
 
 

 

  
Abstract—This paper provides an overview of the problem 

of managing sensor resources in a closed-loop sensor fusion 
system. We formulate the problem in a stochastic dynamic 
programming framework. In so doing, we expose structure in 
the problem resulting from target dynamics being 
independent and discuss how this can be exploited in solution 
strategies. We illustrate situations in which we believe such 
sensor management techniques are especially beneficial with 
two examples. One example is the management of a single 
sensor, and the other is the management of multiple sensors. 
The focus of both examples is on air-to-ground tracking. 

I. INTRODUCTION 
N this paper, we address control aspects of sensor 

fusion. For the sensor fusion problem of interest here, 
one would like to infer the state of multiple targets from 
measurements made by one or more sensors over time. 
Targets are typically located on the ground and can include 
vehicles, buildings, and other man-made objects. States of 
interest could include position, velocity, mode (e.g. on- or 
off-road), vehicle type, etc. Estimates of the states are 
inferred by fusing information from multiple sensors over 
time. The fusion engine responsible for piecing together 
information from different types of sensors will typically 
create hypotheses by associating new observations with 
previously detected targets. Alternative hypotheses are 
formulated to deal with ambiguities caused by incomplete 
or even contradictory information. New hypotheses are 
created and abandoned as data is accumulated that indicates 
the current target states have changed or resolves 
ambiguities in the past states of targets. The data can be 
generated by many different types of sensors, including 
airborne surveillance radars, video sensors, etc. The sensors 
are managed to collect the appropriate measurements. We 
view sensor resource management (SRM) as the control 
problem of allocating available sensor resources to obtain 
the best awareness of the situation.  
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Efficient sensor management requires consideration of 
the value of particular pieces of information to the fusion 
engine at each moment, so the plant to be controlled 
comprises not only the sensors and communication 
systems, but also the fusion engine that processes the 
information collected by them, as illustrated in Fig. 1. The 
plant’s inputs are precisely the requests that the sensor 
management system is allowed to make, and its outputs 
include all the information obtained from the sensors. The 
state of the plant is then the total information available to 
the fusion engine, and in principle also to the SRM 
controller, at a given time. The dimension of the state is not 
fixed: it increases as information is collected, and new 
tracks are initiated. It also decreases when new information 
results in hypotheses being resolved, and when the 
hypothesis tree is pruned of alternatives that are considered 
less likely. 

From this point of view the process model is completely 
deterministic, and full information about the process is 
available. Uncertainty enters the picture in the form of the 
actual measurements obtained by the sensors, which can be 
treated as external disturbances about which we, as 
designers of a sensor management and fusion system, have 
no control or previous knowledge. Additional disturbances 
include sensor actions over which the system has no control 
– for example, sensor systems which are allocated at a 
higher command level. Indeed, the current state of the 
fusion system represents the best possible guess about the 
actual ground truth – taking into account the information 
available and our capacity to process it. Since the estimate 
does not depend on probabilities of obtaining specific data 
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Fig. 1 Sensor Resource Management (SRM) closes the sensor/fusion 
control loop.  



 
 

 

in the future, the system is essentially causal, a fact that 
simplifies conceptually the design of a sensor management 
algorithm. Of course the variable dimensionality of the 
state space precludes the use of textbook control design 
techniques, which are not likely to be applicable in any 
event. 

A number of different approaches to the design of sensor 
managers have been proposed in the literature. They cover 
the different aspects of the sensor management problem 
including how to manage sensors to support detecting and 
localizing [3], [7], [8], [9]; tracking [2], [8], [10], [11], 
[12]; and classifying [4], [5], [6] targets. The proposed 
solutions include policies based on information-theoretic 
optimization criteria [8], [11] as well as policies for 
optimizing more traditional criteria (e.g., track error) 
generated using stochastic optimization techniques such as 
index rules [2], [5], [12]; Lagrangian relaxation [6]; et al. 
[3], [4], [7], [9], [10]. In this paper, we overview some of 
the technical issues in sensor management including 
structure in the problem that we believe can be exploited 
when designing solution techniques. This is discussed in a 
stochastic dynamic programming framework in Section II. 
In Section III, we illustrate situations in which we believe 
sophisticated sensor management strategies are especially 
beneficial with two examples. One example is the 
management of a single sensor, and the other is the 
management of multiple sensors. The focus of both 
examples is on air-to-ground tracking. 

