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Using Anti-Windup Loops for Enlarging the Stability Region of
Time-Delay Systems subject to Input Saturation

J.M. Gomes da Silva Jr., S. Tarbouriech and G. Garcia

Abstract— This paper focus on the study and the characteri- dealing with the stabilization of the closed-loop system in
zation of stability regions for linear systems with delayed states global, semi-global and local contexts (see among others
and subject to input saturation through anti-windup strategies. 7] rg] [9]). The second approach assumes that a controlle
In particular, the synthesis of anti-windup gains in order to We{s r,eviousl designed, in order to guarantee some perfor-
guarantee the stability of the closed-loop system for a region of p y 9 ’ . g o P
admissible initial states as large as possible is addressed. Basedmances. The effects of the saturation on the stability aed th
on the modelling of the closed-loop system, resulting from the performance of the closed-loop system are then considered
controller plus the anti-windup loop, as a linear time-delay g posteriori. The anti-windup technique fits in this last
system with a deadzone nonlinearity, stability conditions in approach as it consists in introducing control modificagion

an LMI form are stated, for both the delay independent and . der t h ible. th f
delay dependent contexts, by using quadratic functionals and In order 1o recover, as much as possible, the performance

a new sector condition. LMI-based optimization schemes for induced by a previous design carried out on the basis of
computing the anti-windup gains that lead to the maximization the unsaturated system (see, for example, [10], [11], [12],
of the size of the region of stability associated to the closed-loop [13]). It should be pointed out that several results on the
system are then proposed. The application of the technique and 5t windup problem are concerned with achieving global
the trade-off between the size of the delay and the region of tabilit i 111 1141, Si lobal It n
stability are illustrated by means of a numerical example. sta ”y, properties [11], [14]. Since g'o al results CQ n
be achieved for open-loop unstable linear systems in the
[. INTRODUCTION presence of actuator saturation, local results have to be

In the last few years, the study of systems presentin@gveloped. In this context, a key issue is the determination
time-delays has received a special attention in the contref domains of stability for the closed-loop system, i.e.,
systems literature (see [1] for an interesting overvievisT Sets of admissible initial states for which the asymptotic
interest comes from the fact that time-delays appear #Pnvergence of the corresponding trajectories to the rorigi
many kinds of control systems (e.g. chemical, mechanic#g ensured. On the other hand, it should be highlighted that
and communication systems) and their presence can these global stability results do not consider the case of
source of performance degradation and instability. In thisystems with time-delays.
sense, we can find in the literature many works giving Considering that many practical systems present both
conditions for ensuring stability as well as performancéme-delays and saturating inputs, from the consideration
and robustness requirements, considering or not the delafove, it becomes important to study the stability issues
dependence. Concerning the delay independent results, tegarding this kind of systems. In this sense, we can identif
stability is ensured no matter the size of the delay [2], [3]in the literature some results for systems with delays in the
[4]. On the other hand, in the delay dependent results, tiséate, proposed mainly in the context of the stabilization
size of the delay is directly taken into account and this fadtia state feedback. In [15], a globally stabilizing state
can lead, especially when the time-delays are small, to leg§server based controller is proposed. In [16], [17] and
conservative results [5], [6]. [18], conditions of stability or stabilization are propdse

Since physical actuators cannot deliver unlimited signaMith state feedback and sampled state feedback. However,
to the controlled plants, the problem of control saturatiofn these papers, the set of admissible initial conditions fo
and its impact on the stability and the performance of thehich the asymptotic stability is ensured in the presence of
closed-loop system has also received a lot of attention gpntrol saturation is not mentioned or explicitly definedl. |
the last years. The studies on the analysis and controllE9], it was underlined the importance of describing a set
design problems for linear systems with input saturatioff admissible initial conditions associated to the stabil
have followed two main approaches. In the first one, theontrol law. On the other hand, considering an anti-windup
effects of the saturation are directly taken into account iapproach we can cite [20]. In that paper, it is proposed
the design of the control law. We can identify method® dynamic anti-windup method for linear systems with

control input delays and output measurement delays that
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windup strategies. Differently of the most anti-winduphec B., C. et D, are of appropriate dimensions. In consequence
nigues cited above, where the synthesis of the anti-windwgd the control bounds, the control signal to be injected in
loop is introduced with the objective of minimizing thethe system is a saturated one, that is,

performance degradation, we are particularly interested i

the synthesis of anti-windup gains in order to guarantee the u(t) = sat(ye(t)) = sat(Cen(t) + DeCx(t)) - (5)
stability of the closed-loop system for a region of admiksib where each component efit(y.) is defined as

initial states as large as possible. With this aim we propose ) .

