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Abstract— This paper is devoted to stability analysis and
synthesis of the linear systems with time-varying delays. Some
new stability conditions are developed for the systems based on
Lyapunov-Razumikhin theorem. Then a design method for the
general state feedback controllers is proposed for the systems
with multiple delays by the LMI optimization based approach.
Numerical examples are used to demonstrate the effectiveness
of the proposed design technique.

I. INTRODUCTION

An ever-growing number of internet-connected devices is
now accessible to a multitude of users. Being a ubiquitous
communication means, the internet could allow any user to
reach and command any device connected to the network.
The internet has become the preferred form of interac-
tive communication, with new applications in multiplayer
games, teleconferencing, and telerobotics being developed
and tested every day [11]. Internet based control has become
an important means in the control systems design. A very
important problem in this kind of systems is the delays due
to the signal communication. Actually, nonlinear systems
with time-delay constitute basic mathematical models of
real phenomena, for instance in circuits theory, economics
and mechanics. Not only dynamical systems with time-
delay are common in chemical processes and long transmis-
sion lines in pneumatic, hydraulic, or rolling mill systems,
but computer controlled systems requiring numerical com-
putation have time-delays in control loops. The presence
of time-delays in control loops usually degrades system
performance and complicates the analysis and design of
feedback controllers. Stability analysis and synthesis of
retarded systems is an important issue addressed by many
authors and for which surveys can be found in several
monographs (see e.g. [7], [6]).

Most of these previous work on time delays has focused
on unknown but constant time delays. In practical systems,
the time delays are variable due to the motion of the slave
systems, for example, space-based or underwater telerobotic
applications involve moving vehicles and thus experience
changing transmission times to and from the stationary
operator. Moreover, some systems possess rapidly and

This work was partially supported by National Natural Science of China
under grant 60174029

Anke Xue is with Dept. of Automation, Hangzhou Institute of Electron-
ics Engineering, Hangzhou, 310037, China akxue@hziee.edu.cn

Yong-Yan Cao is with Dept. of Electrical & Computer
Engineering, University of Virginia, Charlottesville, VA 22903.
yycao@virginia.edu

Daoying Pi is with Dept. of Control, Zhejiang University, Hangzhou,
310027, China dypi@iipc.zju.edu.cn

possibly randomly varying transmission delays. A obvious
example is the satellite-based transmission through varying
relay sites. In the internet, which has frequently been used
as a means for creating teleoperation systems between a
variety of remote sites, information is transmitted in small
packets and is routed in real-time through a possibly large
number of intermediate stops. Although average latencies
may be low, the instantaneous delays may increase suddenly
due to rerouting or other network traffic. In the extreme,
the connection may be temporarily blocked. It could be
expected that the above mentioned methods are applicable
even in the case of random time-varying delay, by designing
the control for the maximum value of the delay (worst
case controller). However, it is shown in [8] that a control
algorithm designed for a fixed, maximum delay T may not
stabilize the system when the delay varies between 0 and
T. Niemeyer and Slotine [10] also showed some stability
problems due to internet transmission.

Stability criteria for linear system with time delays can be
classified into two categories considering their dependence
from time delays. Delay-independent stability conditions are
independent of the size of the delays (i.e., the time delays
are allowed to be arbitrarily large) and thus, in general, are
conservative, especially in situations where delays are small.
It can be used to study the systems without any information
on the time delays. Delay-dependent results [2], [1], [3] are
usually used to determine a maximum value for the time
delays which guarantees stability. They are expected to be
less conservative. To facilitate the computation process, the
linear matrix inequality (LMI) approach is employed in the
development. Some work has been devoted to extend these
results to the systems with time-varying delays. However,
the time-varying information of the delay is required and
the stability conditions always require the upper bound of
the time derivative of delays less than 1 [2], [3], [4].

It is well known that the choice of an appropriate Lya-
punov functional is the key-point for deriving of stability
criteria. In this paper, we will present a new method for
the stability analysis of the systems with time-varying
delays by the Lyapunov-Razumikhin function approach. We
will propose some delay-independent conditions and delay-
dependent conditions which will be used to test the stability
for the various control systems without time-varying infor-
mation of delays. The requirement that the upper bound of
the time derivative of delays is less than 1 in the above
mentioned papers will be removed in these conditions.