II. APPROXIMATE STOCHASTIC DYNAMIC PROGRAMMING 
APPROACH 

We have conceived designs to the sensor management 
control problem in the framework of stochastic dynamic 
programming. A typical formulation starts with the system 
state at time t, x(t). The state includes all target true 
positions and types. A control at time t, u(t), specifies a 
measurement of the system to be taken. The measurement 
may be corrupted by a stochastic disturbance v(t) and may 
be delayed so that it is not realized until a later time. The 
measurement process is given by the function h, so that 
 ( ) ( ( ), ( ), ( ))yy t h x t u t v t=  (1) 

is the measurement realized at time ty>t. The information 
about the system at time t is summarized in the information 
state I(t), consisting of all past measurements and controls 
 ( ) { ( ) : } { ( ) : }y y u uI t y t t t u t t t= ≤ ∪ < . (2) 

The delay in realizing the measurement, ∆y, taken at time t, 
is a function of the information state, control, and 
stochastic disturbance at time t so that 
 ( ( ), ( ), ( ))y yt t I t u t v t= + ∆ . (3) 

Control decisions occur at discrete instants in time, tu,0, 
tu,1, tu,2,…. Following time tu,i, the next control is executed 

after the delay of ∆u, which is a function of the information 
state, control, and stochastic disturbance at time tu,i. Thus, 
 , 1 , , , ,( ( ), ( ), ( ))u i u i u u i u i u it t I t u t v t+ = + ∆ . (4) 

The control is chosen from a constraint set U(I(t)) 
according to a control law, µ, which is a function of the 
information state and time. Thus, 
 , , ,( ) ( ( ), )u i u i u iu t I t tµ= . (5) 

The sensor management policy is the collection of these 
control laws 
 { ( ( ), )}I t tπ µ= . (6) 
Rewards are achieved upon executing the policy by 
attaining particular information states. The reward for 
attaining information state I(t) is given by R(I(t)). These 
rewards are discounted by the factor e-γt and integrated 
across time to yield an expected reward for executing 
policy π from the information state I(0) of 
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The optimal sensor management policy π∗ is the one that 
maximizes (7) over all policies π. The optimal policy can 
be characterized in terms of Bellman’s equation [1]. In this 
context, the equation states that the expected reward for the 
optimal policy satisfies 
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The first term on the right-hand side is the reward accrued 
until the next decision time after t. The second term is the 
expected reward after that time accrued from the resulting 
information state. The policy  

 { }* *( ( ), )I t tπ µ=  (9) 

is optimal provided that the argument of the maximum in 
(8) is given by µ*(I(t),t) for all I(t) and t (the assumption 
here is that the set of candidate controls is compact, if not 
finite, so that the maximum is well-defined). Several 
computational techniques, including both policy and value 
iteration, exploit the characterization in (8) to compute 
policies. The difficulties in exploiting this characterization 
are tied to the size of the state space, the set of candidate 
controls, and the set of stochastic disturbances. In 
particular, Bellman’s equation characterizes J* for all 
possible information states I(t) by evaluating the right-hand 
side of (8) for all possible controls u(t), taking an 
expectation over all disturbances. This can be difficult to 
apply when the size of the sets involved is large. 

However, there is special structure that can be exploited. 
Consider the following special case in which the system 
state is the aggregate state of n targets 



 
 

 

 1( ) { ( ), , ( )}nx t x t x t= …  (10) 
whose individual states xi(t) are independent and evolving 
in time as Markov processes. This would be the case, for 
example, when tracking independent, isolated targets. 
Moreover, suppose the measurements of the system state 
are conditionally independent given target state and sensor 
controls so that one can write 
 ( ) { ( ) : 1 }iy t y t i n= = …  (11) 
where an individual measurement can be written 
 ( ) ( ( ), ( ), ( ))i i i iy t h x t u t v t=  (12) 
for independent stochastic disturbances vi(t). Independence 
introduces considerable structure; however, the problem is 
still complex since the information states of the system do 
not have similar independence properties. For example, one 
can consider partitioning the information state as 
 1 2( ) ( ) ( ) ( ) ( )n uI t I t I t I t I t= ∪ ∪ ∪ ∪…  (13) 
where 
 ( ) { ( ) : }j j y yI t y t t t= ≤  (14) 

and 
 ( ) { ( ) : }u u uI t u t t t= < . (15) 
However, the future information states Ij(τ) for τ>t are 
neither independent nor conditionally independent given 
the current control u(t) and system state x(t). The reason is 
that the information states of targets are coupled through 
the control decisions. Thus, one cannot rely on methods for 
computing sensor management policies that require the 
independence of the targets’ information states. 