results both in the delay independent and dependent con3a@t(¥e) iy = 5at(Ye(i)) = sign(ye() min([ye|, voe))
texts. These results are derived from a Lyapunov-Krasovski . : (6)
approach combined with a new and original sector condition_In order to mlt_lgate the l_mdeswable_ e_ffects of
that encompasses the classical one found in the Iiteratd?’éndUp’ caused by input sat:rirglnon, an anti-windup term
(see for instance [21] and [22]), and, furthermore, allows ple(sat(ye(t)) = yc(t)), Ee € """, can be added to the

obtain the conditions directly in an LMI form. The search Oicoztr(;!ler [1.1]'. 'I('jhus, conS|derr:ng lthe éhl/namm controlle(;
the anti-windup gains that lead to the maximization of th&nd this anti-windup strategy, the closed-loop systemsea

size of the region of stability associated to the close@loo %(t) = Az(t) + Aqz(t — 7) + Bsat(y.(t))

system can be carried out from an LMI-based optimization y(t) = Cx(¢)

problem. 0(t) = Aen(t) + Bey(t) + Eo(sat(ye(t)) — ye(t))
Notations. A(;) denotes theith row of matrix A. For two ye(t) = Cen(t) + Dey(t)

symmetric matricesA and B, A > B means thatA — B is Define now an extended state vectaf(t) =—

positive definite.A’” denotes the transpose df. I,,, denotes the () n@)] e Rntne. and the following matrices:

m-order identity matriX.Amaz(P) and Apin(P) denote respec- A+ BD,C BCC, A; 0

tively the maximal and minimal eigenvalues of matiix ¢, = A = B.C A, ] , Ag = o 0|’ B =

C([-T,0], R™) denotes the Banach space of continuous vectoL

()

, R = IO andK = [ D.C C. ]|. Hence,

functions mapping the intervalr, 0] into R™ with the topology 0
Ne
osed-loop system reads:

of uniform convergencs - || refers to either the Euclidean vector {fg ¢

norm or the induced matrix 2-nornfl. ¢ ||.= sup | ¢(t) ||
t<0

_r<t< : — _ _
stands for the norm of a functian € C.. When the delay is finite () = AL(H) + Aal(t = 7) — (B + RE)P(KE() - (8)

then “sup” can be replaced byihax”. C2 is the set defined by with ¢(K&(t)) = y.(t) — sat(y.(t)) = KE(t) — sat(KE(t))
Cl={9€Cr; || ¢|lc<v, v>0} Note that,»(K¢) corresponds to a decentralized deadzone
nonlinearity, i.e. ) (KE(t)) ) = Y(K;)&(t)) = K)&(t) —
sat(K€(0)).

Il. PROBLEM STATEMENT

Consider the linear continuous-time delay system: The augmented system (8) admits an augmented initial
#(t) = Axz(t) + Aqz(t — ) + Bu(t) 1) condition
y(t) = Cuz(t)

to+60) = 0) = m(t0+9):|:|:¢m(9):|7
with the initial conditions Ho+0) = 0¢(0) [ n(to +6) 0n(0)
v Vo € [—1,0], whereg¢(0) satisfies|| ¢¢ ||.< v, v > 0.
olto +0) = 6:(0),¥0 € [-7,0], to € Ry, 60 €C7 () Sys[tem %8) will beéga)id globall)|/| agy”mptotically stable if
wherez(t) € R™, u(t) € R™, y(t) € RP are the state, for any initial condition satisfyind ¢, ||. < v with any finite
the input and the measured output vectors, respectively, the trajectories of system (8) converge asymptotically
Matrices A, Ay, B and C' are real constant matrices ofto the origin [15], [23]. Similar to the case of delay-
appropriate dimensions. We suppose also that the inpiniee (- = 0), the determination of a global stabilizing
vector v is subject to amplitude limitations defined ascontroller is possible only when some stability assumpion
follows: are verified by the open-loop system({) = 0) [8]. When
this hypothesis is not verified, it is only possible to ackiev
local stabilization. In fact, in the generic case, given a
Considering system (1), assume therefore thatnan stabilizing matrixK, we associate &asin of attraction to

order dynamic output stabilizing compensator the equilibrium point§, = 0 of system (8). The basin of

