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Abstract— This paper considers the problem of stabiliza-
tion for input delayed systems. Using redundant descriptor
representation, we derive a sufficient condition for stability of
input delayed systems via memoryless (static) state feedback.
Furthermore, we give a robust stabilization condition for input
delayed system whose coefficient matrices depend rationally on
real uncertainty parameters.

I. I NTRODUCTION

Recently, increasing attention has been paid to the prob-
lems of stability and stabilization of linear systems with
time-delay. For state-delayed systems, a number of re-
sults have been reported. Some of the results are delay-
independent, and some of the results are delay-dependent.
However for the systems with input delay, the results are
almost delay-independent [1], [2]. A few of the results
are delay-dependent, however the results are obtained by
designing dynamic state-feedback controller [3], [4]. In this
paper, first, we derive a delay-dependent sufficient condition
for stabilization of input and state delayed systems via static
state-feedback. This result is obtained by using redundant
descriptor form. Applying a new descriptor variables which
is substituted for derivative of the state[6], [5], we can
design a static state-feedback controller. Second, we give a
delay-dependent robust stabilization condition for input and
state delayed systems whose coefficient matrices depend
rationally on uncertain parameters. These conditions are de-
rived by computing a finite set of linear matrix inequalities.

II. STABILIZATION VIA STATIC STATE FEEDBACK

Consider linear time delay systems described by

ẋ(t) = Ax(t)+Ahx(t−h)+Buu(t−g) (1)

where x(t) = 0, t < 0, h > 0 and g > 0 are constant time
delays. For this system, we design the static state-feedback
controller. When we apply the controlleru = Kx to the
system (1), the closed loop system is given by

ẋ(t) = (A+Ah +BuK)x(t)− (Ah +BuK)
∫ t

t−h
ẋ(τ)dτ. (2)

Now we applyy(t) := ẋ(t), and represent an extended closed
loop via descriptor form:

Eξ̇ (t) = (Ā+ B̄uK̄)ξ (t)−
[

0
Ah

]∫ t

t−h

[
0 I

]
ξ (τ)dτ

−
[

0
BuK

]∫ t

t−g

[
0 I

]
ξ (τ)dτ, (3)

Ā =
[

0 I
A+Ah −I

]
, B̄u =

[
0
Bu

]
,ξ (t) =

[
x(t)
y(t)

]
,

K̄ =
[

K 0
]
, E = diag{I ,0}. (4)

Using the representation, we obtain the following theorem.
Theorem 1:The system (1) is stabilizable byu = Kx if

there exist matricesX11 > 0, Q > 0, R> 0, Y and positive
scalarsn1 andn2 satisfying the following matrix inequality:




Ψ1 ΨT
2 ΨT

3
Ψ2 −hQ 0
Ψ3 0 −gR


 < 0, (5)

Ψ1 := He{ĀX+ B̄uȲ}+hQ+gR, (6)

Ψ2 := h

[
0 0

−n1AhX11 n2AhX11

]
, (7)

Ψ3 := g

[
0 0

−n1BuY n2BuY

]
, (8)

X :=
[

X11 0
−n1X11 n2X11

]
, Ȳ :=

[
Y 0

]
. (9)

The state feedback gain is then given byK = YX−1
11 .

Proof: Consider the following Lyapunov function
candidate for the system (3)

V := V1 +V2 +V3 (10)

V1 := ξ T(t)EPξ (t) (11)

V2 :=
∫ 0

−h

∫ t

t+s
ξ T(θ)

[
0
I

][
0 AT

h

]
Q−1

×
[

0
Ah

][
0 I

]
ξ (θ)dθds (12)

V3 :=
∫ 0

−g

∫ t

t+s
ξ T(θ)

[
0
I

][
0 KTBT

u

]
R−1

×
[

0
BuK

][
0 I

]
ξ (θ)dθds, (13)

P :=

[
P11 0

n1
n2

P11
1
n2

P11

]
, P11 = PT

11 > 0. (14)

The time derivatives ofV1, V2 andV3 along the solution
of (3) are given by the followings

dV1

dt
= ξ T(t){(Ā+ B̄uK̄)TP+PT(Ā+ B̄uK̄)}ξ (t)

−
∫ t

t−h
2ξ T(t)PT

[
0 0
0 Ah

]
ξ (τ)dτ

−
∫ t

t−g
2ξ T(t)PT

[
0 0
0 BuK

]
ξ (τ)dτ

≤ ξ T(t){(Ā+ B̄uK̄)TP+PT(Ā+ B̄uK̄)}ξ (t)

+
∫ t

t−h
ξ T(t)PTQPξ (t)dτ +

∫ t

t−g
ξ T(t)PTRPξ (t)dτ

+
∫ t

t−h
ξ T(τ)

