
Using Anti-Windup Loops for Enlarging the Stability Region of
Time-Delay Systems subject to Input Saturation

J.M. Gomes da Silva Jr., S. Tarbouriech and G. Garcia

Abstract— This paper focus on the study and the characteri-
zation of stability regions for linear systems with delayed states
and subject to input saturation through anti-windup strategies.
In particular, the synthesis of anti-windup gains in order to
guarantee the stability of the closed-loop system for a region of
admissible initial states as large as possible is addressed. Based
on the modelling of the closed-loop system, resulting from the
controller plus the anti-windup loop, as a linear time-delay
system with a deadzone nonlinearity, stability conditions in
an LMI form are stated, for both the delay independent and
delay dependent contexts, by using quadratic functionals and
a new sector condition. LMI-based optimization schemes for
computing the anti-windup gains that lead to the maximization
of the size of the region of stability associated to the closed-loop
system are then proposed. The application of the technique and
the trade-off between the size of the delay and the region of
stability are illustrated by means of a numerical example.

I. I NTRODUCTION

In the last few years, the study of systems presenting
time-delays has received a special attention in the control
systems literature (see [1] for an interesting overview). This
interest comes from the fact that time-delays appear in
many kinds of control systems (e.g. chemical, mechanical
and communication systems) and their presence can be
source of performance degradation and instability. In this
sense, we can find in the literature many works giving
conditions for ensuring stability as well as performance
and robustness requirements, considering or not the delay
dependence. Concerning the delay independent results, the
stability is ensured no matter the size of the delay [2], [3],
[4]. On the other hand, in the delay dependent results, the
size of the delay is directly taken into account and this fact
can lead, especially when the time-delays are small, to less
conservative results [5], [6].

Since physical actuators cannot deliver unlimited signals
to the controlled plants, the problem of control saturation
and its impact on the stability and the performance of the
closed-loop system has also received a lot of attention in
the last years. The studies on the analysis and controller
design problems for linear systems with input saturation
have followed two main approaches. In the first one, the
effects of the saturation are directly taken into account in
the design of the control law. We can identify methods
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dealing with the stabilization of the closed-loop system in
global, semi-global and local contexts (see among others
[7], [8], [9]). The second approach assumes that a controller
was previously designed, in order to guarantee some perfor-
mances. The effects of the saturation on the stability and the
performance of the closed-loop system are then considered
a posteriori. The anti-windup technique fits in this last
approach as it consists in introducing control modifications
in order to recover, as much as possible, the performance
induced by a previous design carried out on the basis of
the unsaturated system (see, for example, [10], [11], [12],
[13]). It should be pointed out that several results on the
anti-windup problem are concerned with achieving global
stability properties [11], [14]. Since global results cannot
be achieved for open-loop unstable linear systems in the
presence of actuator saturation, local results have to be
developed. In this context, a key issue is the determination
of domains of stability for the closed-loop system, i.e.,
sets of admissible initial states for which the asymptotic
convergence of the corresponding trajectories to the origin
is ensured. On the other hand, it should be highlighted that
these global stability results do not consider the case of
systems with time-delays.

Considering that many practical systems present both
time-delays and saturating inputs, from the considerations
above, it becomes important to study the stability issues
regarding this kind of systems. In this sense, we can identify
in the literature some results for systems with delays in the
state, proposed mainly in the context of the stabilization
via state feedback. In [15], a globally stabilizing state
observer based controller is proposed. In [16], [17] and
[18], conditions of stability or stabilization are proposed
with state feedback and sampled state feedback. However,
in these papers, the set of admissible initial conditions for
which the asymptotic stability is ensured in the presence of
control saturation is not mentioned or explicitly defined. In
[19], it was underlined the importance of describing a set
of admissible initial conditions associated to the stabilizing
control law. On the other hand, considering an anti-windup
approach we can cite [20]. In that paper, it is proposed
a dynamic anti-windup method for linear systems with
control input delays and output measurement delays that
ensures bounded input - bounded state stability. It should
be highlighted that this method cannot be applied to open-
loop unstable systems.

