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Optimal Guaranteed Cost Control of Singular Systems
with Delayed State and Parameter Uncertainties

Li Yu, Jian-Ming Xu, and Qing-Long Han

Abstract—The guaranteed cost control problem via
memoryless state feedback controllers is studied in this paper for
a class of linear singular systems with delayed state and
norm-bounded time-varying parameter uncertainties. A
sufficient condition for the existence of guaranteed cost
controllers is derived, and it is shown that the condition is
equivalent to the solvability of a certain linear matrix inequality
(LMI). Furthermore, a convex optimization problem with LMI
constraints is formulated to design the optimal guaranteed cost
controller which minimizes the guaranteed cost of the closed-loop
uncertain system.

I. INTRODUCTION

ONTROL of delay systems has been a topic of recurring
interest over the past decades since time delays are often
the main causes for instability and poor performance of
systems and encountered in various engineering systems such
as chemical processes, long transmission lines in pneumatic
systems, and so on (Malek-Zavarei and Jamshidi, 1987).
Recently, the problems of robust analysis and robust synthesis
for uncertain time-delay systems have been studied and many
techniques have been proposed via Riccati equation and
LMI-based approach (Silviu-lulian Niculescu, 2001).
Furthermore, the problem of guaranteed cost control (Chang
and Peng, 1972) which considers both robust stability and
robust performance of closed-loop uncertain systems has also
been extended to uncertain time-delay systems (Moheimani
and Petersen, 1997). An LMI approach to the design of
guaranteed cost controllers was proposed for uncertain
continuous time-delay systems (Yu and Chu, 1999) and
uncertain discrete time-delay systems (Yu and Gao, 2001).
On the other hand, in recent years, there has been a growing
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interest in the system-theoretic problems of singular systems
(or generalized state-space systems, descriptor systems) due to
their extensive applications in power system (Stott, 1979), in
large-scale systems, singular space perturbation theory (Wang,
et al., 1988), circuits theory (Newcomb and Dziurla, 1989),
and other areas. A great number of results based on the theory
of regular systems have been extended to the area of singular
systems (Dai, 1989). More recently, the robust control
problems have been considered for uncertain singular
time-delay systems, the notions of quadratic stability and
quadratic stabilizability for uncertain regular time-delay
systems have been extended, an LMI approach to robust
stability analysis and the design of robust stabilizing
controllers was proposed (Xu, 2002). To the best of our
knowledge, however, few results have been reported on the
guaranteed cost control problem for singular systems with
delayed state and parameter uncertainties in the literature.

In this paper, we are concerned with the guaranteed cost
control problem for a class of linear singular time-delay
systems with time-varying norm-bounded parameter
uncertainties via memoryless state feedback. A sufficient
condition for the existence of guaranteed cost controllers is
derived. Furthermore, it is shown that this condition is
equivalent to the solvability of a certain LMI, and its feasible
solutions provide a parametrized representation of guaranteed
cost controllers. This important advantage is exploited to
design the optimal guaranteed cost controller which minimizes
the guaranteed cost of the closed-loop uncertain system.
Finally, an example is given to illustrate the usefulness of the
proposed results.

II. PROBLEM DESCRIPTION AND PRELIMINARIES

Consider a linear singular system with state delay and
parameter uncertainties described by

Ex(t) = (A+ A)x(t) + (A, + A4)x(t—d)+ (B + ABu(t) (1)

x(t) =), te[-d,0] 2
where x(¢) € R" is the state, u(f) e R™ is the control input.
A,A, and B are known real constant matrices with

appropriate dimensions. d >0 is a constant time delay,
o(t) is a compatible vector valued continuous function.