) attraction corresponds to all initial conditiong(9) € C,

0(t) = Aen(t) + Bey(?) (4) such that the corresponding trajectories of lzf)%gtem (8) con-

Ye(t) = Cen(t) + Dey(t) verge asymptotically to the origin. Since the determiratio
wheren(t) € R" is the controller statey.(t) = y(t) € RP  of the exact basin of attraction is practically impossilae,
is the controller input and,.(t) € ™ is the controller problem of interest is to ensure the asymptotic stability fo
output, has been designed in order to guarantee some persetB(5) = {¢¢ € Cr; | ¢¢ ||2< §} of admissible initial
formance requirements and the stability of the closed-looponditions¢¢(#) [19]. Of course, the seB(d) is included
system in the absence of the control saturation. Mattites in the basin of attraction. Throughout the paper we will
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refer a setB(d) asa region of stability for system (8). The Vi =1,...,m, whence follows (10)O
problem we aim to solve throughout this paper can then be
summarized as follows.

Problem 1. Determine the anti-windup gain matrik.
and a scala#, as large as possible, such that the asymptotic Consider the following Lyapunov candidate functional:
stability of system (8) is ensured for all initial condit®n t
¢e(0) € B(6) = {¢¢ € Crs || de 2< 0}, VO € [-7,0]. V(&) =) PE(t) + [ £(0)'SE(0)de (11)

Since B(4) can be viewed as an estimate of the basin t=r
of attraction of the system (8), the implicitly idea behindwith P = P’ > 0, S = S’ > 0 and where¢;, vVt > to,
Problem 1 is to enlarge this basin over the choice of théenotes the restriction gfto the intervalt—r , ¢] translated
anti-windup gain matrixt... to [-7, 0], thatis,& =&(t+0) , V0 € [—7, 0].

It should be pointed out that depending on the stability Proposition 1: If there exist symmetric positive definite
property of matricesh, A + Ay and A — Ay, we should Matricesiw € Rivtre)x(ntne) and R e %f;L:;“)X(7L+7.L“)1
study the closed-loop stability of system (8) in a delayf; ‘é‘?gg’;?i ﬁgf"g\é% geé'rgfc matsrgis?yifg- , matrices
independent or delay-dependent context. Indeed, a nec- ’
essary condition for the delay-independent stability is to | WA'+ AW + R AqW BG+RZ -Y’
haveA, A + A, Hurwitz andA — A, not strictly unstable , WA, —R 0
(i.e., A — A,y have not eigenvalues with positive real part) CB + 2R —Y 0 —2G
[24]. Hence, throughout the paper, we address Problem 1 7% WK, — Yy
both in the delay dependent and independent contexts. The { KW — Y U ()
measures and the criteria allowing to optimize the size of
the region of stability of the closed-loop system, the todtle then: for E. =
between this one and the admissible upper bound on tf@NItions ¢¢(6) <
delay will be discussed in each case. V0 € [=7, 0] with

6= Mnaz(W ™) + TApae (WIRW )71 (14)

IV. DELAY-INDEPENDENT RESULTS

<0 (12)

} >0,i=1,....m (13)

ZG~1, it follows that for all initial
B(©) = {¢¢ € Cri|l ¢¢ [2< o},

Ill. PRELIMINARIES

Consider a matrixt’ € R*("*t7¢) and define the set  the corresponding trajectories of system (8) converge
asymptotically to the origin.

Proof. The satisfaction of relations (13) with implies that
the set&(W-1,1) 2 {& € Rvtne; ¢W—le < 1} is
included in the polyhedral sef with F = YW1 [19].
Hence,Vé(t) € E(W 1 1) it follows, from Lemma 1,
Y(KE)'T[Y(KE) — FE <0 (10) that 9(K&(t)) = KE(t) — sat(Ke(t)) satisfies the sector
condition (10).