One approach we have used to develop sensor 
management policies that exploit the special structure is the 
application of index rules [1], [13]. Index rules are optimal 
for the following type of sensor management problem. 
There are n targets, whose states are independent. A 
measurement can be made of only one target at a time, and 
the measurement is of fixed duration, i.e. ∆y and ∆u are 
constants and ∆y<∆u. The state of the target can only 
change at instants when a measurement is made of it (e.g. 
the target state may not be changing, but the information 
state of the target may be as more measurements are 
acquired). In addition, the mission must be formulated such 
that the reward R(I(t)) accrued in a particular information 
state at time t depends only on the information state Ij(t) of 
the target j being measured at that time. In this case, the 
optimal policy determining the next target at which to look 
from information state I(t) is given by an index rule, which 
has the form 
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where mj(Ij(t)) is the index of the target. The index for 
target j can be represented in terms of a single target 
problem. We have been able to develop solutions to these 

single target problems and apply the resulting index rule 
policy. Although the assumptions required for the index 
rule to be optimal are often violated in sensor management 
problems (e.g. one may be able to measure the state of 
more than one target at a time), we have found that index 
rules may still be optimal or, at least, applicable as part of 
heuristics [5], [14]. 

Another approach we have used to develop sensor 
management policies is to use limited lookahead algorithms 
[1]. A limited lookahead policy is one for which the control 
action is chosen as the solution to 
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where 
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for k=1,…,N-1 where N is the number of steps of 
lookahead and the terminal reward NJ�  is chosen to 
approximate the expected reward. The algorithm for 
computing the limited lookahead policy is effectively 
enumerating possible controls and outcomes over N steps, 
calculating a reward for the resultant state based on an 
approximation, and selecting the control that yields the best 
outcome. Structure in the problem can be exploited in the 
construction of NJ� . As noted previously, the problem has 
special structure in that individual target state evolutions 
are often independent. One approach to exploiting this is to 
use an approximate terminal reward that is separable so that 

 ,
1

( ( ) ( ))
n

N N j j u
j

J J I t I t
=

= ∪∑� �  (19) 

for per-target rewards ,N jJ� . These can be constructed a 

number of different ways. One technique we have used is 
to calculate the expected rewards associated with a single-
target form of the problem, motivated by the index 
definition in [13]. Essentially, we use a function of the 
index mj as the approximation ,N jJ� . We have also 

explored other methods for constructing NJ�  including 
rollout and heuristic methods. In each case, we have tried 
to exploit structure in the problem such as the existence of 
independent target evolutions. 

III. APPLICATION EXAMPLES 
What follows are two examples of how we have been 

applying these techniques to sensor management problems. 



 
 

 

The examples outline how we have applied the stochastic 
control techniques described above to the development of 
sensor managers and illustrate areas where we have found 
distinct advantages to using these techniques. In order to 
illustrate the breadth of applicability, the examples are 
drawn from two different types of problems. The first is the 
control of a single sensor; the second is the control of 
multiple, distributed sensors. 

A. Control of a Single Sensor 
In this first example, consider managing a single sensor 

air-to-ground radar tracking system. The sensor, tracker, 
and sensor manager are all colocated on the sensing 
platform. As a result, the latencies in transmitting 
information between components are minimal; so, the 
sensor manager is generating sensor controls on a fast time 
scale. In this context, two scenarios in which a stochastic 
control approach to sensor management has advantages are 
when there are differentiated targets and when the sensor 
mode must be matched to target state. 

 An example of the second scenario occurs when using 
an airborne radar to track ground targets. In the radar’s 
standard ground moving target indicator (GMTI) mode, 
only targets moving against the background can be 
observed. However, the radar may have another mode such 
as a fixed-target indicator (FTI) mode, with which only 
stopped targets may be observed. In order to track the 
targets, the radar must be managed to periodically revisit 
targets in the appropriate mode to update the estimate of 
their position. Too long a period without observing the 
target will lead to the tracking system dropping the track. 
Longer track lifetimes are desirable. The sensor 
management problem is thus one of selecting the sequence 
of targets at which to look with the radar as well as the 
mode to use. One source of complexity in the problem is 
that targets may not be detected even if the appropriate 
mode is used. Thus, the sensor management policy must 
appropriately hedge to select the best mode based on past 
detections. Another potential source of complexity in the 
problem is that the measurements are taken over different 
durations ∆y in the different modes. Thus, the policy must 
appropriately hedge in time so that longer duration modes 
are not chosen at poor instants in time. To address these 
two issues, we have developed a limited lookahead policy, 
of the form described by (17) and (18). The policy allows 
one to account for past detections as well as for predictions 
of future rewards that depend on the different measurement 
durations in each sensor mode. Initial results of 
performance are illustrated in Fig. 2. Here, a simple 
simulation is used to compute the average track lifetime for 
two different sensor policies. One is the limited lookahead 
policy; the other is a policy that only uses the GMTI mode. 
The simulation includes synthetic target motion, a simple 
tracker, and a simple sensor model. For this sensor model, 