A4,A4, and AB
norm-bounded parameter uncertainties, and are assumed to be
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are unknown matrices representing



of the following form:
[AA A4, AB]l=MF[N, N, N,] 3)
M,N,N, and N,

matrices with appropriate dimensions. F is the uncertain
matrix satisfying

where are known real constant

FF" <1 @)
in which [ denotes the identity matrix of appropriate
dimension. The uncertainties A4, A4, and AB are said to

be admissible if both (3) and (4) hold. The matrix E e R"™
may be singular and assume that rank £ =r<n. Without
loss of generality, we may assume that

E= I,0 5)
100
where I, denotes the »xr identity matrix. In fact, for any

matrix E whose rank is r, there exist two invertible
matrices G and H € R™" such that

— I, 0
E=GEH=| '
00
Let
A=GAH, A,=GA,H, B=GB
[Ad AA, AB1=GMF[N,H N,H N,], X
Then the system (1) is equivalent to

H™'x

EX(t) = (A + A)X(t) + (A, + A )X (t—d) + (B + AB)u(t)
f(t):H_l(D(t), tE[—d, 0]
In the sequel, we always assume that the matrix £ is of

the form (5).
Associated with the system (1) is the cost function

J = ["[x" ()0x(t)+u" (1)Ru())dt (6)

where O and R are given symmetric positive definite
matrices.

Definition 1: Consider the uncertain system (1), if there
exist a control law u”(¢) and a positive scalar J* such that

for all admissible uncertainties, the closed-loop system is
asymptotically stable and the closed-loop value of the cost

function (6) satisfies J<J", then J' is said to be a
guaranteed cost and u”(¢) is said to be a guaranteed cost

control law of the uncertain system (1).

The objective of this paper is to develop a procedure to
designing a memoryless state feedback guaranteed cost
control law u(f)=Kx(t) for the uncertain singular

time-delay system (1) and cost function (6).
[Yu, 2001] Given matrices S,M,N of
appropriate dimensions and with S symmetric, then

S+MFN+N'F'™M" <0

Lemma 1:

for all F satisfying FF'™ <[, if and only if there exists a
scalar £>0 such that

S+eMM™ +¢'N"N<O.

III. MAIN RESULTS
The nominal unforced singular system of (1)

Ex(t) = Ax(t)+ A, x(t—d) @)
is regular, impulse free and stable if there exist a symmetric
positive definite matrix S and an invertible matrix P of

the form
P, P
P{ (‘)1 P‘Z} (®)
22

is a symmetric positive definite matrix,

Lemma 2:

where P, e R™

11

P, e R"7*"™ is an invertible matrix, P, € R”""", such
that

PA+A"P" +S+PA,S"A; P’ <0 )

Proof:  From the structure forms of the matrix P and E,
and Theorem 1 in [Xu, 2002], we can conclude the results of
this lemma.

We first present a sufficient condition for the existence of
memoryless state feedback guaranteed cost control laws for
the uncertain system (1).

Theorem 1: The state feedback control law u(#) = Kx(¢)

is a guaranteed cost controller of the system (1) and cost
function (6) if there exist a symmetric positive definite matrix
S and an invertible matrix P of the form (8) such that
O+K'"RK+P(A, +AA4,)+ (A, +A4,)" P" (10)
+S+P(A,+AA4,)S (A, +A4,)" P" <0

for all the admissible uncertainties A4, A4, and AB ,where
A, =A+BK, AA, =AA+ABK=MF(N,+N,K) (11)
Proof: Applying the state feedback control law u(¢) = Kx(t)
in the system (1) results in the closed-loop system
Ex(t)=(A4, + A4 )x(t)+ (A, +A4,)x(t—d) (12)
Suppose that there exist a symmetric positive definite
matrix S and an invertible matrix P of the form (8) such

that the matrix inequality (10) holds for all the admissible
uncertainties, then the matrix inequality (10) implies

P(A, +AA4,)+ (A4, +A4)" P +S
+P(A, +A,)S (A4, +A4,) PT <0
It follows from Lemma 2 that the system (12) is regular,
impulse free and stable for any admissible uncertainties
AA4,A4, and AB.