By considering a Lyapunov candidate function as defined
in (11), and by computing its time-derivative along the
i o trajectories of system (8) one gef(¢,) = £(t) (A'P +
(a): —uoi) < K€ < ugy- In this case, by definition, PAE(t) — 26(t) P(B + RE)W(KE(L)) + 26(t) PAGE(t —

$(K;)§) = 0 and then ) + £(t)'SE(t) — €(t — 7)'SE(t — 7). Thus, by using the
(Ko €) T [0(K i) €) — Fapé] = 0 sector condition (10), it followsy7" diagonal and positive
’ definite, that

AN NT+"Ne .
S={Ee R Ky — Fiylé <woy, i =1,...,m}
9
Lemma 1: Consider the function)(K¢) defined in (11).
If ¢ € S then the relation

is verified for any matrix” € R diagonal and positive
definite.
Proof: Consider the three cases below.

(b): K€ > ugs- In this casey (K &) = K& — ug- . .
11 €€ S it follows thatK gy € — Fué < gy, Hence, it V(&) < V(&) — 26(Ke(0)) T (Ke(1) — FE(t)] (15)
follows thaty)(K;)§) — Fiip¢ = Ki)& —uow) —Foé < Since S > 0 and T > 0 it follows that —¢(t —
0 and, since in this casg¢(K &) > 0, one gets 7Y SE(t—7)+26(t) PAGE(t—7) < E(t) PAGS AL PE(t)
K )T (K ) — Finé] <0, VT >0  and —20(KE(@)Ty(KE(L)) + 28 (4)(F'T — P(B +
PO ES e 07T RE))(KE) € 0560 (FT—P(B+RE))T - (FT—
(©): K¢ < —ug(y). In this caseyp(K;)¢) = K& +uowy-  P(B+ RE,))€(t). Hence, from (15) one has
If £ € S itfollows thatK;)§ — F(;)§ > —ug(;. Hence, )

it follows that ¥(K ;&) — Fi)é = K& + uowy — V(&) <E@)LER) , Ve €S (16)
F»é > 0 and, since in this case¢(K;§) < 0, one . A B
gets with £ = A’P + PA + S + PAgS™'AP 4+ 0.5(F'T —
PB+RE))TYF'T - P(B+RE,))".
YK HET 600 (Kyé) — Fiyé] <0, VI >0 Consider now inequality (12). Pre and post-multiplying
From the 3 cases above, ong¢ec S we can conclude thjs inequality by f; 12 8 , and considering?~! =
that o (K;)§) T [V (K@ €) — Fpél < 0, VI > 0, 0o 0 T
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W, T7'=G, Y =FW,E.=ZG~ ' andS = PRP, it
follows that (12) is equivalent to

AP+ PA+ S PAy PB+ PRE.—F'T

ALP -3 0
B'P+ERP-TF 0 2T

<0

and, from Schur's complement, we can conclude that (12)

is equivalent toL < 0. Hence, provided thag(t) € S, if
(12) is verified one gets:

(i) V(&) < m|lE@®)|]?> <0
(i3) 2| |E()]|> < V(&) < msl|&l|?

with m = )\min(P) andws = )\maw(P)-i-T)\maw(S). From
(14) and(is), it follows that for ¢¢(8) € B(d), 0 € [—,0],
one getsé(t) PE(t) < V(&) < V(&,) <1, ¥t > 1.
Hence, for any initial condition in the balB(J), one has
Et) € EW-LH1) C S, Vt > to, provided that (13) is
satisfied. Thus, for any initial condition belonging £(J)
conditions(¢) and (i7) of the Krasovskii Theorem [25] are
verified, ensuring the asymptotic stability of the closedgd
system (8)[1