the measurement durations are the same for the two 
different modes. The results indicate that constructing a 
sensor policy that takes advantage of the FTI sensor mode 
has the potential to provide significant improvements in 
track lifetime. More realistic simulations would be required 
to determine the precise benefit. 

 The other example of a scenario for which we have 
noted benefits of sensor management is one in which there 
are differentiated targets. Specifically, a subset of the 
tracked targets is designated by a user to be higher priority 
than the others. The high-priority targets could have 
different tracking requirements than the low-priority 
targets. For example, they may have more stringent track 
accuracy requirements. The specific context considered 
here is air-to-ground tracking with a GMTI radar. Thus, 
there is no mode selection problem for the sensor manager, 
as in the previously discussed scenario. However, the 
problem of selecting the sequence of targets at which to 
look is more complex. The sensor management policy must 
account for the different numbers of high-and low-priority 
targets, the different tracking requirements, and the current 
state of tracks to generate a control sequence that generates 
measurements of targets to meet the tracking requirements. 
Some initial, simple simulations indicate that significant 
benefits can be realized from a good sensor management 
policy. In particular, we simulated a scenario with a high-
priority target and several low-priority targets. Two limited 
lookahead sensor management policies were evaluated. 
One used one step of lookahead (N=1), and the other used 
two steps (N=2). Both policies performed equally well on 
the high-priority target. However, the two step lookahead 
policy achieved track accuracy requirements on the low-
priority targets 86% more of the time than the one step 
lookahead policy. This suggests that significant benefits 
can be realized by appropriately managing the sensor to 
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track differentiated targets. We are currently planning to 
evaluate the benefits in this type of scenario with a more 
realistic simulation. 

B. Control of Multiple, Distributed Sensors 
The second example differs from the previous one in two 

key respects. The first is a decomposition of the sensor 
resource management function into two parts: an 
information valuation step followed by a sensor allocation 
calculation (i.e., constructing a sensor scheduling plan that 
maximizes the value of collected information subject to 
constraints on sensor availability and routing). The second 
is the introduction of multiple sensors into the problem. In 
this example, we focus on the information valuation aspect 
for multiple sensors of differing capability. 

As described above, the fusion state is determined by 
both the stochastic evolution of the real system and the 
stochastic results of sensor measurements of that system. 
Different sensor tasking choices will thus result in different 
evolutions of the system’s state. The decision becomes one 
of determining the optimal valuation of sensor resources 
with respect to their impact on the fusion process. While 
there are multiple reasons for requesting particular sensor 
tasks, the approach described herein addresses an important 
subset – requesting sensor tasks that will either improve 
target track estimates or remove association ambiguity in 
the current or near-future fusion state. To emphasize this 
aspect of the approach, the algorithm has been termed 
FIND (Fusion Information Needs Determination). 

The goal of the FIND algorithm is to maximize the time 
discounted reward J in (7) for the special case where the 
time between control actions ∆u is constant so that one can 
rewrite it for a constant α as 
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The reward function R has the form 
 ( ( )) ( ( ) ( ))j j u

j

R I t R I t I t= ∪∑  (21) 

where the index j in this case ranges over the hypothesis 
space of the fusion system. The track hypothesis space 
contains information about the relative certainty of 
different data associations that are not reflected in the 
single global set of track estimates normally output. The 
individual rewards Rj are a function of a set of goals and 
priorities, specifically: 

1. The required kinematic accuracy (expressed as 
tracking uncertainty, ΣGoal) for tracking confirmed 
targets 

2. The required classification accuracy (probability of 
correct classification, PGoal) for declaring high 
confidence identification of a target 

3. The relative priorities for meeting the kinematic and 

classification accuracy goals, both singly and in 
combination, for each of the expected target types 