The objective of this paper is the study and the char-
acterization of regions of stability for linear systems with
delayed states and subject to input saturation through anti-



windup strategies. Differently of the most anti-windup tech-
niques cited above, where the synthesis of the anti-windup
loop is introduced with the objective of minimizing the
performance degradation, we are particularly interested in
the synthesis of anti-windup gains in order to guarantee the
stability of the closed-loop system for a region of admissible
initial states as large as possible. With this aim we propose
results both in the delay independent and dependent con-
texts. These results are derived from a Lyapunov-Krasovskii
approach combined with a new and original sector condition
that encompasses the classical one found in the literature
(see for instance [21] and [22]), and, furthermore, allows to
obtain the conditions directly in an LMI form. The search of
the anti-windup gains that lead to the maximization of the
size of the region of stability associated to the closed-loop
system can be carried out from an LMI-based optimization
problem.

Notations. A(i) denotes theith row of matrix A. For two
symmetric matrices,A and B, A > B means thatA − B is
positive definite.A′ denotes the transpose ofA. Im denotes the
m-order identity matrix.λmax(P ) and λmin(P ) denote respec-
tively the maximal and minimal eigenvalues of matrixP . Cτ =

C([−τ, 0], <n) denotes the Banach space of continuous vector
functions mapping the interval[−τ, 0] into <n with the topology
of uniform convergence.‖ · ‖ refers to either the Euclidean vector
norm or the induced matrix 2-norm.‖ φ ‖c= sup

−τ≤t≤0
‖ φ(t) ‖

stands for the norm of a functionφ ∈ Cτ . When the delay is finite
then “sup” can be replaced by “max”. Cv

τ is the set defined by
Cv

τ = {φ ∈ Cτ ; || φ ||c< v, v > 0}.

II. PROBLEM STATEMENT

Consider the linear continuous-time delay system:

ẋ(t) = Ax(t) +Adx(t− τ) +Bu(t)
y(t) = Cx(t)

(1)

with the initial conditions

x(t0 + θ) = φx(θ),∀θ ∈ [−τ, 0], t0 ∈ <+, φx ∈ Cv
τ (2)

where x(t) ∈ <n, u(t) ∈ <m, y(t) ∈ <p are the state,
the input and the measured output vectors, respectively.
MatricesA, Ad, B and C are real constant matrices of
appropriate dimensions. We suppose also that the input
vector u is subject to amplitude limitations defined as
follows:

|u(i)| ≤ u0(i), u0(i) > 0, i = 1, ...,m (3)

Considering system (1), assume therefore that annc-
order dynamic output stabilizing compensator

η̇(t) = Acη(t) +Bcy(t)
yc(t) = Ccη(t) +Dcy(t)

(4)

whereη(t) ∈ <nc is the controller state,uc(t) = y(t) ∈ <p

is the controller input andyc(t) ∈ <m is the controller
output, has been designed in order to guarantee some per-
formance requirements and the stability of the closed-loop
system in the absence of the control saturation. MatricesAc,

Bc, Cc etDc are of appropriate dimensions. In consequence
of the control bounds, the control signal to be injected in
the system is a saturated one, that is,

u(t) = sat(yc(t)) = sat(Ccη(t) +DcCx(t)) (5)

where each component ofsat(yc) is defined as

sat(yc)(i) = sat(yc(i)) = sign(yc(i))min(|yc(i)|, u0(i))
(6)

In order to mitigate the undesirable effects of
windup, caused by input saturation, an anti-windup term
Ec(sat(yc(t)) − yc(t)), Ec ∈ <nc×m, can be added to the
controller [11]. Thus, considering the dynamic controller
and this anti-windup strategy, the closed-loop system reads:

ẋ(t) = Ax(t) +Adx(t− τ) +Bsat(yc(t))
y(t) = Cx(t)
η̇(t) = Acη(t) +Bcy(t) + Ec(sat(yc(t)) − yc(t))
yc(t) = Ccη(t) +Dcy(t)

(7)

Define now an extended state vectorξ(t) =
[x(t)′ η(t)′]′ ∈ <n+nc , and the following matrices:

A =

[

A+BDcC BCc

BcC Ac

]

, Ad =

[

Ad 0
0 0

]

, B =
[

B

0

]

, R =

[

0
Inc

]

and K =
[

DcC Cc

]

. Hence,

the closed-loop system reads:

ξ̇(t) = Aξ(t) + Adξ(t− τ) − (B + REc)ψ(Kξ(t)) (8)

with ψ(Kξ(t)) = yc(t)− sat(yc(t)) = Kξ(t)− sat(Kξ(t))
Note that,ψ(Kξ) corresponds to a decentralized deadzone
nonlinearity, i.e.,ψ(Kξ(t))(i) = ψ(K(i)ξ(t)) = K(i)ξ(t) −
sat(K(i)ξ(t)).