The paper is organized as follows. Section 2 gives
the problem description. Delay-independent and delay-



dependnet stability analysis and design will be addressed in
Sections 3 and 4 respectively. H∞ control will be studied in
Section 5. We will give some numerical examples to show
the feasibility of the result in Section 6. Finally, Section 7
will conclude the paper.

II. PROBLEM STATEMENT

Consider linear systems with time-varying delays

ẋ(t) = A0x(t) +
r∑

i=1

Aix(t− di(t)) +B0u(t), (1)

x(t) = ψ(t), t ∈ [−τ , 0], (2)

where x ∈ R
n is the state, u ∈ R

m the control input,
0 < di(t) ≤ τ i ≤ τ the time-varying delays and A,Ai

and B0 are appropriately dimensioned real-valued matrices.
Assume that the initial condition ψ is a continuous vector-
valued function, i.e., ψ ∈ Cn,τ . We use xt ∈ Cn,τ to denote
the restriction of x(t) to the interval [t− τ , t] translated to
[−τ, 0], that is, xt(θ) = x(t+ θ), θ ∈ [−τ, 0].

In this paper, we will be interested in the stability analysis
and design for the system (1)-(2). We will also consider the
control of the system (1) by the instantaneous state feedback

u(t) = F0x(t), (3)

and the delayed state feedback

u(t) =
r∑

i=1

Fix(t− di(t)), (4)

where F0, Fi ∈ R
m×n. But in what follows, we will com-

bine the instantaneous state feedback (3) and the delayed
state feedback (4) as

u(t) =
r∑

i=0

Fix(t− di(t)), (5)

with d0(t) = 0. Then the closed-loop system under the
above state feedback (5) can be written as

ẋ(t) =
r∑

i=0

(Ai +B0Fi)x(t− di(t)). (6)

III. DELAY-INDEPENDENT STABILITY ANALYSIS

In this section, we will first give methods on delay-
independent stability for the system (1)-(2) with u = 0. We
will then present a state feedback controller design such
that the closed-loop system is delay-independent stable.

Define y(t) = ẋ(t). We can then rewrite system (1) with
the following form

A0x(t) − y(t) +
r∑

i=1

Aix(t− di(t)) = 0. (7)

For simplicity, in what follows, we will use the following
notation:

xd =
[
xT (t− d1(t)) . . . xT (t− dr(t))

]T
,

x̄(t) =
[
xT (t) yT (t) xT

d

]T
,

Ad =
[
A1 . . . Ar

]
.

Then, (7) can be rewritten as

A0x(t) − y(t) +Adxd = 0.

Hence, we have

2(P1x+ P2y + Pdxd)T (A0x− y +Adxd) = 0 (8)

for any weighting matrices P1, P2 and Pd with compatible
dimensions.

A. Delay-independent stability condition

Theorem 1: Consider system (1)-(2) with u ≡ 0, if there
exist matrices P0 > 0, P1, P2, Pd and Q > 0 of compatible
dimensions such that
 PT

1 A0 +AT
0 P1 + rP0 ∗ ∗

PT
2 A0 − P1 + P0 −PT

2 − P2 ∗
PT

d A0 +AT
d P1 AT

d P2 − PT
d Λ33


 < 0, (9)

Q− diag{P0, P0, . . . , P0} < 0, (10)

where
Λ33 = PT

d Ad +AT
d Pd −Q,

then the solution x(t) ≡ 0 is delay-independently asymp-
totically stable for any time-varying time-delays d i(t) > 0,
for i = 1, 2, . . . , r.

Proof: Given P0 > 0, consider a quadratic Lyapunov
function candidate as

V (x(t)) = xT (t)P0x(t).

First, we have

ε1||x||2 ≤ V (x) ≤ ε2||x||2,
where ε1 = λmin(P0), ε2 = λmax(P0). The derivative of
V (x(t)) along the solutions of (1)-(2) is

V̇ (x(t)) = 2xT (t)P0y(t).

By (8), we have,

V̇ (x(t)) = x̄T (t)Ωx̄(t),

where Ω =
 PT

1 A0 +AT
0 P1 ∗ ∗

PT
2 A0 − P1 + P0 −PT

2 − P2 ∗
PT

d A0 +AT
d P1 AT

d P2 − PT
d PT

d Ad +AT
d Pd


 .