4. Indications of time-criticality of the information need. 
Given this information, we can specify the reward for a 

given hypothesis Hj. The reward takes on differing values 
depending upon which combination of the goals is 
satisfied. For hypothesis Hj, with associated kinematic 
uncertainty σj

2(t) (the maximum eigenvalue of the position 
error covariance) and classification probabilities pj(t) 
(defined as the vector of probabilities that the target is of a 
given type), the individual reward at time t is given by: 
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Different candidate sensor tasks are valued using a 1-
step limited lookahead approach given by (17) and (18). A 
heuristic approximation of the terminal award is given by 
the separable function  
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where the summation is over the different hypotheses 
within the track hypothesis space. The FIND values are 
computed as the increment in the expected reward of the 
one-step lookahead for a set of candidate sensor tasks 
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Since FIND does not have information as to which specific 
sensors are available, the FIND value is computed for a set 
of candidate sensor controls u parameterized by hypothesis 
as well as a range of kinematic measurement accuracies 
and classification abilities. 

The FIND valuation is used to determine the benefit 
derived from tasking a sensor to provide information on a 
specified hypothesis. In practice, these valuations are rank-
ordered and filtered such that only a subset of the possible 
hypotheses is considered in the sensor allocation 
calculation. This portion of the solution balances the set of 
valuations (which vary with sensor performance) against 
competing requirements (e.g., requests produced at a higher 
command level) to produce a multiple sensor tasking plan. 

To illustrate the performance of the FIND algorithm and 
demonstrate its utility for identifying (and quantifying) the 
benefits of candidate sensor taskings, consider the simple 
scenario. It begins with a single, stationary, high priority 
target. Initial information about the target consists of good 
classification, but poor kinematic information. A short time 
later, two distinct tracks are reported by an MTI system. 



 
 

 

While these reports provide good kinematic information, 
target classification knowledge is poor. The problem 
becomes one of identifying which, if either, of the moving 
targets is the original high priority one. 

Three approaches for generating sensor task valuations 
were examined: 

1. Raster which simply tasks the sensor(s) to address 
each hypothesis in turn 

2. Myopic which implements a 1-step lookahead, greedy 
approach. Defaults to Raster if no sensor task is 
expected to achieve a goal 

3. FIND which implements a 1-step lookahead and uses 
the heuristic terminal reward in (22) to approximate 
the long-time reward. 

Two sensors are available for tasking. Nominally, the first 
provides accurate kinematic information but no 
classification data, while the second provides classification 
information but has a poorer (i.e., larger) kinematic 
uncertainty. Each is assumed to report the results of the 
tasked observation. The FIND problem is to produce a 
sensor tasking (or set of sensor tasks) that resolves the 
inherent ambiguities in the hypothesis space while 
minimizing the number of such tasks. This is equivalent to 
producing a set of recommended sensor taskings that 
results in the best (minimum number of observations) 
solution to achieving the target tracking and classification 
goals. 

Fig. 3 illustrates how the above algorithms perform for 
one set of evaluation conditions. The curves are the 
probability that the tracking and classification goals are 
exceeded as a function of the number of recommended 
sensor taskings. The results shown in the figure are 
representative; the FIND algorithm is clearly superior to 
the other approaches. 

The valuations provided by the FIND algorithm can be 
viewed as providing different types of requests to improve 
fusion performance. The highest value requests are those 
which remove ambiguity in report associations to high 
priority targets. Requests that confirm ID and track likely 
high priority targets typically have medium values, while 
those with the lowest value are requests to ID unknown 
targets and are usually ignored unless no higher value tasks 
are requested for a given sensor resource. 

IV. CONCLUSION 
The examples in the previous section highlight issues in 

sensor management and indicate how one could exploit 
structure resulting from independent target motions to 
develop a sensor management policy.  The results indicate 
that such policies will appropriately allocate sensor 
resources to improve the resolution of hypotheses in multi-
target tracking systems and, specifically, to improve the 
surveillance of high-priority targets.  Further 
experimentation is required to determine the precise degree 

to which benefits can be realized in practice. Planned 
development of high fidelity simulations will allow us to 
perform the necessary experiments. We expect results will 
indeed confirm that significant benefits can be realized.  
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Fig. 3. FIND significantly reduces the number of sensor taskings required 
to achieve performance goals. 


	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrM06.4
	Page0: 4752
	Page1: 4753
	Page2: 4754
	Page3: 4755
	Page4: 4756
	Page5: 4757