The augmented system (8) admits an augmented initial
condition

ξ(t0 + θ) = φξ(θ) =

[

x(t0 + θ)
η(t0 + θ)

]

=

[

φx(θ)
φη(θ)

]

,

∀θ ∈ [−τ, 0], whereφξ(θ) satisfies‖ φξ ‖c≤ v, v > 0.
System (8) will be said globally asymptotically stable if

for any initial condition satisfying‖φξ‖c ≤ v with any finite
v, the trajectories of system (8) converge asymptotically
to the origin [15], [23]. Similar to the case of delay-
free (τ = 0), the determination of a global stabilizing
controller is possible only when some stability assumptions
are verified by the open-loop system (u(t) = 0) [8]. When
this hypothesis is not verified, it is only possible to achieve
local stabilization. In fact, in the generic case, given a
stabilizing matrixK, we associate abasin of attraction to
the equilibrium pointξe = 0 of system (8). The basin of
attraction corresponds to all initial conditionsφξ(θ) ∈ Cτ

such that the corresponding trajectories of system (8) con-
verge asymptotically to the origin. Since the determination
of the exact basin of attraction is practically impossible,a
problem of interest is to ensure the asymptotic stability for
a setB(δ) = {φξ ∈ Cτ ; ‖ φξ ‖2

c≤ δ} of admissible initial
conditionsφξ(θ) [19]. Of course, the setB(δ) is included
in the basin of attraction. Throughout the paper we will



refer a setB(δ) asa region of stability for system (8). The
problem we aim to solve throughout this paper can then be
summarized as follows.

Problem 1: Determine the anti-windup gain matrixEc

and a scalarδ, as large as possible, such that the asymptotic
stability of system (8) is ensured for all initial conditions
φξ(θ) ∈ B(δ) = {φξ ∈ Cτ ; ‖ φξ ‖2

c≤ δ}, ∀θ ∈ [−τ, 0].
SinceB(δ) can be viewed as an estimate of the basin

of attraction of the system (8), the implicitly idea behind
Problem 1 is to enlarge this basin over the choice of the
anti-windup gain matrixEc.

It should be pointed out that depending on the stability
property of matricesA, A + Ad and A − Ad, we should
study the closed-loop stability of system (8) in a delay-
independent or delay-dependent context. Indeed, a nec-
essary condition for the delay-independent stability is to
haveA, A + Ad Hurwitz andA − Ad not strictly unstable
(i.e., A − Ad have not eigenvalues with positive real part)
[24]. Hence, throughout the paper, we address Problem 1
both in the delay dependent and independent contexts. The
measures and the criteria allowing to optimize the size of
the region of stability of the closed-loop system, the tradeoff
between this one and the admissible upper bound on the
delay will be discussed in each case.

III. PRELIMINARIES

Consider a matrixF ∈ <m×(n+nc) and define the set

S
4
= {ξ ∈ <n+nc ; |K(i) − F(i)|ξ ≤ u0(i), i = 1, ...,m}

(9)
Lemma 1: Consider the functionψ(Kξ) defined in (II).

If ξ ∈ S then the relation

ψ(Kξ)′T [ψ(Kξ) − Fξ] ≤ 0 (10)

is verified for any matrixT ∈ <m×m diagonal and positive
definite.

Proof: Consider the three cases below.
(a): −u0(i) ≤ K(i)ξ ≤ u0(i). In this case, by definition,

ψ(K(i)ξ) = 0 and then

ψ(K(i)ξ)T(i,i)[ψ(K(i)ξ) − F(i)ξ] = 0

(b): K(i)ξ > u0(i). In this case,ψ(K(i)ξ) = K(i)ξ − u0(i).
If ξ ∈ S it follows thatK(i)ξ−F(i)ξ ≤ u0(i). Hence, it
follows thatψ(K(i)ξ)−F(i)ξ = K(i)ξ−u0(i)−F(i)ξ ≤
0 and, since in this caseψ(K(i)ξ) > 0, one gets