Define

ξ(t) =
[
x(t)
y(t)

]
, Γ =

[
PT

1 Ad +AT
0 Pd

PT
2 Ad − Pd

]
Note that

2xT
d ΓT ξ(t) ≤ ξT (t)ΓQ̃−1ΓT ξ(t) + xT

d Q̃xd,

where Q̃ = Q− (PT
d Ad +AT

d Pd) > 0. We then have

V̇ (x(t)) ≤ ξT (t)
{

Λ + ΓQ̃−1ΓT
}
ξ(t) + xT

d Qxd

≤ ξT (t)
{

Λ + ΓQ̃−1ΓT
}
ξ(t)

+
r∑

i=1

xT (t− di)P0x(t− di),



if Q < diag{P0, P0, . . . , P0}, where

Λ =
[

PT
1 A0 +AT

0 P1 AT
0 P2 − PT

1 + P0

PT
2 A0 − P1 + P0 −PT

2 − P2

]
.

By using Razumikhin theorem, we assume that there exists
a real v > 1 such that

V (x(t − θ)) < vV (x(t)), for θ ∈ [0, τ ]

then

V̇ (x(t)) ≤ ξT (t)
(
Λ + ΓQ̃−1ΓT

)
ξ(t) + vrV (x(t))

= ξT (t)(Ω + vrP̄0 + ΓQ̃−1ΓT )ξ(t)

where

P̄0 =
[
P0 0
0 0

]

Obviously, if (9) holds, by continuity, we can always find
a v > 1 such that
 PT

1 A0 +AT
0 P1 + vrP0 ∗ ∗

PT
2 A0 − P1 + P0 −PT

2 − P2 ∗
PT

d A0 +AT
d P1 AT

d P2 − PT
d Λ33


 < 0.

By Schur complements, we have V̇ (x(t)) < 0 for ∀x �= 0.
This completes the proof.

Note that the condition of Theorem 1 does not include
any information of time-delay, i.e., the theorem provides
a delay-independent condition for stability of linear time-
delay systems with time-varying delays in terms of the
solvability of several linear matrix inequalities.

Remark 1: In some of the early references by the
Lyapunov-Krasovskii functional approach, for example [2],
[4], the upper bound of the derivative information of the
time-varying delay is required to be known and then some
LMI conditions involving this upper bound were derived.
Based on the Lyapunov-Razumikhin theorem and the spe-
cial equality (8), we obtained a new LMI condition on
the stability of the systems with time-varying time-delays,
which also works in the case that the time-delays are time-
varying and the time-varying information is not available.

B. Controller design

With the state feedback (5), the closed-loop system can be
described by (6). By Theorem 1, the closed-loop system is
delay-independently stable for all time-delays if there exist
matrices P0 > 0, P1, P2, Pd and Qi > 0 of compatible
dimensions satisfying (10) and
 PT

1 Â0 + ÂT
0 P1 + rP0 ∗ ∗

PT
2 Â0 − P1 + P0 −PT

2 − P2 ∗
PT

d Â0 + ÂT
d P1 ÂT

d P2 − PT
d Λ̄33


 < 0,

(11)
where Λ̄33 = PT

d Âd + ÂT
d Pd −Q, i.e.[

PT Â+ ÂTP + rΓ2P0ΓT
2 PT Γ1Âd + ÂT Γ1Pd

ÂT
d ΓT

1 P + PT
d ΓT

1 Â PT
d Âd + ÂT

d Pd −Q

]
< 0.

where

Âd =
[
Â1 Â2 . . . Âr

]
,

Pd =
[
Pd1 Pd2 . . . Pdr

]
,

Â =
[

0 I

Â0 −I
]
, P =

[
P0 0
P1 P2

]
,

Γ1 =
[

0
I

]
,Γ2 =

[
I
0

]
.

