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Abstract -- A Wiener system is a series connection of a linear 
dynamic system followed by a static non-linearity. The 
identification of Wiener systems has been an active research 
topic for years. In this paper, we extend the algorithm 
proposed by Zhao & Westwick, [Proceedings, ACC2003] [1] to 
identify Wiener systems that are unstable in open loop, but 
being operated stably in a closed-loop configuration. The 
variant of the MOESP (Multivariable Output-Error State 
Space) algorithm developed in [1] will be used to identify a 
state space model of the linear part of a Wiener system 
operating in closed loop. Since the linear dynamics of the 
Wiener system are unstable in open loop, the output of the 
linear subsystem cannot be obtained by direct simulation. 
Without an estimate of the linear output, the nonlinearity 
can’t be estimated. The main contribution of this paper is the 
design of an extended Kalman filter which is used to estimate 
the states of the linear subsystem as well as the parameters of 
the nonlinearity.  
 

1. INTRODUCTION 
    Due to their relative simplicity and varied applications, 
Wiener systems have been considered as useful structures 
in nonlinear system identification.  For the identification of 
Wiener systems in open loop, there are already a number of 
methods, including a subspace method [2]. However, if the 
Wiener system is operated in closed-loop, the algorithm in 
[2] will produce biased estimates because it requires the 
input signal to the Wiener system to be Gaussian. The input 
to the Wiener system is generated by the closed loop 
system and it can’t be guaranteed to be Gaussian. Chou and 
Verhaegen developed an indirect approach [3] to solve this 
closed-loop identification problem. In that algorithm, the 
open-loop subspace algorithm proposed by Westwick and 
Verhaegen [2] was used to get an initial, but likely biased, 
estimate of the Wiener system. Then a nonlinear 
minimization was performed to refine this estimate. We 
have developed a direct method to estimate the Wiener 
system in closed loop [1], provided that the Wiener system 
itself is stable both in open loop and in closed loop. The 
reference signal is used as an instrumental variable. 
Selecting a persistently exciting, Gaussian signal as the 
reference input, and hence as the instrumental variable, 
reduces the bias in the subspace method's estimate of the 
linear dynamics. However, the algorithms in [1] and [2] 

will fail if the Wiener system is unstable in open loop since 
they both require open loop simulation of the linear system 
before the nonlinearity can be fitted. In this paper, we will 
extend the algorithm in [1] and provide an alternative 
identification method to work when the Wiener system is 
unstable in open loop, but exists with a stabilizing 
controller together in closed loop. 

The outline of the paper is as follows. In section 2, we 
review the algorithm in [1] and explain why it fails when 
the Wiener system in unstable in open loop. Section 3 will 
introduce a Kalman type filter based technology that 
estimates the parameters of the nonlinearity, provided the 
system is stable in closed loop. Finally, two simulated 
examples will be presented.  

2. IDENTIFICATION METHODS FOR OPEN-LOOP 
STABLE WIENER SYSTEMS OPERATING IN CLOSED 

LOOP 
   A Wiener system is a series connection of a linear 
dynamic system followed by a static non-linearity. In some 
cases, particularly when the linear dynamics are unstable, it 
may not be possible to perform an open-loop experiment, in 
which case, we must deal with a closed loop system, such 
as Figure 1.                                                                                                                                             
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Figure 1. Wiener system operated in closed-loop system. r, is the 
reference input. u, is the input to the Wiener system. y, is the 
output from the linear part and the input to the nonlinear part as 
well. z, is the output of the whole system. v is the output noise. In 
this paper, we assume r, u and z can be measured.  v, is a white 
noise and independent with the reference input, r,. y is internal 
and can’t be   measured. 

Mathematically the above closed loop Wiener system 
can be expressed by the following equations: 

v  Linear part:           
kkk BuAxx +=+1                          (1) 
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Dynamic 

Linear 

Static 

Nonlinear 
Controller 



v  Nonlinear part:       
                                    kkk vyFz += )(                            (3) 

v  Controller:      
                           )()( jkjkqk zrHu −− −=                   (4) 

where n
k Rx ∈ , m

k Ru ∈ , l
k Ry ∈ , l

k Rr ∈ , l
k Rz ∈ and 

)(⋅F  is a nonlinear function which maps ll RR → . )(qH  is 

an operator expression for a linear controller which 
stabilizes the system in closed loop. The measurement 
noise, l

k Rv ∈ , is assumed to be a white-noise sequence 
that is independent of the reference input kr , and of the 
current value and the past value of ku . The goal of the 
identification is to estimate the linear system matrices 
(A,B,C,D) and the parameters of the nonlinearity from 
measurements of the input-output data ),,( kkk zur . 