In order to derive the upper bound over the closed-loop
value of the cost function, consider the following Lyapunov
functional:
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V(x)=x"(OPEx(t)+[  x"(c)Sx(0)do

Then the time derivative of V' (-) along any trajectory of
the closed-loop system (12) is given by

dV(x)
e L(x)
=x" () P[Ex()]+[Ex(?)]" Px(t)
+x"()Sx(t)—x" (t —d)Sx(t—d)
=x"(O)[P(A, +AA,)+(A, +A4,)" P" +S1x(¢)
+2x" (OP(A, +Ad)x(t—d)—x" (t—d)Sx(t—d)
Since

2x" ()P(A, + Ad,)x(t—d)
<x"(P(A, +M,)S " (4, +Ad4,) P x(t)+x" (t—d)Sx(t—d)

holds for any symmetric positive definite matrix S . By using
the above inequality and the inequality (10), it follows that

av(x) _

7 x"(O[P(A,+AA4)+ (A, +A4) P'+S
t

+P(A4, +AA4,)S (A, +AA4,)" P ]x(¢)
<—x"(t)(Q+K"RK)x(t)

Furthermore, by integrating both sides of the above
inequality from 0 to 7 and using the initial condition, we
obtain

— ' %" (1(Q + K" RK)x(t)dt
> x"(T)PEx(T) - x" (0)PEx(0) + j':id x"(0)Sx(o)do
~[' ¥ (0)Sx(0)do

As the closed-loop system (12) is asymptotically stable,
when T — o

X' (T)Px(T) — 0,
I:_d x"(6)Sx(c)do — 0.

Hence, we get

[ %" (©Q+K"RK)x(t)dt < 9" (0)PEp(0) +[ 9" (0)Sp(0)do

It follows from Definition that the result of the theorem is true.

This completes the proof.

In the following, we show that the above sufficient
condition for the existence of guaranteed cost controllers is
equivalent to the solvability of a certain LMI.

Theorem 2: There exists a guaranteed cost controller of
the system (1) and cost function (6) if there exist a scalar
&>0, an invertible matrix X € R"", a matrix W eR™"
and a positive definite matrix ¥ € R such that

A o4y T oxT ow' X7
YA =Y YN 0 0 0

5, NY = 00 0| 14)
X 0 0 -0' 0 0

w 0 0 0 -R' 0

X

0 0 0 0 -Y

where A=AX+BW +(AX +BW) +eMM" , S =N X
+N,W , X is of the form

_ X11 0 _yvT rxr
X= , 0<X, =X"eR™. (15)
XZI 22

In this case, a guaranteed cost control law is given by
u(t)=wXx "'x(1) (16)

and a corresponding upper bound over closed-loop cost
function is

J =0l (0X 0, 0)+[ o' ()Y 'p(o)doc  (17)

where () =[p] (1) ¢, 1", ()R
Proof: By the Schur complement, the matrix inequality
(10) equals to
P(A,+A)+(A, +A4,) P+S+Q+K"RK P(A, +AA,) <0
(4, +A4,)" P -S
Using the expressions of the matrices A4, and A4, , the
above matrix inequality can be equivalently written as

I P4, ] [PM
. + F[N,+N,K N,]
ATPT —S 0 %)

. em
+[N,+N,K N,|'F o | <0

where [1=S+Q+K'RK +P(A+BK)+(A+BK)" P".
By lemma 1, it follows that there exists a scalar £>0

such that
1 P4, jZravzras
+&
ATPT -§ 0 0 (19)

+&'[N,+N,K N,|'[N, +N,K N,]<0

Invoking the Schur complement again, one obtains

A P4, 3T 1 K" I

ATPT =S NI 0 0 0

5, N,-d 00 0 |_, 20)
I 0 0 -0' 0 0

K 0 0 0 —R' 0
7 0 0 0 0 -85
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where A= P(A+BK)+(A+BK)" P" +ePMM"P" |3, = N,
+N,K . Left- and right- multiplying both sides of the above
inequality by matrix 7T =diag(P~',S™",1,1,1,1) and its
transpose and denoting X =P 7, W=KP",Y=S" yield

that the matrix inequality (20) is equivalent to (14).
Furthermore, if there exist a scalar ¢ > 0, an invertible matrix

X eR™,amatrix W eR™ and a positive definite matrix
Y e R™ such that the matrix inequality (14) holds, then
u(t)=WX 'x(¢) is a guaranteed cost control law, and J*

given in (17) is an upper bound over the corresponding
closed-loop cost function.