Let

X = P−1 =
[
X0 0
X1 X2

]
, Xdi = P−1

di ,

Xd = diag{Xd1, Xd2, . . . , Xdr},
Γ3 = PdXd =

[
I I . . . I

]
,

Θ = diag{X, Xd}.
Right- and left-Multiplying (11) by Θ and ΘT respectively,
we obtain
 X1 +XT

1 + rX0P0X0 ∗ ∗
Â0X0 −X1 +XT

2 −X2 −XT
2 ∗

ΓT
3 (Â0X0 −X1) XT

d Âd − ΓT
3X2 Ξ33


 < 0,

where Ξ33 = ΓT
3 ÂdXd +XT

d Â
T
d Γ3 −XT

d QXd. By substi-
tuting Xdi = X0, Y0 = F0P

−1
0 and Yi = FiP

−1
0 , it is easy

to obtain the following result.
Theorem 2: Consider system (1)-(2), if there exist matri-

ces X0 > 0, X1, X2, Q > 0, Y0 and Yi, i = 1, 2, . . . , r, of
compatible dimensions such that
 X1 +XT

1 + rX0 ∗ ∗
A0X0 +BY0 −X1 +XT

2 −X2 −XT
2 ∗

ΓT
3 (A0X0 +BY0 −X1) Ξ32 Ξ̄33


 < 0,

Q− diag{X0, X0, . . . , X0} < 0,

where

Ξ32 = XT
0 A

T
d + Y T

d B
T − ΓT

3X2,

Ξ̄33 = ΓT
3 (AdX0 +BYd) + (XT

0 A
T
d + Y T

d B
T )Γ3 −Q

Yd =
[
Y1 Y2 . . . Yr

]
,

then the delayed state feedback (5) with Fi = YiX
−1
0 , i =

0, 1, . . . , r, stabilizes the system (1)-(2) for any time-delays
di(t) > 0.

IV. DELAY-DEPENDENT STABILITY ANALYSIS

To reduce conservativeness in the analysis when the size
on the delay is available, in this section, we will establish a
new delay-dependent stability condition for the system (1)-
(2). Recently, a new descriptor model transformation and
a corresponding Lyapunov-Krasovskii functional have been
introduced for stability of systems with constant delays [3].
The advantage of this transformation is to transform the
original system to an equivalent descriptor form represen-
tation and will not introduce additional dynamics in the
sense defined in [5]. In this section, based on the Lyapunov-
Razumikhin theorem, we will present a new method for the
stability analysis of the systems with time-varying delays,
which also does not introduce any additional dynamics.



A. Delay-dependent stability condition

Rewrite (1) with the following equivalent formulation

y(t) = A0x(t) +
r∑

i=1

Aix(t− di(t)). (12)

Since x(t) is continuously differentiable for t ≥ 0, using
the Leibniz-Newton formula, one can write

x(t − di(t)) = x(t) −
∫ t

t−di(t)

y(s)ds

for t ≥ di(t). Then equation (12) can be represented in the
following form with discrete and distributed delays in y

0 = −y(t) +Ax(t) −
r∑

i=1

Ai

∫ t

t−di(t)

y(s)ds, (13)

where A = A0 +
∑r

i=1 Ai. In what follows, we will denote

Mi =


 M11i M12i M13i

MT
12i M22i M23i

MT
13i MT

23i M33i


 ,

N̄i =
[
N1i N2i N3i

]
.

Then (13) can be rewritten as

Ax(t) − y(t) +Adyd = 0,

yd =
[ ∫ t

t−d1(t)
yT (s)ds . . .

∫ t

t−dr(t)
yT (s)ds

]T
.

Theorem 3: Consider system (1)-(2) with u ≡ 0, if
there exist constants τ i and matrices P0 > 0, P̄ =[
P1 P2 Pd

]
, Mi > 0, N̄i, Q > 0, Q2i > 0, i =

1, 2, . . . , r, of compatible dimensions, satisfying
 T11 + rP0 T12 T13

T T
12 T22 +

∑r
i=1 τ iQ2i T23

T T
13 T T

23 T33 −Q


 < 0, (14)

[
Mi N̄T

i

N̄i Q2i

]
> 0, (15)

Q− diag{P0, P0, . . . , P0} < 0. (16)

where

T11 = AT
0 P1 + PT

1 A0 +
r∑

i=1

(τ iM11i +NT
1i +N1i),

T12 = P0 − PT
1 +AT

0 P2 +
r∑

i=1

(τ iM12i +N2i) ,

T22 = −P2 − PT
2 +

r∑
i=1

τ iM22i,

T13 = PT
1 Ad −NT

1 +AT
0 Pd +

r∑
i=1

(τ iM13i +N3i)