Proposition 2: Given 7 > 0, if there exist symmet—
ric positive definite matriceslV e Rrtne)x(ntne)
X € Rntnox(nind R e Rntnoxning and 0 e
R(ntne)x(ntne) 5 diagonal positive definite matrig e
grmxm - matricesY € Rmx(ntne) and Z € Rrexm
satisfying:

r WA WA, = 0
*  —7X 0 0 0
* * —TR 0 0 <0 (21)
* * * —2G 1(GB' + Z'R’)
* * * * —TH
W WK/, — Y/
@GO >0, i=1,.,m (22
KoyW =Y Up (i) - ()
wherel' = WA+ Ay) + (A+Ay)W 4+ 7A(X + R+
H)A!, and= = Y’ +BG + RZ, then, forE. = ZG™1, it
follows that for all initial conditionsp¢(6) € B(6) = {¢>5 €

CzT, | de ||I2< 6}, VO € [ 7,0] with § = (A maw(W b+

32 )\max(A;R YAg)+ 5 )\maz(A’X A+ % )\mar((B"F
RE ) H (B +RE.)) H YW= %)~ the correspondlng
trajectories of system (8) converge asymptotically to the

Proposition 1 provides a condition in a local context ofrigin.

stability. Under the assumption of open-loop stabilityisth

Proof. The satisfaction of relations (22) with implies that

result can be extended to ensure global stability as followthe set&(W~1,1) ¢ S with F = YW 1. Hence,V&(t) €

Corollary 1: If there exist symmetric positive definite &1y~

matricesiV € R(ntne)x(ntne) gnd R € Rvtne)x(ntne) g
diagonal positive definite matri& € R™*™, and a matrix,
Z € Rre*™ gatisfying:

WA + AW +R AWV BG+RZ— WK
WA, -R 0
GB + Z'R —KW 0 —2G

<0

17)
then, for E. = ZG~1, it follows that the origin of the
closed-loop system (8) is globally asymptotically stable.

Proof: ConsiderF = K. It follows that (10) is verified
for all £ € R,
and the global asymptotic stability follows]

V. DELAY-DEPENDENT RESULTS

Sinceé(t) is continuously differentiable for > 0, from
the Leibnitz-Newton formula, it follows that

0
Et—7)=¢£t) — é(t + B)dj (18)

Hence, from [25], to ensure the stability of the closed-

L)1) it follows, from Lemma 1 thaty(K&(t)) =
K¢(t) — sat(KE(t)) satisfies the sector condition (10).

By considering the Lyapunov candidate function as
defined in (20), and by computing its time-derivative
along the trajectories of system (19) one @eﬁé’(gt) =
() PE(t)+&(t) PE(t) + Q&) = £(t)' [P(A+Aa) + (A+
Aq) PIE(t) — 26(t) P(B + RE)Y(t) + u(&e) + (&) +
C(&) + Q(ft) where M(ft = =2 [C_&(t)'PAJAL(t +
B)dB, v(&) = —2[° €(t) PAqA«E(t — 7 + B)dS and

(&) = 2 f,T &(t PAd(B +REC))(t + 3)dp.

In this case, (12) corresponds to (17) Using the fact thau/v < w'Mu + v'M~'v where

M is any symmetric positive definite matrix and
and v are vectors of appropriate dlmenS|ons it fol-
lows that u(&) < 7E(t) PAXALPE(t) +f E(t +
BYA X IAL(t + B)dB, V(&) < TE(t) PAJRALPE() +
J2 6t — 7+ BYALRTIAG(E — 7 + B)dB and (&) <
TE(t) PAGHALPE®) + [°_o(t+8) (B+RE.) H ' (B+
RE)¥(t + B)dp.
Defining now Q(&;)

= [0 €0 A’X*Ag(e)dedwr

loop system (8) it suffices to ensure the stability for the " /. r+p E(0YALRAE(0)d0dB + [0 [! 50 (0)

following system:
£(t) = (At Ba)E(t) — (B+RE)Y(KE())
— [ [AGAE(t + B) — Aa(B + RE)Y(KE(t + B))]dS
— 1°, Aahab(t+ B — )d3
19)
with the initial data&(to + 6) = ¢¢(9),V6 € [—27,0].
Consider the Lyapunov-Krasovskii functional
V(&) = £(t)' PE(t) + Q(&) (20)

whereP = P’ > 0 andQ(&;) is a positive definite quadratic

form that will be defined in the sequel.

