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Abstract—The guaranteed cost control problem via 
memoryless state feedback controllers is studied in this paper for 
a class of linear singular systems with delayed state and 
norm-bounded time-varying parameter uncertainties. A 
sufficient condition for the existence of guaranteed cost 
controllers is derived, and it is shown that the condition is 
equivalent to the solvability of a certain linear matrix inequality 
(LMI). Furthermore, a convex optimization problem with LMI 
constraints is formulated to design the optimal guaranteed cost 
controller which minimizes the guaranteed cost of the closed-loop 
uncertain system. 

I. INTRODUCTION 

ONTROL of delay systems has been a topic of recurring 
interest over the past decades since time delays are often 

the main causes for instability and poor performance of 
systems and encountered in various engineering systems such 
as chemical processes, long transmission lines in pneumatic 
systems, and so on (Malek-Zavarei and Jamshidi, 1987). 
Recently, the problems of robust analysis and robust synthesis 
for uncertain time-delay systems have been studied and many 
techniques have been proposed via Riccati equation and 
LMI-based approach (Silviu-Iulian Niculescu, 2001). 
Furthermore, the problem of guaranteed cost control (Chang 
and Peng, 1972) which considers both robust stability and 
robust performance of closed-loop uncertain systems has also 
been extended to uncertain time-delay systems (Moheimani 
and Petersen, 1997). An LMI approach to the design of 
guaranteed cost controllers was proposed for uncertain 
continuous time-delay systems (Yu and Chu, 1999) and 
uncertain discrete time-delay systems (Yu and Gao, 2001). 

On the other hand, in recent years, there has been a growing 
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interest in the system-theoretic problems of singular systems 
(or generalized state-space systems, descriptor systems) due to 
their extensive applications in power system (Stott, 1979), in 
large-scale systems, singular space perturbation theory (Wang, 
et al., 1988), circuits theory (Newcomb and Dziurla, 1989), 
and other areas. A great number of results based on the theory 
of regular systems have been extended to the area of singular 
systems (Dai, 1989). More recently, the robust control 
problems have been considered for uncertain singular 
time-delay systems, the notions of quadratic stability and 
quadratic stabilizability for uncertain regular time-delay 
systems have been extended, an LMI approach to robust 
stability analysis and the design of robust stabilizing 
controllers was proposed (Xu, 2002). To the best of our 
knowledge, however, few results have been reported on the 
guaranteed cost control problem for singular systems with 
delayed state and parameter uncertainties in the literature. 

In this paper, we are concerned with the guaranteed cost 
control problem for a class of linear singular time-delay 
systems with time-varying norm-bounded parameter 
uncertainties via memoryless state feedback. A sufficient 
condition for the existence of guaranteed cost controllers is 
derived. Furthermore, it is shown that this condition is 
equivalent to the solvability of a certain LMI, and its feasible 
solutions provide a parametrized representation of guaranteed 
cost controllers. This important advantage is exploited to 
design the optimal guaranteed cost controller which minimizes 
the guaranteed cost of the closed-loop uncertain system. 
Finally, an example is given to illustrate the usefulness of the 
proposed results. 

II. PROBLEM DESCRIPTION AND PRELIMINARIES 

Consider a linear singular system with state delay and 
parameter uncertainties described by 

)()()()()()()( tuBBdtxAAtxAAtxE dd ∆++−∆++∆+=&  (1) 
]0,[),()( dtttx −∈=ϕ                          (2) 

where nRtx ∈)(  is the state, mRtu ∈)(  is the control input. 

dAA,  and B  are known real constant matrices with 
appropriate dimensions. 0>d  is a constant time delay, 

)(tϕ  is a compatible vector valued continuous function. 

dAA ∆∆ ,  and B∆  are unknown matrices representing 
norm-bounded parameter uncertainties, and are assumed to be 
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of the following form: 

][][ 21 NNNMFBAA dd =∆∆∆         (3) 

where 21 ,, NNM  and dN  are known real constant 
matrices with appropriate dimensions. F  is the uncertain 
matrix satisfying 

IFF T ≤                     (4) 
in which I  denotes the identity matrix of appropriate 
dimension. The uncertainties dAA ∆∆ ,  and B∆  are said to 
be admissible if both (3) and (4) hold. The matrix nnRE ×∈  
may be singular and assume that rank nrE ≤= . Without 
loss of generality, we may assume that 
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where rI  denotes the rr ×  identity matrix. In fact, for any 
matrix E  whose rank is r , there exist two invertible 
matrices G  and nnRH ×∈  such that 
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In the sequel, we always assume that the matrix E  is of 
the form (5). 