T23 = PT
2 Ad −NT

2 − Pd +
r∑

i=1

τ iM23i

T33 = AT
d Pd + PT

d Ad −N3 −NT
3 +

r∑
i=1

τ iM33i,

N1 =
[
NT

11 NT
12 . . . NT

1r

]T
,

N2 =
[
NT

21 NT
22 . . . NT

2r

]T
,

N3 =
[
NT

31 NT
32 . . . NT

3r

]T
.

then the solution x(t) ≡ 0 is asymptotically stable for all
time-varying delays di(t) ≤ τ i.

Proof: We choose the Lyapunov candidate as

V (x(t), t) = xT (t)P0x(t),

It is easy to see, V̇ (x, t)

= 2xTP0y + 2(P1x+ P2y + Pdxd)T (Ax − y −Adyd)
= xT (ATP1 + PT

1 A)x+ yT (−P2 − PT
2 )y

+2xT (P0 − PT
1 +ATP2)y + 2xT

d P
T
d Ax − 2xT

d P
T
d y

−2x̄T P̄T (
r∑

i=1

∫ t

t−di(t)

Aiy(s)ds).

Note that [9]

−2x̄T P̄T

∫ t

t−di

Aiy(s)ds

≤ τ ix̄
TMix̄+ 2x̄T (N̄T

i − P̄TAi)
∫ t

t−di

y(s)ds

+
∫ t

t−di

yT (s)Q2iy(s)ds

≤ τ ix̄
TMix̄+ 2x̄T (N̄T

i − P̄TAi)(x − x(t− di))

+
∫ t

t−τi

yT (s)Q2iy(s)ds

Then we have

V̇ (x, t) ≤ x̄T

(
Θ +

r∑
i=1

τ iMi

)
x̄

+
r∑

i=1

∫ t

t−τi

yT (s)Q2iy(s)ds,

where Θ =
 PT

1 A0 +AT
0 P1 +

∑r
i=1(N

T
1i +N1i) ∗ ∗

P0 + PT
2 A0 − P1 +

∑r
i=1N

T
2i Λ22 ∗

AT
d P1 −N1 + PT

d A0 +
∑r

i=1N
T
3i Λ32 Λ33


 ,

and Λ22 = −P2 − PT
2 ,

Λ32 = AT
d P2 −N2 − PT

d ,

Λ33 = AT
d Pd + PT

d Ad −N3 −NT
3 .

To apply Razumikhin theorem, we assume that there exist
a constant µ1 > 1 such that V (x(t + θ), t + θ) ≤
µ1V (x(t), t), θ ∈ [−τ , 0], i.e.

xT (t+ θ)P0x(t+ θ) ≤ µ1x
T (t)P0x(t), θ ∈ [−τ, 0],

From (1), there exists a constant µ2 > 1 such that

yT (t+ θ)Q2iy(t+ θ) ≤ µ2y
T (t)Q2iy(t), θ ∈ [−τ , 0].



Let ν = maxµ1, µ2, we then have ν > 1 such that

xT (t+ θ)P0x(t+ θ) ≤ νxT (t)P0x(t),
yT (t+ θ)Q2iy(t+ θ) ≤ νyT (t)Q2iy(t), θ ∈ [−τ, 0].

The remain proof is similar to Theorem 1.

B. Controller design

Theorem 4: Given system (1)-(2), if there exist constants
τ i and matrices X0 > 0, X1, X2, Q > 0, Q2i > 0,Mi > 0,
N̄i, Yi, i = 0, 1, . . . , r, satisfying

T̂11 + rX0 T̂12 T̂13 XT

1 T̂14

T̂ T
12 T̂22 T̂23 XT

2 T̂14

T̂ T
13 T̂ T

23 T̂33 −Q 0
T̂ T

14X1 T̂ T
14X2 0 T̂44


 < 0, (17)

[
Mi N̄T

i

N̄i XT
0 +X0 −Q2i

]
> 0, (18)