ψ(K(i)ξ)T(i,i)[ψ(K(i)ξ) − F(i)ξ] ≤ 0, ∀T(i,i) > 0

(c): K(i)ξ < −u0(i). In this case,ψ(K(i)ξ) = K(i)ξ+u0(i).
If ξ ∈ S it follows thatK(i)ξ−F(i)ξ ≥ −u0(i). Hence,
it follows that ψ(K(i)ξ) − F(i)ξ = K(i)ξ + u0(i) −
F(i)ξ ≥ 0 and, since in this caseψ(K(i)ξ) < 0, one
gets

ψ(K(i)ξ)T(i,i)[ψ(K(i)ξ) − F(i)ξ] ≤ 0, ∀T(i,i) > 0

From the 3 cases above, onceξ ∈ S we can conclude
that ψ(K(i)ξ)T(i,i)[ψ(K(i)ξ) − F(i)ξ] ≤ 0, ∀T(i,i) > 0,

∀i = 1, . . . ,m, whence follows (10).�

IV. D ELAY-INDEPENDENT RESULTS

Consider the following Lyapunov candidate functional:

V (ξt) = ξ(t)′Pξ(t) +

∫ t

t−τ

ξ(θ)′Sξ(θ)dθ (11)

with P = P ′ > 0, S = S′ > 0 and whereξt, ∀t ≥ t0,
denotes the restriction ofξ to the interval[t−τ , t] translated
to [−τ , 0], that is,ξt = ξ(t+ θ) , ∀θ ∈ [−τ , 0].

Proposition 1: If there exist symmetric positive definite
matricesW ∈ <(n+nc)×(n+nc) andR ∈ <(n+nc)×(n+nc),
a diagonal positive definite matrixG ∈ <m×m, matrices
Y ∈ <m×(n+nc) andZ ∈ <nc×m satisfying:





WA
′ + AW +R AdW BG+ RZ − Y ′

WA
′
d −R 0

GB
′ + Z′

R
′ − Y 0 −2G



 < 0 (12)

[

W WK
′
(i) − Y ′

(i)

K(i)W − Y(i) u2
0(i)

]

≥ 0, i = 1, ...,m (13)

then, for Ec = ZG−1, it follows that for all initial
conditions φξ(θ) ∈ B(δ) = {φξ ∈ Cτ ; ‖ φξ ‖2

c≤ δ},
∀θ ∈ [−τ, 0] with

δ = (λmax(W−1) + τλmax(W−1RW−1))−1 (14)

the corresponding trajectories of system (8) converge
asymptotically to the origin.

Proof. The satisfaction of relations (13) with implies that

the setE(W−1, 1)
4
= {ξ ∈ <n+nc ; ξ′W−1ξ ≤ 1} is

included in the polyhedral setS with F = YW−1 [19].
Hence, ∀ξ(t) ∈ E(W−1, 1) it follows, from Lemma 1,
that ψ(Kξ(t)) = Kξ(t) − sat(Kξ(t)) satisfies the sector
condition (10).

By considering a Lyapunov candidate function as defined
in (11), and by computing its time-derivative along the
trajectories of system (8) one gets:V̇ (ξt) = ξ(t)′(A′P +
PA)ξ(t) − 2ξ(t)′P (B + REc)ψ(Kξ(t)) + 2ξ(t)′PAdξ(t−
τ) + ξ(t)′Sξ(t) − ξ(t − τ)′Sξ(t − τ). Thus, by using the
sector condition (10), it follows,∀T diagonal and positive
definite, that

V̇ (ξt) ≤ V̇ (ξt) − 2ψ(Kξ(t))′T [ψ(Kξ(t)) − Fξ(t)] (15)

Since S > 0 and T > 0 it follows that −ξ(t −
τ)′Sξ(t−τ)+2ξ(t)′PAdξ(t−τ) ≤ ξ(t)′PAdS

−1
A

′

dPξ(t)
and −2ψ(Kξ(t))′Tψ(Kξ(t)) + 2ξ′(t)(F ′T − P (B +
REc))ψ(Kξ(t)) ≤ 0.5ξ(t)′(F ′T−P (B+REc))T

−1(F ′T−
P (B + REc))

′ξ(t). Hence, from (15) one has

V̇ (ξt) ≤ ξ(t)′Lξ(t) , ∀ξ(t) ∈ S (16)

with L
4
= A

′P + PA + S + PAdS
−1

A
′

dP + 0.5(F ′T −
P (B + REc))T

−1(F ′T − P (B + REc))
′.