]RE)H B + RE.)(0)d0d3 one obtains Q(gt)
—f E(t + B)A'XTTAL( + B)dB + TE(t )A’X TAL(L) -
SO, €(t—r+8) ALR 1Ad£(t T+B)dB+TE() AgR ™ Adg(t)—
J2, ¥(t+B) (B+RE.) H " (B+RE, )w(t+ﬂ)dﬁ+rw( ) (B+
RE.)'H (B +RE:)y(t).

Hence, considering the sector condition (10), it follows
that V(¢,) < €(1)'[P(A+Aa) + (A+Aa) PIE(t) — 26(t) P(B+
RE)(t) + T€(t) PAAXALPE() + T€(t)A'XTAL(t) +

14 stands for symmetric blocks.
2For notational simplicity, we denoteé (K¢ (t)) asv(t) throughout the
proof.
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TE(t) PAGRA, PE(t) + TE() AR AGE (L) + are BMIs. On the other hand, by takidg= ALK, it is easy
TE() PAGHALPE(Y) +1(t) (B+RE.) H ' (B+RE.)y(t)—  to see that the conditions obtained from (25) corresponds to
2¢(t) T[y(t) — FE®)], VE(t) € S, VT > 0 diagonal particular cases of the ones stated in Proposition 1 and 2.

Following now a similar reasoning to the one done in théurthermore, the conditions of Propositions 1 and 2 appear
proof of Proposition 1, it is easy to show that directly in an LMI form.

V(&) <€) LE(R) <0, VEt)eS (23) VI. COMPUTATIONAL ISSUES

We discuss in this section, how to use these conditions

. A ,
with £ = P(A + Aq) + (A + Ag)'P + 7PAX + R+ 4y grer to find, numerically, solutions for Problem 1.

H)ALP + A/ X7'A + 7A,R7'Ay + (-F'T + P(B +

RE.))(2T —7(B+RE.)H *(B+RE,))"'(—F'T+P(B+ A Delay-independent case

RE.)), and that inequality (21) is equivalent < 0. Since the implicit objective is to obtain a sé&(0)
Hence, provided that(t) € S, if (21) is verified one with a significant size, we can consider an optimization

gets: V(&) < m||€(0)]]> < 0 and m||E(H)||2 < V(&) < problem with the following criterionmin{ 31 Aoz (W ™1)+

2 A , BoAmaz(R)}, where 3;, i = 1,2 are tuning parameters.
s [€¢llc, with my = A””"_(P)' The computation of; needs 2" o by minimizirzlg the function above we are, implic-
to study the overbounding df (¢;) and therefore that one jty maximizing . Thus, we propose the following convex

of Q(&:). Thus, we have to express the upper bound on theptimization problem for providing a solution to Problem
norm of ¢(t). For&(t) € S, one can verify tha)(K¢(¢)) 1

satisfies| |4 (Ke(8)) ]| < [FE®) < IFIIl€®)] oy OeAn)

Hence, from (20) one getstrs = 6!, and, relations(12), (13) (27)
for ¢:(0) € B(S§), V& € [-27,0], one gets A lnine  Intne | <o \.1 >R
()Y PEL) < V(&) < V(&) < 1, ¥Vt > to. Thus, { Tntne W= e =

following the same reasoning used in the proof of
Proposition 1 we can conclude thatp:(0) € B(9),

0 € [~27,0], the asymptotic stability of the system (19) n this case, we can consider the following opti-

is ensured and, as consequence, the asymptotic Stab“ityrf;?fzation criterion, related, implicitly, to the maximiza-
system (8) is ensuredge (0) € B(d), ¢ € [-7,0]. O tion of the 6: min{fiAmaz(W 1) + Bodmaz(HY) +
B3Amaz (A RTIAG) + Bidmax (A’ X ~1A)}, where3;, i =

Concerning global stability, the following corollary canl,...,4 are weighting parameters. The following convex

B. Delay-dependent case

be stated. optimization problem can therefore be formulated in order
Corollary 2: If there exist symmetric positive definite {0 Provide a solution to Problem 1:
matrices W e Rtne)x(ntne)  x e gntne)x(ntne) min{BiAw + B2z + BsAr + Badx)}
R € Rmtno)x(ntne) and [ € Rintno)x(4ne) g diagonal  subject to
positive definite matrixG € R™*™, and a matrixZ € relations(21), (22)
RreXm satisfying: M Inin. Tnin, AxTngn, A (28)
. L w20 A x |20