Associated with the system (1) is the cost function 

∫
∞

+=
0

)]()()()([ dttRututQxtxJ TT          (6) 

where Q  and R  are given symmetric positive definite 
matrices. 

Definition 1:  Consider the uncertain system (1), if there 
exist a control law )(tu ∗  and a positive scalar ∗J  such that 
for all admissible uncertainties, the closed-loop system is 
asymptotically stable and the closed-loop value of the cost 
function (6) satisfies ∗≤ JJ , then ∗J  is said to be a 
guaranteed cost and )(tu∗  is said to be a guaranteed cost 
control law of the uncertain system (1). 

The objective of this paper is to develop a procedure to 
designing a memoryless state feedback guaranteed cost 
control law )()( tKxtu =  for the uncertain singular 
time-delay system (1) and cost function (6). 

Lemma 1:  [Yu, 2001]  Given matrices NMS ,,  of 
appropriate dimensions and with S  symmetric, then 

0<++ TTT MFNMFNS  

for all F  satisfying IFF T ≤ , if and only if there exists a 
scalar 0>ε  such that 

01 <++ − NNMMS TT εε . 

III. MAIN RESULTS 

Lemma 2:  The nominal unforced singular system of (1) 

)()()( dtxAtAxtxE d −+=&            (7) 
is regular, impulse free and stable if there exist a symmetric 
positive definite matrix S  and an invertible matrix P  of 
the form 
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where rrRP ×∈11  is a symmetric positive definite matrix, 
)()(

22
rnrnRP −×−∈  is an invertible matrix, )(

12
rnrRP −×∈ , such 

that 
01 <+++ − TT

dd
TT PASPASPAPA        (9) 

Proof:  From the structure forms of the matrix P  and E , 
and Theorem 1 in [Xu, 2002], we can conclude the results of 
this lemma. 

We first present a sufficient condition for the existence of 
memoryless state feedback guaranteed cost control laws for 
the uncertain system (1). 

Theorem 1:  The state feedback control law )()( tKxtu =  
is a guaranteed cost controller of the system (1) and cost 
function (6) if there exist a symmetric positive definite matrix 
S  and an invertible matrix P  of the form (8) such that 
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for all the admissible uncertainties dAA ∆∆ ,  and B∆ ,where 

)(, 21 KNNMFBKAABKAA cc +=∆+∆=∆+=   (11) 

Proof : Applying the state feedback control law )()( tKxtu =  
in the system (1) results in the closed-loop system 

)()()()()( dtxAAtxAAtxE ddcc −∆++∆+=&      (12) 

Suppose that there exist a symmetric positive definite 
matrix S  and an invertible matrix P  of the form (8) such 
that the matrix inequality (10) holds for all the admissible 
uncertainties, then the matrix inequality (10) implies 
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It follows from Lemma 2 that the system (12) is regular, 
impulse free and stable for any admissible uncertainties 

dAA ∆∆ ,  and B∆ . 
In order to derive the upper bound over the closed-loop 

value of the cost function, consider the following Lyapunov 
functional: 



∫ −+=
t

dt
TT dSxxtPExtxxV σσσ )()()()()(  

Then the time derivative of )(⋅V  along any trajectory of 
the closed-loop system (12) is given by 
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Since 
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holds for any symmetric positive definite matrix S . By using 
the above inequality and the inequality (10), it follows that 
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Furthermore, by integrating both sides of the above 
inequality from 0 to T  and using the initial condition, we 
obtain 
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As the closed-loop system (12) is asymptotically stable, 
when ∞→T  
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Hence, we get 
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It follows from Definition that the result of the theorem is true. 
This completes the proof. 

In the following, we show that the above sufficient 
condition for the existence of guaranteed cost controllers is 
equivalent to the solvability of a certain LMI. 

Theorem 2:  There exists a guaranteed cost controller of 
the system (1) and cost function (6) if there exist a scalar 

0>ε , an invertible matrix nnRX ×∈ , a matrix nmRW ×∈  
and a positive definite matrix nnRY ×∈  such that 

0

0000
0000
0000
000
000

~

1

1
1

1

<



























−
−

−
−Σ

−
Σ

−

−

YX
RW

QX
IYN

YNYYA
XWXYAA

d

T
d

T
d

TTTT
d

ε        (14) 

where TT MMBWAXBWAXA ε++++= )(~
, XN11 =Σ  

WN 2+ , X  is of the form 
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In this case, a guaranteed cost control law is given by 