Mathematically, we can express a Wiener system as a 
series connection of the linear subsystem and nonlinear 
subsystem. However, in practice, the linear part and the 
nonlinear part are integrated together and there is no way to 
measure the linear output experimentally. This makes the 
identification of a Wiener system difficult. To estimate a 
Wiener system operating in closed-loop, Zhao and 
Westwick [1] developed a subspace method based on an 
extension to Bussgang's theorem [4]. Specifically, if the 
reference input is a Gaussian signal, due to central limit 
theory, the input to the nonlinear part will be an 
approximately Gaussian signal. Thus the cross-correlation 
between the reference input and nonlinear output will be 
approximately proportional to the cross-correlation between 
the reference input and the linear output. Based on these 
observations, the PR-MOESP [5] (using the past reference 
signal as an instrumental variable) can be then extended to 
Wiener systems.  

   In practice, this can be accomplished by using an LQ 
factorization as follows: 
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where fU , fZ  and pR  are Hankel matrices constructed 

from the future input, the future output and the past 
reference input respectively [6]. And the subspace 32L  will 
be proportional to the subspace that only contains the zero-
input response of the linear system. 

2,32 QXkL NiiΓ≈                                   (6) 

The column space of 32L  is spanned by the extend 
Observability matrix iΓ . We can then use SVD (Singular 
Value Decomposition) to estimate iΓ . Moreover, following 
the algorithm in [2], we can easily obtain the linear system 

matrices )ˆ,ˆ,ˆ,ˆ( DCBA . To get the input to the nonlinearity, 
we have to simulate this linear model in an open-loop 
experimental environment using the input signal, u. We can 
then fit the nonlinearity between this simulated output and 
each of the true observed outputs using Chebyshev 
polynomials as basis functions. 

Now it is clear why this algorithm is not suitable for 
systems whose linear dynamics are unstable in open loop. 
Fitting the nonlinearity requires an open-loop simulation of 
the estimated linear system. However, if the system is 
unstable, this simulation can’t be performed. Without the 
intermediate signal, we can’t estimate the nonlinearity.  

3. DUAL EXTENDED KALMAN FILTER   
In this section, we will mainly focus on how to estimate 

the parameters of the nonlinearity after we estimate the 
linear part of the Wiener system using the algorithm in [2].  

The instability of the Wiener system in open loop makes 
it impossible to simulate the system in open loop to get the 
estimated linear output. However, its linear states remain 
bounded when the system is operating in closed-loop with a 
stabilizing controller. With the estimated linear system, if 
we can estimate the bounded linear states in closed loop, 
we can calculate the estimated linear output. Kalman type 
filters have been viewed as standard tools to estimate the 
states of linear or nonlinear systems. In our case, we need 
to estimate both linear states and the nonlinear parameters, 
since we don’t know the nonlinear parameters so far. As 
proposed in [7] [8] [9], the extended Kalman filter can also 
be used to estimate the parameters of nonlinear models. 
This type of Kalman filter is also known as the dual 
extended Kalman filter, proposed by Wan and Nelson [10]. 
The dual extended Kalman filter basically combines two 
extended Kalman filters. The first one estimates the states 
of the systems, while the second one estimates the 
parameters of the nonlinearity. Those two extended Kalman 
filters run concurrently. The first Kalman filter requires the 
nonlinear parameters for the time-update, while the second 
Kalman filter needs the linear states for the measurement 
update.   

The Wiener system can be represented by a set of state-
space equations: 

kkkk
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where (A, B, C, D) are the linear system matrices, )(•W  is 

the nonlinear function and kv  is the measurement noise. 

   To estimate the nonlinearity, the first step is to represent 
it as a weighted sum of basis functions: 

 kD vyWkz
F
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where [ ]Tnn θθθθ �

�

21=  contains the parameters of 
the nonlinear function, and )(⋅W  contains basis functions. 