I WA WA, = 0 \ I* Y N I

x —1X 0 0 0 Fgtne } > 07{ fomane Afne >0

* * —TR 0 0 <0 (24) d ntne

* * * —-2G 1(GB' + Z'R’)

o * * —TH VIl. EXAMPLES AND CONCLUDING REMARKS
with = = —WK’ + BG + RZ, then, forE. = ZG™1, Example 1. Consider system (1) borrowed from [19],
it follows that the origin of the closed-loop system (8) isyhere: 4 — L P { 0 -1 } B =
globally asymptotically stable. 03 -2 ] 0 0]

Remark 1: The results in [22] appear as particular case 1

of Propogmons 1 and 2'. !n that pape‘?’(K@ satisfies op matrix A is strictly unstable since its eigenvalues are
the classical sector condition (see for instance [21] anfl, 35 5 1439
references therein): ' L :

0 ;C =[5 1];u=15andr = 0.5. The open-

Consider the following dynamic  controller:

—20.2042  2.521 1.951
V(RS TIAKE) — AKE) <0, Vee SE.ud)  (28) A= | 3550 200 [on = | A0 | e -
where A is a positive diagonal matrix and [ —0.9165 0.1091 |. Note that matrixA is asymptotically
A o vy stable. Hence, the problem can be addressed in the
SK,up) ={E € R [Kwél < =55 i = L,om} independent or in the dependent delay contexts.

S _ N (26) Solving the optimization problem (27), witl}; = 1
Considering this classical sector condition (25) and f@llo gnd 3, — 0, one obtainss = 4.520 x 103 and E, =

ing a similar procedure to the one applied in the proof of —59.640
2

Propositions 1 and 2, it is only possible to obtain condgion| —161.718 |" On the other hand, if we consider problem

that are bilinear in variable®” and A, i.e., the conditions (28), with al

tuning parameterg; = 1, one gets:§ =
4823



—176.201

4.889 x 10% and E, = 0413 | " is important to  [3]
note that the obtained values 6fabove are clearly less
conservative than the ones obtained in [22] with the classic 4]
sector conditiond = 637.824 in the independent delay case
andd = 285.151 in the dependent delay case.

Tables | show the values dfresulting from the applica- [5]
tion of respectively the optimization problems (27) and)(28
for different values of-. Two cases are illustrated: with and
without anti-windup gain (i.e with¥, = 0). (6]

TABLE | 7]
VALUES OF §
problem (27) Problem (28) (8]
T E.#0 | Ec=0 E.#0 E.=0
0.1 | 7.679e3 | 7.317e3 | 10.129¢3 | 9.648¢3
0.5 | 4.520e3 | 4.367e3 | 4.889¢3 | 4.476e3 [9]
T | 2.986e3 | 2.903e3 | 1.468e3 | 1.402e3

We can notice, as expected, that greater is the time-del;i%]
smaller is the region of stability obtained. Furthermotés i
possible to obtain an improvement of the size of the stabilit
region by using the anti-windup gain. On the other hand?
we can see that the delay-dependent condition can provide

less conservative regions of stability for small delays.  [12]
Example 2: Consider system (1) with: A =
1 0 0 15 10

{0 Oﬁ;Ad—{OB L5 T;B—[ . };C:[5 1] 03

andugy = 15. [14]
Consider the same dynamic controller as that one in
Example 1. Note that matrik is now unstable. Hence, we [15]
have to solve our problem in the delay-dependent context.

Table Il show the obtained values ®&nd E. considering
the optimization problem (28) with; = 1. The last column

16
of the table shows the values férobtained in [22] with
the classical sector condition a7
TABLE I
VALUES OF § AND E. [18]
T E. ) § of [22]
—81.950
0.1 935487 7.682¢3 | 1.512¢3 [19]
—124.673
0.2 349,949 5.552e3 | 977.840
—310.232 20
0.4 558007 756.19 | 288.829 [20]
As in the previous example, for larger one obtains [27)

the guarantee of stability for a small region of stability.
Moreover we can notice the improvement of the result&

. . . ' F]
when compared with the ones obtained using a classica
sector condition.
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