Since (14) is a linear matrix inequality in &, W, X, Y, (14)
defines a convex solution set of (&, W, X, Y), and therefore

various efficient convex optimization algorithms can be used
to test whether the LMI is solvable and to generate particular
solutions. Moreover, its solutions parametrize the set of
guaranteed cost controllers. This parametrized representation
can be exploited to design the guaranteed cost controllers with
some additional requirements. In particular, the optimal
guaranteed cost control law which minimizes the value of the
guaranteed cost for the closed-loop uncertain system can be
determined by solving a certain optimization problem. This is
the following theorem:

Theorem 3: Consider the system (1) and the cost function
(6), if the following optimization problem

,Jn o +Trace(Z2) 21
st. (1) (14)

(i) { 3 (O)} <0
@, (0) -X 11

|z J
(ii1) {J _Y}<0

has a solution & &, X,Y,W,Z, where Trace(-) denotes

the trace of the matrix. Then u(¢)= 16 “'x(t) is the optimal

guaranteed cost control law which ensures the minimization of
the guaranteed cost (17), where

[ (oW’ (o)do=Ji".

Proof: By Theorem 2, the control law u(f)=WX "'x(t)

is a guaranteed cost controller of system (1). It follows from
the Schur complement that the constraint condition (ii) in (21)

is equivalent to ¢, (0)X, '@ (0)<a , (i) in (21) is
equivalentto J'Y™'J < Z . On the other hand,

[\ 0" (@)Y ' p(c)do = Trace(p” (0)Y " p(c))do
=Trace(JJ'Y™)
=Trace(J"Y ' J) < Trace(Z)

So it follows from (17) that

J" <a+Trace(Z)

Thus, the minimization of «+Trace(Z) implies the
minimization of the guaranteed cost for the uncertain system
(1). The global optimality of the solution to the problem (21)
follows from the convexity of the objective function and of
the constraints. This completes the proof.

The convex optimization problem (21) can be easily solved

by using the solver mincx in LMI Toolbox.

IV. ILLUSTRATIVE EXAMPLE

Consider the linear uncertain singular delay system (1),
where

110 1.5 0.5 1
E=[1-11|, A=|-1 0 1},
201 05 0 1
-1 0 -1 11 0.5
A, =1 =105 B=|10|, M=|02],
0305 -1 01 0.1

N,=[020.103] N,=[0.101] N,=[0.10205]

the initial state ¢(¢)=[e""" 0 0] (t€[-d,0]) . The

weighting matrices in cost function (6) are chosen as Q =1,
and R=1,.
The matrix E is not of the form (8), by using matrices

0.3384 0.2535 -0.7327
G=| 0.7386 —0.1704 —0.1516 |,
—-0.5774 -0.5774 0.5774

—1.0483 0.3179 0.6928
H =] 0259 0.8559 -0.6928
—0.1298 —0.4280 —1.3855

we have
100
GEH=|010].
000
Furthermore, using the matrices G and H , we get

0.1799 0.1694 0
A=GAH =|—-1.2187 0.5201 0|,
0 0 1

0.0909 —0.8505 —0.5037
4, =GA,H=[11123 00651 02046 |,
0.0807 0.9199 —0.0800
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0.5919 —-0.3943

B=GB=| 05682 0.5869 |,
~-1.1547 0
0.1466

M =GM =| 0.3200 |,
—0.3464

N, = N,H =[-0.2226 0.0208 —0.3464],
N, =N,H =[-0.1178 —0.0110 —0.7620],
N, =N, =[0.10.1],

1.1832 —0.0555 —0.7263

—0.0555 1.0168 0.2203
-0.7263 0.2203 2.8796

Using LMI Toolbox in MATLAB, it follows that the
optimization problem (21) with Z, Zd,E, ]l7, ]Vl,]vz,]vd,

Q

Q, R is feasible, and the optimal solution is as follows:

0.0671 -0.0409 0
X =[-00409 00572 0 |,
0.0293 -0.0646 -0.0746
0.1358 -0.1618 0.1553 ]
Y =|-01618 08728 -0.4737 |,
01553 -0.4737 0.4873 |
. {-0.5521 -0.5048 1.0430 |
0.4342 -0.5235 -0.1117 |

£=0.7339, &=5312488, Z=110.9080
The optimal guaranteed cost control law is given by

>

14.2738 -40.7095 37.5896
x(?) 22)

u(t) =
-35136 -5.5701 -0.5310

and the optimal guaranteed cost of the corresponding
closed-loop system is J =642.1568. The controller (22)
ensures that, for all admissible parameter uncertainties, the
resulting closed-loop system is asymptotically stable and the
closed-loop cost function is no more than the guaranteed cost
J" =642.1568, so the closed-loop system has not only robust
stability, but also the given robust performance.
Xu et al (2002) gave a robust stabilizing control law

-13.5354 19.4496 -19.6474
u(t) = x(1) (23)

6.7469 -15.0227 11.8584
To compare the effect of the controller (22) and (23) by
simulation, we assume that the delay d =1.5sec, the

uncertain matrix F =sin¢ . The control law (solid line)
proposed in this paper, Xu’s control law (dot line) and the
corresponding closed-loop system state are shown in Fig.1 and
Fig 2, respectively.

It is clear from Fig.1 that the closed-loop system designed
with the proposed approach in this paper has better transient

properties.

16

ui

t(sec)
(a) control input ()

u2

t(sec)
(b) control input u,(¢)

Fig.1 control law

LA LN T
4 5 6 7 B8 9 10
t(sec)

(a) state x,(¢)

-1 1) 1 2 3

x2

t(sec)

(b) state x,(¢)
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(1]

[2]

x3

oF 4

-5

i
4 0o 1 2 3 4 5 6 7 8 8 10
t(sec)

(c) state x;(¢)

Fig. 2 The state of the closed-loop system

REFERENCES

S. S. L. Chang and T. K. C. Peng, “Adaptive guaranteed cost control of
systems with uncertain parameters,” [EEE Trans. Automat. Contr., vol.
17, pp. 474-483, 1972.

L. Dai, Singular Control Systems. Berlin, Germany: Springer-Verlag,
1989.

(3]
(4]

(5]

(6]
(7]
(8]

(9]

[10

=

[1

—

M. M. Zavarei and M. Jamshidi, Time-Delay Systems Analysis,
Optimization and Applications. North-Holland: Amsterdan, 1987.

S. O. R. Moheimani and I. R. Petersen, “Optimal quadratic guaranteed
cost control of a class of uncertain time-delay systems,” /EE Proc.
Control Theory Appl., vol. 144, pp. 183-188, 1997.

R. W. Newcomb and B. Dziurla, “Some circuits and systems
applications of semistate theory,” Journal of Circuits Systems Signal
Process, vol. 8, pp. 253-259, 1989.

S. I. Niculescu, Delay Effects on Stability: A Robust Control Approach,
London: Springer-Verlag, 2001.

B. Stott, “Power system response dynamic calculations,” Proceedings of
IEEE, vol. 67, pp. 139-141, 1979.

Y. Y. Wang, S. J. Shi and 1. J. Zhang, “A descriptor-system approach to
singular perturbation of linear regulators,” IEEE Trans. Automat.
Control, vol. 33, pp. 370-373, 1988.

S. Xu, P. V. Dooren, R. Stefan and J. Lam, “Robust stability and
stabilization for singular systems with state delay and parameter
uncertainty,” IEEE Trans. Automat. Control, vol. 47, pp. 1122-1128,
2002.

L. Yu and J. Chu, “An LMI approach to guaranteed cost control of linear
uncertain time-delay systems,” Automatica, vol. 35, pp. 1155-1159,
1999.

L. Yu and F. Gao, “Optimal guaranteed cost control of discrete-time
uncertain systems with both state and input delays,” Journal of the

Franklin Institute, vol. 338, pp. 101-110, 2001.

4816



	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrM08.4
	Page0: 4811
	Page1: 4812
	Page2: 4813
	Page3: 4814
	Page4: 4815
	Page5: 4816