)()( 1 txWXtu −=                 (16) 

and a corresponding upper bound over closed-loop cost 
function is 
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where rTTT Rtttt ∈= )(,])()([)( 121 ϕϕϕϕ  
Proof:  By the Schur complement, the matrix inequality 
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Using the expressions of the matrices cA∆  and dA∆ , the 
above matrix inequality can be equivalently written as 
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where TTT PBKABKAPRKKQS )()( ++++++=Π . 
By lemma 1, it follows that there exists a scalar 0>ε  

such that 
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Invoking the Schur complement again, one obtains 
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where TTTT PPMMPBKABKAPA ε++++= )()(ˆ , 12 N=Σ  
KN 2+ . Left- and right- multiplying both sides of the above 

inequality by matrix ),,,,,( 11 IIIISPdiagT −−=  and its 
transpose and denoting 1,, −−− === SYKPWPX TT  yield 
that the matrix inequality (20) is equivalent to (14). 
Furthermore, if there exist a scalar 0>ε , an invertible matrix 

nnRX ×∈ , a matrix nmRW ×∈  and a positive definite matrix 
nnRY ×∈  such that the matrix inequality (14) holds, then 

)()( 1 txWXtu −=  is a guaranteed cost control law, and ∗J  
given in (17) is an upper bound over the corresponding 
closed-loop cost function. 

Since (14) is a linear matrix inequality in YXW ,,,ε , (14) 
defines a convex solution set of ( YXW ,,,ε ), and therefore 
various efficient convex optimization algorithms can be used 
to test whether the LMI is solvable and to generate particular 
solutions. Moreover, its solutions parametrize the set of 
guaranteed cost controllers. This parametrized representation 
can be exploited to design the guaranteed cost controllers with 
some additional requirements. In particular, the optimal 
guaranteed cost control law which minimizes the value of the 
guaranteed cost for the closed-loop uncertain system can be 
determined by solving a certain optimization problem. This is 
the following theorem: 

Theorem 3:  Consider the system (1) and the cost function 
(6), if the following optimization problem 
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has a solution ZWYX ˆ,ˆ,ˆ,ˆ,ˆ,ˆ αε , where )(⋅Trace  denotes 

the trace of the matrix. Then )(ˆˆ)( 1 txXWtu −=  is the optimal 
guaranteed cost control law which ensures the minimization of 
the guaranteed cost (17), where 
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Proof:  By Theorem 2, the control law )(ˆˆ)( 1 txXWtu −=  
is a guaranteed cost controller of system (1). It follows from 
the Schur complement that the constraint condition (ii) in (21) 
is equivalent to αϕϕ <− )0()0( 1
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So it follows from (17) that 

)(ZTraceJ +<∗ α  

Thus, the minimization of )(ZTrace+α  implies the 
minimization of the guaranteed cost for the uncertain system 
(1). The global optimality of the solution to the problem (21) 
follows from the convexity of the objective function and of 
the constraints. This completes the proof. 

The convex optimization problem (21) can be easily solved 
by using the solver mincx in LMI Toolbox. 

IV. ILLUSTRATIVE EXAMPLE 

Consider the linear uncertain singular delay system (1), 
where 
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the initial state )]0,[(]00[)( 5.1 dtet Tt −∈= +ϕ . The 
weighting matrices in cost function (6) are chosen as 3IQ =  
and 2IR = . 

The matrix E  is not of the form (8), by using matrices 
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Furthermore, using the matrices G  and H , we get 
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Using LMI Toolbox in MATLAB, it follows that the 
optimization problem (21) with ,,,,,,, 21 dd NNNMBAA  

RQ ,  is feasible, and the optimal solution is as follows: 
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The optimal guaranteed cost control law is given by 
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and the optimal guaranteed cost of the corresponding 
closed-loop system is 1568.642* =J . The controller (22) 
ensures that, for all admissible parameter uncertainties, the 
resulting closed-loop system is asymptotically stable and the 
closed-loop cost function is no more than the guaranteed cost 

1568.642* =J , so the closed-loop system has not only robust 
stability, but also the given robust performance. 

Xu et al ( 2002) gave a robust stabilizing control law 
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To compare the effect of the controller (22) and (23) by 
simulation, we assume that the delay sec5.1=d , the 
uncertain matrix tF sin= . The control law (solid line) 
proposed in this paper, Xu’s control law (dot line) and the 
corresponding closed-loop system state are shown in Fig.1 and 
Fig 2, respectively. 

It is clear from Fig.1 that the closed-loop system designed 
with the proposed approach in this paper has better transient 
properties. 

 
(a)  control input )(1 tu  

 
(b)  control input )(2 tu  

Fig.1  control law 

 
(a) state )(1 tx  

 
  (b)  state )(2 tx  



 
(c)  state )(3 tx  

Fig. 2  The state of the closed-loop system 
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