Q− diag{X0, X0, . . . , X0} < 0, (19)

where

T̂11 = X1 +XT
1 +

r∑
i=1

(
τ iM11i +N1i +NT

1i

)
,

T̂12 = (A0X0 +BY0 −X1)
T +X2 +

r∑
i=1

(τ iM12i +N1i),

T̂22 = −X2 −XT
2 +

r∑
i=1

τ iM22i,

T̂13 = (A0X0 +BY0 −X1)T Γ3 −NT
1 +

r∑
i=1

τ iM13i,

T̂23 = AdX0 +BYd −XT
2 Γ3 −NT

2 +
r∑

i=1

τ iM23i

T̂33 = ΓT
3 (AdX1 +BYd) + (XT

1 A
T
d + Y T

d B
T )Γ3

−N3 −NT
3 +

r∑
i=1

τ iM33i,

T̂14 =
[
τ1I τ2I · · · τrI

]
,

T̂44 = − diag{τ1Q21, τ2Q22, · · · , τ rQ2r},
then the state feedback (5) with Fi = YiX

−1
0 , i =

0, 1, . . . , r, stabilizes the system (1)-(2) for all time-delays
0 ≤ di(t) ≤ τ i.

Proof: By Theorem 3, the closed-loop system with
state feedback (5) is stable for time-delays di(t) ≤ τ i if
(15) and

 ÂT
0 P1 + PT

1 Â0 + rP0 ∗ ∗
PT

2 Â0 − P1 + P0 −P2 − PT
2 ∗

PT
d Â0 + ÂT

d P1 ÂT
d P2 − PT

d Λ̄33




+
r∑

i=1

(τ iMi + Π1N̄i + N̄T
i ΠT

1 + τ iΠ2Q2iΠT
2 )

−Π3N −NT ΠT
3 < 0, (20)

where

Λ̄33 = ÂT
d Pd + PT

d Âd −Q,

Π1 =
[
I 0 0

]T
, Π2 =

[
0 I 0

]T
,

Π3 =
[

0 0 I
]T
,

N =
[
N̄T

1 N̄T
2 . . . N̄T

r

]T
.

Right- and left-Multiplying the above inequality by Θ and
ΘT respectively, and substituting Mi ⇐ ΘTMiΘ, N̄i ⇐
X0N̄iΘ, Q2i ⇐ Q−1

2i , and Q⇐ XdQXd, it is easy to find
that (20) and (14) are equivalent to (17) and[

Mi N̄T
i

N̄i XT
0 Q

−1
2i X0

]
> 0, (21)

respectively. Note that for any matrix Xi > 0, we have

XT
0 Q

−1
2i X0 ≥ XT

0 +X0 −Q2i,

Hence, (21) holds if (18) holds.

V. STATE FEEDBACK H∞ CONTROLLER DESIGN

Now we consider the H∞ controller design of the fol-
lowing system. Let us first consider linear systems with
time-varying delays

ẋ(t) =
r∑

i=0

Aix(t− di) +Bu(t) +B1w(t), (22)

z(t) =
r∑

i=0

Cix(t − di) +Du(t) +D1w(t), (23)

where x ∈ R
n is the state, u ∈ R

m the control input,
w ∈ Lq

2[0,∞] the exogenous disturbance and z(t) ∈
R

p the output to be attenuated. For H∞ control, we always
consider the following performance index

J =
∫ ∞

0

(zT z − γ2wTw)ds, (24)

under zero initial condition, where γ > 0 is a prescribed
constant. In what follows, we will consider the design of
the state feedback controller (5) such that inequality J < 0
holds for all nonzero w ∈ Lq

2[0,∞].
Theorem 5: Given autonomous system (22)-(23) with

u ≡ 0, for a prescribed γ > 0, J < 0 holds for all nonzero
w ∈ Lq

2[0,∞] and all time-varying delays di(t) ≤ τ i, if
there exist matrices P0 > 0, P̄ =

[
P1 P2 Pd

]
, Mi >

0, N̄i, Q > 0, Q2i > 0, i = 1, 2, . . . , r, of compatible
dimensions, satisfying LMI (14), (16) and

T11 + rP0 T12 T13 PT

1 B1 CT
0

T T
12 T22 + Q̄2i T23 PT

2 B1 0
T T

13 T T
23 T33 −Q 0 CT

d

BT
1 P1 BT

1 P2 0 −γ2I DT
1

C0 0 Cd D1 −I


 < 0

(25)
where

Q̄2i =
r∑

i=1

τ iQ2i, Cd =
[
C1 C2 · · · Cr

]
.