Choosing the nonlinear basis function is not the main topic 
of this paper. In this paper, we used Chebshev polynomials 
[11] of orders 1 through n to represent the nonlinearity. 
Thus, 

[ ])()()()( 21 xTxTxTxW n�=  

where )(xTi are Chebyshev polynomials defined by the 
recursive relationship� �
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 After choosing the nonlinear basis functions, the next 
step is to estimate the parameters of the nonlinearity. To 
achieve this using the Kalman filter, we must somehow add 
those parameters to the state equation so that they can be 
updated. To achieve this, we change the system matrices 
and now we consider the parameters of the nonlinear model 
as part of the states. So we can have a new state space 
model: 
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where [ ]Tnkkkk ,2,1, θθθθ �

�

=  contains the time-

varying parameters of the nonlinear function, kI  is an 
identity matrix with order equal to the order of the 
nonlinearity and W  is the nonlinear basis function (8). 

As to the newest states space model (9), we have known 
(A, B, C, D) matrices and we have chosen a nonlinear basis 
function. Though we don’t know the parameters of this 
basis function, those parameters are included in the state 
vectors and we can estimate them after we run the filter.  So 
for the above model, with the measured input and output 
data, we can design an extended Kalman filter by the 
following steps: 

Initialize the filter with 
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For { }∞∈ ,,1�k , the time update 
equations of the extended Kalman filter 
are: 
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and the measurement update equations: 
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where 
kx

k x
x

C
ˆ

)(
∂

∂Φ≅ and wR , vR  are 

the covariances of kw  and kv  
respectively. 

Remark: Ideally we want to use )( 0xE  to initialize the 
Kalman filter. However this is usually unavailable. In 
practice, we set the initial linear states equal to zeros. As to 
the nonlinear parameters, we use a small random number. 
As to 

0xP , we choose a relatively small value for the state 

estimates and a relatively large value for the parameter 
estimates. wR  reflects the process noise. We use a diagonal 
matrix with all zeros for the nonlinear parameters and a 

small value for the linear states. Then vR  is decided from 
the output SNR. 

Now we briefly list the algorithm: 
ALGORITHM 

1. Using the algorithm in [1] to estimate 
the linear part of the Wiener system 
based on the experimental data 

),,( kkk zur . 
2. Design an extended Kalman filter. 
3. Run the extended Kalman filter. The 

first n (n is the order of the linear 
system) states are the estimation of 
the linear states and the rest are the 
parameters of the nonlinearity. 

4. EXAMPLE: 
In this section, we provide a simulation example to show 

how our algorithm works. The identification procedure 
contains two steps. In the first step, we use the algorithm in 
[1] to estimate the linear part of the Wiener system. With 
the estimated linear dynamics, we design an extended 
Kalman filter to estimate the parameters of the nonlinearity. 

The transfer function of the linear part of the Wiener 
system is 

)9042.0465.1)(5807.0487.1)(056.1(

)216.0)(39.1)(7.11(
)(

22 +−+−−
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zzzzz

zzzz
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The plant has a pole at 1.056 which makes the plant 
unstable in open loop. So a discrete PD controller is 
designed and its transfer function is as the following: 

z
z

Zc
22.022.1

181.0)(
−×=  

The gain of Proportional controller is 0.181 and the gain 

for Derivative controller is 41099.1 −× . 
We use a polynomial, 1.05.001.02.0)( 23 +++= xxxxF , 
as the nonlinearity. As required in the algorithm [1], the 
reference input, )(kr , must be a Gaussian random 
sequence so that we use a Gaussian white noise of STD=1 
(standard deviation) to excite the system. Considering real-
world constraints, we filtered the input using a low-pass 



filter with a normalized cut-off frequency of 0.6.� The 
measurement noise is a zero-mean Gaussian signal and the 
SNR is 20 dB. The simulation runs for 50 seconds and 
provides 10,000 points with the sample time equal to 1/200 
second. Figure 2 shows the first second of data set from this 
simulation.�

To estimate (A,B,C,D) and the parameters of the 
nonlinearity numerically, we used the SMI Toolbox 2.0 [6] 
modified as modified as described in [1] and [5]. The 
(A,B,C,D) that we obtained from this identification is the 
open loop state space model of the linear subsystem, up to a 
similarity transformation and output scaling. 