Consider now inequality (12). Pre and post-multiplying

this inequality by





P 0 0
0 P 0
0 0 T



, and consideringP−1 =



W , T−1 = G, Y = FW , Ec = ZG−1 andS = PRP , it
follows that (12) is equivalent to




A
′P + PA + S PAd PB + PREc − F ′T

A
′
dP −S 0

B
′P + E′

cR
′P − TF 0 −2T



 < 0

and, from Schur’s complement, we can conclude that (12)
is equivalent toL < 0. Hence, provided thatξ(t) ∈ S, if
(12) is verified one gets:

(i) V̇ (ξt) < π1||ξ(t)||
2 < 0

(ii) π2||ξ(t)||
2 ≤ V (ξt) ≤ π3||ξt||

2
c

with π2 = λmin(P ) andπ3 = λmax(P )+τλmax(S). From
(14) and(ii), it follows that forφξ(θ) ∈ B(δ), θ ∈ [−τ, 0],
one getsξ(t)′Pξ(t) ≤ V (ξt) ≤ V (ξt0) ≤ 1 , ∀t ≥ t0.
Hence, for any initial condition in the ballB(δ), one has
ξ(t) ∈ E(W−1, 1) ⊂ S, ∀t ≥ t0, provided that (13) is
satisfied. Thus, for any initial condition belonging toB(δ)
conditions(i) and (ii) of the Krasovskii Theorem [25] are
verified, ensuring the asymptotic stability of the closed-loop
system (8).�

Proposition 1 provides a condition in a local context of
stability. Under the assumption of open-loop stability, this
result can be extended to ensure global stability as follows.

Corollary 1: If there exist symmetric positive definite
matricesW ∈ <(n+nc)×(n+nc) andR ∈ <(n+nc)×(n+nc), a
diagonal positive definite matrixG ∈ <m×m, and a matrix,
Z ∈ <nc×m satisfying:





WA
′ + AW +R AdW BG+ RZ −WK

′

WA
′
d −R 0

GB
′ + Z′

R
′ − KW 0 −2G



 < 0

(17)
then, for Ec = ZG−1, it follows that the origin of the
closed-loop system (8) is globally asymptotically stable.

Proof: ConsiderF = K. It follows that (10) is verified
for all ξ ∈ <n+nc . In this case, (12) corresponds to (17)
and the global asymptotic stability follows.�

V. DELAY-DEPENDENT RESULTS

Sinceξ(t) is continuously differentiable fort ≥ 0, from
the Leibnitz-Newton formula, it follows that

ξ(t− τ) = ξ(t) −

∫ 0

−τ

ξ̇(t+ β)dβ (18)

Hence, from [25], to ensure the stability of the closed-
loop system (8) it suffices to ensure the stability for the
following system:

ξ̇(t) = (A + Ad)ξ(t) − (B + REc)ψ(Kξ(t))

−
∫ 0

−τ
[AdAξ(t+ β) − Ad(B + REc)ψ(Kξ(t+ β))]dβ

−
∫ 0

−τ
AdAdξ(t+ β − τ)dβ

(19)
with the initial dataξ(t0 + θ) = φξ(θ),∀θ ∈ [−2τ, 0].

Consider the Lyapunov-Krasovskii functional

V (ξt) = ξ(t)′Pξ(t) +Q(ξt) (20)

whereP = P ′ > 0 andQ(ξt) is a positive definite quadratic
form that will be defined in the sequel.

Proposition 2: Given τ > 0, if there exist symmet-
ric positive definite matricesW ∈ <(n+nc)×(n+nc),
X ∈ <(n+nc)×(n+nc), R ∈ <(n+nc)×(n+nc) and H ∈
<(n+nc)×(n+nc), a diagonal positive definite matrixG ∈
<m×m, matrices Y ∈ <m×(n+nc) and Z ∈ <nc×m

satisfying1:










Γ τWA
′ τWA

′
d Ξ 0

? −τX 0 0 0
? ? −τR 0 0
? ? ? −2G τ(GB

′ + Z′
R

′)
? ? ? ? −τH











< 0 (21)

[

W WK
′
(i) − Y ′

(i)

K(i)W − Y(i) u2
0(i)

]