Theorem 6: Given system (22)-(23) and a prescribed
γ > 0, J < 0 holds for all nonzero w ∈ Lq

2[0,∞] and
all time-varying delays di(t) ≤ τ i if there exist matrices
X0 > 0, X1, X2, Y0, Yi,Mi > 0, N̄i, Q > 0, Q2i > 0, i =
1, 2, . . . , r, of compatible dimensions, satisfying (18), (19)
and




T̂11 + rX0 T̂12 T̂13 ∗ ∗ ∗
T̂ T

12 T̂22 T̂23 ∗ ∗ ∗
T̂ T

13 T̂ T
23 T̂33 −Q 0 ∗ ∗

T̂ T
14X1 T̂ T

14X2 0 T̂44 0 0
0 BT

1 0 0 −γ2I 0
T̂ T

61 0 T̂ T
63 0 0 −I



< 0,

(26)
where

T̂ T
61 = C0X0 +DY0,

T̂ T
63 =

[
C1X0 +DY1 · · · CrX0 +DYr

]
,

then the state feedback (5) with Fi = YiX
−1
0 , i =

0, 1, . . . , r, stabilizes the system (22)-(23) with J < 0.

VI. NUMERICAL EXAMPLES

Example 1. Consider the example given in [4]. The
system matrices are

A0 =
[ −2 0

0 −0.9

]
, A1 =

[ −1 0
−1 −1

]
.

This example is also discussed in many other references.
The reference [4] gave a very detailed comparison with the
known results. By Theorem 3, we find the upper bound of
delay for the stability is τ ≤ τ 0 = 4.472, which is slightly
better than the result of [4]. Moreover, our theory shows that
the system is still stable even when the time-delay is time-
varying for any d(t) ≤ τ 0 = 4.472. However, the result
of [4] can only guarantee the stability for the system with
constant delay τ ≤ 4.47. When time-delay is time-varying,
the upper bound of the derivative of time-delay is involved
in [4] and it has to be assumed to be less than 1.

This example is also discussed in many other references.
The reference [4] gave a very detailed comparison with the
known results. By Theorem 3, we find the upper bound of
delay for the stability is τ ≤ τ 0 = 4.472, which is slightly
better than the result of [4]. Moreover, our theory shows that
the system is still stable even when the time-delay is time-
varying for any d(t) ≤ τ 0 = 4.472, which does not involve
the size of derivation of the time-delay. However, the result
of [4] can only guarantee the stability for the system with
constant delay τ ≤ 4.47. When time-delay is time-varying,
the upper bound of the derivative of time-delay is involved
in [4] and it has to be assumed to be less than 1.

Example 2. Now we consider the following example

A0 =
[

0 0
0 1

]
, A1 =

[ −1 −1
0 −0.9

]
,

B0 =
[

0
1

]
, B1 =

[
1
1

]
,

C0 =
[

0 1
0 0

]
, C1 =

[
0 0
0 0

]
,

D0 =
[

0
0.1

]
, D1 =

[
0
0

]
.

In [4], the stabilizability bounds was studied for the above
system. The obtained maximum value in [4] is τ = 1.408
for the system with constant delay. By Theorem 6, an upper
bound τ = 1.684 is obtained. This implies that the above
system with any time-varying delay d(t) ≤ 1.684 can be
stabilized by a memoryless state feedback. Actually, when
τ = 1.684, we obtain the state feedback gain

F =
[ −0.2966 −2.1653

]
.

At this time, the minimum H∞ performance bound is γ =
5.6460, which is obtained by Theorem 5.

VII. CONCLUSIONS

In this paper, both the delay-independent and delay-
dependent stability are discussed by applying Lyapunov-
Razumikhin theorem for the time-delay system with time-
varying time delays. This paper also improved the stability
conditions of the known references. We also discussed
the stabilizability problem and the H∞ control design for
this class of systems with time-varying delays. Numerical
examples are also proposed to show the effectiveness and
the less conservativeness of the proposed method.
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