masses
since Gi(ty) is square and symmetric. From Proposition 2gitached at both ends of the rof\'] is the diagonal mass-
there existio > 0 andtf > ¢ such that for allty €  matrix term associated with the lumped mas$&$!] is the mass-

« € P . @ ﬁ Ja— . . . . .
(ti, t5), Hdz(tf_)y > Ka. Setty = min(tf,ty) and Ke = matrix term representing the distributed mass of the féd] is
Ko/ {Ks|BR™'B"||}, then the stiffness matrix[C"] is the structural damping matrix, and

Jio{ts, u"(t;t5)} > Kc/(ty — t:), for all ¢4 € (0,t%]. the parameters.., p-, A, E,, andl,. represent damping factor,

B density, cross-sectional area, elasticity modulus, and length of the
Proposition 4: There exists a time&} > t; such that the total flexible rod, respectively. In the simulations, the system parameters
cost J{ts, u*(t;ts)} > J{t$,u"(t,t5)} for any ¢; in the time were chosen to ben; = m2 = 10kg, m, = £-4rl= = 1kg,

interval (t;,t%]. ky = 4+B= — 1.4N/m, and o, = 2.8sec, i.e. corresponding
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to the natural frequencw, = 0.5rad/sec, and the damping [5] Ho, H. T., “Fast Servo Bang-bang Seek ContréEEE Transactions
coefficient¢ = 0.707 (= 1/+/2) of the flexible mode. The state | g? “?agnﬁtlci:\lfd- |33'RN0i36' 1997’JPP- 4(512%—4527- ssties |

: . _ T euler, H., Clavel, R., Breguet, J., and Pernette, des in
of the system is deflngd_ as = [z1 zp z3 @4]” Wherezs .and Precision Motion Control and Microhandling/EEE Proceedings
x4 represent the velocities of masses and m., respectively. International Conference on Robotics and Automatidal. 1, April
During simulations, the equilibrium states for the output transitions 2000, pp. 959-964, San Francisco, CA.
were chosen to be = [00 0 o}T andz =110 o]T, In this [7] Croft, D. and Devasia, S., “Vibration Compensation foighliSpeed
example, the output transition begins at the fixed initial transition ~ Scanning Tunneling MicroscopyReview of Scientific Instruments

. _ . . . . published by the American Institute of Physia®l. 70, No. 12,
time ¢; = 10sec. The terminal-time weighted factor is chosen as December 1999, pp. 4600—4605.

p = 3000, and the input-energy weighted matrix is chosen as[g] Lewis, F. and Verriest, E., “On the Linear Quadratic Minim-time
R=1. Problem,”|IEEE Transactions on Automatic Contrafol. 36, No. 7,
b) The LQMT output-transition (OOT) solutioThe optimal July 1991, pp. 859-863. o ) _ ,
final transition time {}) is found as the least elapsed time required [°! 'gﬁglj'ra't\ilg %Jns?:qﬁg'_tii?g é}oﬁlr:a%d’lﬁ Nc;]; tﬁg ﬁzna'iicrﬁfseﬁ&?
» o 3. e
to complete the output transition. As shown in Figure 3(a), the o). 3358, No. 3, April 1998, pp. 525-532.
optimal LQMT output-transition solution occurs when the output{10] Gourdeau, R. and Schwartz, H., “Optimal Control of a Rddanip-
transition time {; — ¢;) is equal t02.85sec, i.e. the optimal final ulator Using a Weighted Time-energy Cost FunctioRfoceedings
transition time ig} = 12.85sec, and the optimal output-transition of the 29th IEEE Conference on Decision and Contvall. 2, 1989,

o . . pp. 1628-1631.
cost isJoor = 10565.22. The comparisons between the Optlmal[11] Pao, L., “Minimum-Time Control Characteristics of FleldbStruc-

quadratic cost/;  (Eq. 22), the final time penalty(t; —t;), and tures,” Vol. 19, No. 1, 1996, pp. 123-129.
the total LQMT output-transition cosfoor (EQ. 4) when the [12] Perez, H. and Devasia, S., “Optimal Output-Transitiéors Linear
output-transition timet(; — ¢;) is varied are also shown in Figure Systems,"Automatica Vol. 39, No. 2, February 2003, pp. 181-192.

. . . . 3] lamratanakul, D., Perez, H., and Devasia, S., “FeediaiMirajectory
3(a). The optimal input and output trajectories are presented H Design for Output Transitions in Discrete-time Systems: Rigke

Figure 4(a). It is noted that, for the OOT approach, the pre- and  Example,” Proceedings of the American Control Conferen2603,
post-actuation inputs were applied outside the output-transition pp. 3142-3147.
interval to maintain the output at constant valyeof 7). [14] Lewis, F. L. and Syrmos, V. L.Optimal Contro| John Wiley &
©) Comparson o the LQT soluion for state tansiton, o) So0e, Ny Yo 2o I hamers,
(SST): The conventional LQMT approach (e.g. in Ref. [8]) for ed., 1995 ' '
the state transition, between the initial equilibrium stgteind [16] Ortega, J.Matrix Theory Plenum Press, New York, 1987.
the final equilibrium state, results in the optimal final transition [17] Naylor, A. and Sell, G.Linear Operator Theory in Engineering and
time £y = 16.3sec, and the corresponding optimal LQMT State_[ls] g(r:lcz?C%Sp“”AHQIJ\ﬁ;\r/i?(”ﬁg\’/v’:revé(;ﬁ)rzlé’"iz\?vzr.ence Berkeley National
transition cost/3g; = 21637.96. The costs as functions of the i y y
output-transition time are shown in Figure 3(b), and the optimal
SST input and output trajectories when using the state-transition xi* () OOT Output Transition approach)
approach are presented in Figure 4(b). ‘
It is noted that the LQMT output-transition (OOT) approach 8
substantially reduces the elapsed time required to completet
the output-transition maneuver byt.7% (i.e., from 6.3sec to
2.85sec) and reduce the total cost by1%, when compared to .
the LQMT state-transition approach (SST). '

Laboratory report LBNL-506352000.

x10*  (b) SST (State Transition approach)

Cost:
Costs

-~ 2

plrt)

V. CONCLUSION — oo

0l s ‘.~"’~— e

The minimum-time/input-energy output-transition problem was > 2* O:tpu”msiﬁ;‘ﬁme § : Ojtpunmsiﬁ;’::m 8
posed and solved in this article. The approach was applied to a ' '
two-mass/flexible-rod system model, and simulation results we_rrgi\g. 3. The optimal quadratic cost’{,,), the terminal-time penalty
presented. It was shown that the proposed approach of usifig; . —+,)), and the total LQMT costh,r,;) when the output-transition
pre- and post-actuation inputs can substantially reduce the overeéhe (t; — ¢;) is varied: (a) using the LQMT output-transition (OOT)
time/energy cost of the output transition when compared to curreapproach as presented in Section 3, @)dising the LQMT state-transition

- ition- @pBEoach (SST) from Ref. [8].

approaches, such as the state-transition-based approach, that
not use pre- and post-actuation.

(a) OOT (Output Transition approach) (b) SST (State Transition approach)
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