≥ 0, i = 1, ...,m (22)

whereΓ = W (A + Ad)
′ + (A + Ad)W + τAd(X + R +

H)A′

d andΞ = −Y ′ + BG+ RZ, then, forEc = ZG−1, it
follows that for all initial conditionsφξ(θ) ∈ B(δ) = {φξ ∈
C2τ ; ‖ φξ ‖2

c≤ δ}, ∀θ ∈ [−τ, 0] with δ = (λmax(W−1) +
3τ2

2 λmax(A′

dR
−1

Ad)+
τ2

2 λmax(A′X−1
A)+ τ2

2 λmax((B+
REc)

′H−1(B + REc)) ‖ YW
−1 ‖2)−1, the corresponding

trajectories of system (8) converge asymptotically to the
origin.

Proof. The satisfaction of relations (22) with implies that
the setE(W−1, 1) ⊂ S with F = YW−1. Hence,∀ξ(t) ∈
E(W−1, 1) it follows, from Lemma 1 thatψ(Kξ(t)) =
Kξ(t) − sat(Kξ(t)) satisfies the sector condition (10).

By considering the Lyapunov candidate function as
defined in (20), and by computing its time-derivative
along the trajectories of system (19) one gets2: V̇ (ξt) =
ξ̇(t)′Pξ(t)+ ξ(t)′P ξ̇(t)+ Q̇(ξt) = ξ(t)′[P (A+Ad)+(A+
Ad)

′P ]ξ(t) − 2ξ(t)′P (B + REc)ψ(t) + µ(ξt) + ν(ξt) +

ζ(ξt) + Q̇(ξt) where µ(ξt) = −2
∫ 0

−τ
ξ(t)′PAdAξ(t +

β)dβ, ν(ξt) = −2
∫ 0

−τ
ξ(t)′PAdAdξ(t − τ + β)dβ and

ζ(ξt) = 2
∫ 0

−τ
ξ(t)′PAd(B + REc)ψ(t+ β)dβ.

Using the fact that2u′v ≤ u′Mu + v′M−1v where
M is any symmetric positive definite matrix andu
and v are vectors of appropriate dimensions, it fol-
lows that µ(ξt) ≤ τξ(t)′PAdXA

′

dPξ(t) +
∫ 0

−τ
ξ(t +

β)′A′X−1
Aξ(t + β)dβ, ν(ξt) ≤ τξ(t)′PAdRA

′

dPξ(t) +
∫ 0

−τ
ξ(t − τ + β)′A′

dR
−1

Adξ(t − τ + β)dβ and ζ(ξt) ≤

τξ(t)′PAdHA
′

dPξ(t)+
∫ 0

−τ
ψ(t+β)′(B+REc)

′H−1(B+
REc)ψ(t+ β)dβ.

Defining nowQ(ξt) =
∫ 0

−τ

∫ t

t+β
ξ(θ)′A′X−1

Aξ(θ)dθdβ +
∫ 0

−τ

∫ t

t−τ+β
ξ(θ)′A′

dR
−1

Adξ(θ)dθdβ +
∫ 0

−τ

∫ t

t+β
ψ(θ)′(B +

REc)
′H−1(B + REc)ψ(θ)dθdβ one obtains Q̇(ξt) =

−
∫ 0

−τ
ξ(t + β)′A′X−1

Aξ(t + β)dβ + τξ(t)′A′X−1
Aξ(t) −

∫ 0

−τ
ξ(t−τ+β)′A′

dR
−1

Adξ(t−τ+β)dβ+τξ(t)′A′
dR

−1
Adξ(t)−

∫ 0

−τ
ψ(t+β)′(B+REc)

′H−1(B+REc)ψ(t+β)dβ+τψ(t)′(B+

REc)
′H−1(B + REc)ψ(t).

Hence, considering the sector condition (10), it follows
that V̇ (ξt) ≤ ξ(t)′[P (A+Ad)+(A+Ad)′P ]ξ(t)−2ξ(t)′P (B+

REc)ψ(t) + τξ(t)′PAdXA
′
dPξ(t) + τξ(t)′A′X−1

Aξ(t) +

1? stands for symmetric blocks.
2For notational simplicity, we denoteψ(Kξ(t)) asψ(t) throughout the

proof.