[
0 0
0 Ah

]T

Q−1
[

0 0
0 Ah

]
ξ (τ)dτ



+
∫ t

t−g
ξ T(τ)

[
0 0
0 BuK

]T

R−1
[

0 0
0 BuK

]
ξ (τ)dτ

dV2

dt
= hξ T(t)

[
0 0
0 Ah

]T

Q−1
[

0 0
0 Ah

]
ξ (t)

−
∫ t

t−h
ξ T(τ)

[
0 0
0 Ah

]T

Q−1
[

0 0
0 Ah

]
ξ (τ)dτ

dV3

dt
= gξ T(t)

[
0 0
0 BuK

]T

R−1
[

0 0
0 BuK

]
ξ (t)

−
∫ t

t−g
ξ T(τ)

[
0 0
0 BuK

]T

R−1
[

0 0
0 BuK

]
ξ (τ)dτ

Hence, the upper bound ofV̇ is given bydV
dt ≤ ξ T(t)Mξ (t),

M := He{(Ā+ B̄uK̄)TP}+h

[
0 0
0 Ah

]T

Q−1
[

0 0
0 Ah

]

+hPTQP+gPTRP+g

[
0 0
0 BuK

]T

R−1
[

0 0
0 BuK

]
.

If M < 0 has solutions, system (3) is asymptotically stable.
Pre- and post-multiplyingXT = P−T and X = P−1 to M,
and applying Schur complement, we obtain (5).

III. ROBUST STABILIZATION

Now, we derive a delay-dependent robust stabilization
condition for input and state delayed systems with real
rational parametric time-varying uncertainty described by



ẋ(t) = Ax(t)+Ahx(t−h)+Bw(t)+Buu(t−g)
z(t) = Cx(t)+Chx(t−h)+Dw(t)+Duu(t−g)
w(t) = ∆(t)z(t), ∆(t) ∈U

(15)

U := {diag{r1I , r2I , · · ·} | r i ∈ [−1,1] }
whereh > 0 andg > 0 are constant time delays. Note that
the system hasD matrix, i.e., real rational uncertainties.
Synthesis for the system is difficult even without time delay.

Theorem 2:The system (15) is stabilizable byu= Kx, if
there exist matrices̃Q> 0, R̃> 0, X̃, Ỹ and positive scalars
n1 andn2 satisfying the following matrix inequality:




Ψ̃1 Ψ̃T
2 Ψ̃T

3
Ψ̃2 −hQ̃ 0
Ψ̃3 0 −gR̃


 < 0 (16)

Ψ̃1 := He{ÃX̃ + B̃uỸ}+hQ̃+gR̃, (17)

Ψ̃2 := h




0 0 0
−n1AhX11 n2AhX11 0
−n1ChX11 n2ChX11 0


 , (18)

Ψ̃3 := g




0 0 0
−n1BuY n2BuY 0
−n1DuY n2DuY 0


 , (19)

X̃ :=




X11 0 0
−n1X11 n2X11 0

X31 X32 X33


 , X11 > 0, (20)

Ã =




0 I 0
A+Ah −I B∆(t)
C+Ch 0 −I +D∆(t)


 , (21)

B̃u =
[

0 BT
u DT

u

]T
, Ỹ =

[
Y 0 0

]
. (22)

The state feedback gain is then given byK = YX−1
11 .

Proof: Similar to (2), we applyy(t) := ẋ(t), and we
represent an extended closed loop via descriptor form:

Eξ̇ (t) = (Ã+ B̃uK̃)ξ (t)−



0
Ah
Ch




∫ t

t−h

[
0 I 0

]
ξ (τ)dτ

−



0
BuK
DuK




∫ t

t−g

[
0 I 0

]
ξ (τ)dτ (23)

where

E =




I 0 0
0 0 0
0 0 0


 , ξ (t) =




x(t)
y(t)
z(t)


 , K̃ =




KT

0
0




T

.(24)

Consider the following Lyapunov function candidate,

V := ξ T(t)EP̃ξ (t)+V2 +V3, (25)

V2 :=
∫ 0

−h

∫ t

t+s
ξ T(θ)




0
I
0


[

0 AT
h CT

h

]

×Q−1




0
Ah
Ch


[

0 I 0
]

ξ (θ)dθds, (26)

V3 :=
∫ 0

−g

∫ t

t+s
ξ T(θ)




0
I
0


[

0 KTBT
u KTDT

u

]

×R−1




0
BuK
DuK


[

0 I 0
]

ξ (θ)dθds. (27)

As with the proof of Theorem1, we obtain (16).

IV. CONCLUSION

In this paper, using descriptor form, we proposed a delay-
dependent stabilization condition for systems with input and
state delay via static state-feedback controller. Furthermore,
we derived a delay-dependent robust stabilization condition
for input and state delayed systems whose coefficient matrix
depend rationally on uncertain parameters.
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