 
Figure 2. Simulation data used for identification 

To test the estimation accuracy, we first compared the true 
and estimated poles, as shown in Figure 3. We can see that 
the algorithm estimates the poles pretty well, especially the 
most crucial pole which is outside the unit circle. 

 
Figure 3. Comparison of the true poles with the estimated poles 

After estimating the linear part of the Wiener system, we 
set up a dual Kalman filter to estimate the parameters of the 
nonlinearity based on the input and output data with the 
estimated system matrices. To validate the nonlinear 
parameters, we compared the measured output and the 
estimated output from the Kalman filter. Figure 4 shows the 

results. Moreover, we also simulated the true system and 
the estimated system in closed loop using a new reference 
input and then compared the output from the true system 
with the output from the estimated system. The result is 
shown in Figure 5. To compare the estimation accuracy, we 
use VAF (Variance Accounted For), which can be 
expressed by  

%100
)variance(

)(iancevar
1%VAF ×��

�

	



�

� −
−=

y
yy est  

   Since all the simulations were performed in a computer-
based environment, we could actually measure the output 
from the linear part, which would be unavailable in a real 
experiment. Using this signal, we measured the accuracy of 
the estimated nonlinearity. In Figure 6, we plot the true 
nonlinearity and the estimated nonlinearity. We can the 
result is very good. Based on other simulation results, the 
algorithm still provides very good estimate when the cut-off 
frequency is as low as 0.2. 

 
Figure 4. Comparison of the true output with the estimated 

output from the Kalman filter 

 
Figure 5 Comparison of the true and estimated system outputs 
obtained from a closed-loop simulation using a novel reference 

input. 



Though our algorithm is based on the fact that the 
reference input must be Gaussian, some experiments have 
been done to test non-Gaussian inputs. In the following 
experiment, we will use a Bernoulli sequence, with zero 
mean and unit variance. Similar with the first simulation, 
we also filter the Bernoulli sequence using a low-pass filter. 
The cut-off frequency is 0.6. Figure 7 records the reference 
input signal, the input to the system and the output from the 
system. 

 
Figure 6. Comparison of the input-output characteristics of the 

true and estimated nonlinearities.�

 
Figure 7. Reference input, input and output from the second 

simulation. 

With the simulated data, we can now do the 
identification for both the linear and nonlinear parts. Figure 
8 shows the estimated poles with the true poles from the 
linear part of the Wiener system. 

To compare the nonlinearity, we first compare the 
measured output and the estimated output from the Kalman 
filter. Figure 9 shows the comparison. Then we used 
another set of data. Figure 10 compares the true output 
from the system and the simulated output from the 
estimated system. Figure 11 compares the true nonlinearity 
with the estimated nonlinearity. 

 
Figure 8. Comparison of the true poles with the estimated poles 

 
Figure 9 Comparison of the true output with the estimated 

output from the Kalman filter 

 
Figure 10. Comparison of the true output with the estimated 

output  



 
    
Figure 11. Comparison of the true nonlinearity with the estimated 

nonlinearity 

5. CONCLUSION:  
 In this paper, we showed how to identify the Wiener 
operating in closed loop directly from the input-output data 
when the system is unstable in open loop. The first step is 
to use the algorithm in [1] to estimate the linear dynamics 
of the Wiener system. The second step is to setup a dual 
extended Kalman filter to estimate the linear states and the 
parameters of the nonlinearity. We presented two 
illustrative simulation results. Both simulation results show 
comparisons between the measured true nonlinear output 
and the one step ahead predicted output from the extended 
Kalman filter, and the comparison between the measured 
true nonlinear output and the simulated output from the 
estimated system operating in closed loop. The behaviour 
of the estimated system in closed loop is a much more 
valuable indication of the model accuracy than is a one step 
ahead prediction of the output. If the nonlinear basis 
functions fit the nonlinearity well, the simulated output 
from estimated system operating in closed loop tracks the 
true output pretty well: or example, we obtained VAFs of 
99% and 98% in the two simulations��
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