τξ(t)′PAdRA
′
dPξ(t) + τξ(t)′A′

dR
−1

Adξ(t) +

τξ(t)′PAdHA
′
dPξ(t)+τψ(t)′(B+REc)

′H−1(B+REc)ψ(t)−

2ψ(t)′T [ψ(t) − Fξ(t)], ∀ξ(t) ∈ S, ∀T > 0 diagonal.
Following now a similar reasoning to the one done in the

proof of Proposition 1, it is easy to show that

V̇ (ξt) ≤ ξ(t)′Lξ(t) < 0, ∀ξ(t) ∈ S (23)

with L
4
= P (A + Ad) + (A + Ad)

′P + τPAd(X + R +
H)A′

dP + τA
′X−1

A + τA
′

dR
−1

Ad + (−F ′T + P (B +
REc))(2T−τ(B+REc)H

−1(B+REc))
−1(−F ′T+P (B+

REc))
′, and that inequality (21) is equivalent toL < 0.

Hence, provided thatξ(t) ∈ S, if (21) is verified one
gets: V̇ (ξt) < π1||ξ(t)||

2 < 0 and π2||ξ(t)||
2 ≤ V (ξt) ≤

π3||ξt||
2
c , with π2 = λmin(P ). The computation ofπ3 needs

to study the overbounding ofV (ξt) and therefore that one
of Q(ξt). Thus, we have to express the upper bound on the
norm of ψ(t). For ξ(t) ∈ S, one can verify thatψ(Kξ(t))
satisfies||ψ(Kξ(t))|| ≤ ||Fξ(t)|| ≤ ||F ||||ξ(t)||

Hence, from (20) one getsπ3 = δ−1, and,
for φξ(θ) ∈ B(δ), ∀θ ∈ [−2τ, 0], one gets
ξ(t)′Pξ(t) ≤ V (ξt) ≤ V (ξt0) ≤ 1 , ∀t ≥ t0. Thus,
following the same reasoning used in the proof of
Proposition 1 we can conclude that∀φξ(θ) ∈ B(δ),
θ ∈ [−2τ, 0], the asymptotic stability of the system (19)
is ensured and, as consequence, the asymptotic stability of
system (8) is ensured∀φξ(θ) ∈ B(δ), θ ∈ [−τ, 0]. �

Concerning global stability, the following corollary can
be stated.

Corollary 2: If there exist symmetric positive definite
matricesW ∈ <(n+nc)×(n+nc), X ∈ <(n+nc)×(n+nc),
R ∈ <(n+nc)×(n+nc) andH ∈ <(n+nc)×(n+nc), a diagonal
positive definite matrixG ∈ <m×m, and a matrixZ ∈
<nc×m satisfying:











Γ τWA
′ τWA

′
d Ξ̃ 0

? −τX 0 0 0
? ? −τR 0 0
? ? ? −2G τ(GB

′ + Z′
R

′)
? ? ? ? −τH











< 0 (24)

with Ξ̃ = −WK
′ + BG + RZ, then, forEc = ZG−1,

it follows that the origin of the closed-loop system (8) is
globally asymptotically stable.

Remark 1: The results in [22] appear as particular cases
of Propositions 1 and 2. In that paper,ψ(Kξ) satisfies
the classical sector condition (see for instance [21] and
references therein):

ψ(Kξ)′T [ψ(Kξ) − ΛKξ] ≤ 0, ∀ξ ∈ S(K, uλ
0 ) (25)

whereΛ is a positive diagonal matrix and

S(K, uλ
0 )

4
= {ξ ∈ <n+nc ; |K(i)ξ| ≤

u0(i)

1−Λ(i,i)
, i = 1, ...,m}

(26)
Considering this classical sector condition (25) and follow-
ing a similar procedure to the one applied in the proof of
Propositions 1 and 2, it is only possible to obtain conditions
that are bilinear in variablesW andΛ, i.e., the conditions

are BMIs. On the other hand, by takingG = ΛK, it is easy
to see that the conditions obtained from (25) corresponds to
particular cases of the ones stated in Proposition 1 and 2.
Furthermore, the conditions of Propositions 1 and 2 appear
directly in an LMI form.

VI. COMPUTATIONAL ISSUES

We discuss in this section, how to use these conditions
in order to find, numerically, solutions for Problem 1.

A. Delay-independent case
Since the implicit objective is to obtain a setB(δ)

with a significant size, we can consider an optimization
problem with the following criterion:min{β1λmax(W−1)+
β2λmax(R)}, where βi, i = 1, 2 are tuning parameters.
Note that by minimizing the function above we are, implic-
itly, maximizing δ. Thus, we propose the following convex
optimization problem for providing a solution to Problem
1:

min{β1λW + β2λR}
subject to
relations(12), (13)
[

λW In+nc In+nc

In+nc W

]

≥ 0, λRIn+nc ≥ R

(27)

B. Delay-dependent case
In this case, we can consider the following opti-

mization criterion, related, implicitly, to the maximiza-
tion of the δ: min{β1λmax(W−1) + β2λmax(H−1) +
β3λmax(A′

dR
−1

Ad) + β4λmax(A′X−1
A)}, whereβi, i =

1, ..., 4 are weighting parameters. The following convex
optimization problem can therefore be formulated in order
to provide a solution to Problem 1:

min{β1λW + β2λH + β3λR + β4λX)}
subject to
relations(21), (22)
[

λW In+nc In+nc

In+nc W

]

≥ 0,

[

λXIn+nc A
′

A X

]

≥ 0
[

λRIn+nc A
′
d

Ad R

]

≥ 0,

[

λHIn+nc In+nc

In+nc H

]

≥ 0

(28)

VII. E XAMPLES AND CONCLUDING REMARKS

Example 1: Consider system (1) borrowed from [19],

where: A =

[

1 1.5
0.3 −2

]

;Ad =

[

0 −1
0 0

]

;B =
[

10
1

]

;C =
[

5 1
]

; u0 = 15 and τ = 0.5. The open-

loop matrixA is strictly unstable since its eigenvalues are
1.1432;−2.1432.

Consider the following dynamic controller:

Ac =

[

−20.2042 2.5216
2.1415 −4.4821

]

;Bc =

[

1.9516
−0.0649

]

;Cc =
[

−0.9165 0.1091
]

. Note that matrixA is asymptotically
stable. Hence, the problem can be addressed in the
independent or in the dependent delay contexts.

Solving the optimization problem (27), withβ1 = 1
and β2 = 0, one obtainsδ = 4.520 × 103 and Ec =
[

−59.640
−161.718

]

. On the other hand, if we consider problem

(28), with all tuning parametersβi = 1, one gets:δ =



4.889 × 103 and Ec =

[

−76.201
70.413

]

. It is important to

note that the obtained values ofδ above are clearly less
conservative than the ones obtained in [22] with the classical
sector condition:δ = 637.824 in the independent delay case
andδ = 285.151 in the dependent delay case.

Tables I show the values ofδ resulting from the applica-
tion of respectively the optimization problems (27) and (28)
for different values ofτ . Two cases are illustrated: with and
without anti-windup gain (i.e withEc = 0).

TABLE I

VALUES OF δ

problem (27) Problem (28)
τ Ec 6= 0 Ec = 0 Ec 6= 0 Ec = 0

0.1 7.679e3 7.317e3 10.129e3 9.648e3
0.5 4.520e3 4.367e3 4.889e3 4.476e3
1 2.986e3 2.903e3 1.468e3 1.402e3

We can notice, as expected, that greater is the time-delay,
smaller is the region of stability obtained. Furthermore, it is
possible to obtain an improvement of the size of the stability
region by using the anti-windup gain. On the other hand,
we can see that the delay-dependent condition can provide
less conservative regions of stability for small delays.

Example 2: Consider system (1) with: A =
[

1 0
0 0

]

;Ad =

[

0 1.5
0.3 −2

]

;B =

[

10
1

]

;C =
[

5 1
]

andu0 = 15.
Consider the same dynamic controller as that one in

Example 1. Note that matrixA is now unstable. Hence, we
have to solve our problem in the delay-dependent context.

Table II show the obtained values ofδ andEc considering
the optimization problem (28) withβi = 1. The last column
of the table shows the values forδ obtained in [22] with
the classical sector condition

TABLE II

VALUES OF δ AND Ec

τ Ec δ δ of [22]

0.1

[

−81.950
−235.487

]

7.682e3 1.512e3

0.2

[

−124.673
−349.249

]

5.552e3 977.840

0.4

[

−310.232
−558.027

]

756.19 288.829

As in the previous example, for largerτ one obtains
the guarantee of stability for a small region of stability.
Moreover we can notice the improvement of the results
when compared with the ones obtained using a classical
sector condition.
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