
 
 

 

  
Abstract—Many compensation techniques for handling 

saturation non-linearity have been devised, ranging from anti-
windup, polynomial-based conditioning techniques, to non-
linear design techniques using state-space models. In this 
paper, a new approach to handling actuator saturation based 
on Internal Model Control (IMC) is proposed. Within the 
proposed framework, a gain term and first-order exponential 
filter are tuned to ‘desaturate’ the actuator. A stability 
analysis shows the resulting system is always stable. Examples 
show the simplicity of design and the validity of proposed 
framework. 

I. INTRODUCTION 
HE existence of control signal saturation within a 
practical control system may result in instability (e.g. 

'reset-windup' of integral action phenomenon in a classical 
PID control framework) [1-4]. For instance, even a stable 
system without control signal saturation would become 
destabilized when the constraints of input become active. In 
some other cases, the instability caused by saturation leads 
to the occurrence of limit cycles, if the saturation non-
linearity is not being compensated, as shown in [5].  

The influence of saturation non-linearity is apparent 
when the required control signal cannot be achieved 
because of actuator saturation, leading to incorrect updates 
of the internal controller states. The inconsistencies 
between the internal controller states and the control signal 
is minimized using the generalized anti-windup 
compensator (GAWC) in [4]. Although the research in 
control signal saturation has reached the level of maturity 
where ad-hoc compensation schemes are widely available, 
the compensator’s design algorithms (such as pole 
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placement, H∞ control) still remain mathematically intense. 
Internal Model Control (IMC), illustrated in Fig. 1, is a 

control technique that guarantees system stability while 
offering good tracking performance. Extensive use of IMC 
in non-linear system control has generated great interest 
among the researchers in various aspects. Over the last two 
decades, the increased popularity of IMC in process and 
system control has been mainly due to the fact that the IMC 
structure offers high robustness for disturbance and 
uncertainty rejection, as well as offering global stability for 
both linear and non-linear systems. The only restrictions on 
the IMC scheme are that the plant needs to be open loop 
stable and minimum phase. The use of IMC for control 
input saturation compensation, on the other hand is 
relatively rare compared to robust process control. The 
IMC structure was never intended to be an anti-windup 
scheme as pointed out in [2] and [6]. However, it has been 
suggested that IMC can be used to solve anti-windup 
problems, for example in [7] and [8]. An example was 
given in [8] to show the inherent anti-windup property of 
IMC structure. Error-offset in IMC was investigated in [9], 
and a design method that possesses robust servo 
characteristics, employing the idea of Internal Perturbed-
Model Control, was proposed. Similar work was done in 
[10], where an anti-windup control method using modified 
form of Internal Model Control for an unstable plant was 
proposed. In [11], non-linear control laws within the setting 
of IMC for a single-input single output chemical reactor 
were developed.   

In this paper, a novel approach to provide good tracking 
performance even when the system is susceptible to input 
saturation non-linearity is introduced. The controller design 
consists of computing the inverse of the internal model, 
then selecting a first order exponential filter parameter. 
Finally, a gain is tuned to reduce the control action needed 
until the optimum response for the plant under saturation is 
obtained. The proposed method not only reduces the 
complexity of currently available saturation compensation 
schemes, but also guarantees global stability for bounded 
input bounded output (BIBO) systems. Robustness and 
stability issues are also addressed. Global asymptotic 
stability for a control system with control input saturation 
non-linearity is shown for the proposed IMC framework 

Gain Tuned Internal Model Control for 
Handling Saturation in Actuators 

Chung Seng Ling, Michael D. Brown, Paul F. Weston and Clive Roberts 

T



 
 

 

using the off-axis circle criterion. 
The paper is organized as follows. Section II outlines the 

fundamental properties of the IMC structure, which forms 
the basis of the proposed IMC structure. The proposed 
restructured IMC framework, together with the controller 
design procedure, is described in the same section. The 
stability of the compensated system is investigated in 
section III. Section IV contains the simulation results of an 
example system using the proposed method, showing the 
effectiveness of gain changing for saturation non-linearity 
compensation. In section V, conclusions are drawn and the 
simulation results examined.  

II. RESTRUCTURED IMC  

A. Single-degree-of-freedom IMC with Saturation   
A typical single-degree-of-freedom IMC is shown in Fig. 

1. In this figure, Gp(z-1) is the plant, Gm(z-1) the internal 
model, and Gc(z-1) is the inverse model controller. The 
main characteristic of an IMC configuration is that the 
plant model (strictly speaking, the inverse plant model) 
forms part of the controller. The saturation block can be 
either part of the controller, or of the plant. From Fig. 1, 
dropping the arguments for brevity, the following equation 
relating the inputs and outputs can be derived [6]: 
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The sensitivity function, ε(z-1), that relating the disturbance 
dt to output yt is given by:  
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The complementary sensitivity function η(z-1) (or output 
sensitivity function) by subtracting ε(z-1) from 1 to give:  
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Equation (2) can be also be derived from equation (1) by 
omitting the reference signal term while deriving the 
relationship between yt and dt. Equation (3) is derived from 
(1) in a similar way but omitting the disturbance related 
term.  

Fig. 1 Single-degree-of-freedom IMC with control signal saturation 

 
One can thus conclude from (2) that the feedback control is 
used for disturbance rejection and from (3) that the 
feedforward control is used for set-point tracking. Both set-
point tracking performance and disturbance rejection 
robustness are governed closely by perfect modeling (i.e. 
Gp=Gm), as shown in (2) and (3). If perfect modeling is 
achievable, with Gp=Gm, (2) and (3) can be simplified to: 

cmGGz −=− 1)( 1ε          (4) 

cmcp GGGGz ==− )( 1η       (5) 

Equation (4) determines the disturbance rejection 
performance, while (5) governs the set-point tracking 
robustness of the IMC structure shown in Fig. 1. The set-
point tracking robustness filter qr(z-1) and  disturbance 
rejection robustness filter qd(z-1) are incorporated to 
achieve good disturbance and tracking control. 

Referring to Fig. 1, within a discrete-time IMC structure, 
an augmented feedback signal which consists of the effect 
of a disturbance signal and the plant/model mismatch is 
generated at each sample time. From (2), ε(z-1) is a direct 
indicator of the system performance under the effect of 
disturbance. To make this sensitivity function relatively 
small so as to achieve perfect control (ideally ε(z-1)=0), the 
model inverse (i.e. Gc=1/Gm) can be chosen as the 
controller.  
 

B. Two-degrees-of-freedom IMC 
A typical discrete-time two-degrees-of-freedom IMC 

structure is shown in Fig. 2. In this figure, the extra 
‘freedom’ is introduced by the inclusion of qd(z-1), which is 
the disturbance rejection robustness filter and qr(z-1), which 
is the tracking performance robustness filter. In practice, 
the best control performance depends on how well the 
robustness controllers and the arrangement of other ad-hoc 
controllers are being assigned. This arrangement is superior 
to that of Fig. 1 if the two inputs rt and dt are dynamically 
different [6]. 

 

 
Fig. 2 Two-degrees-of-freedom IMC structure  
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C. Proposed IMC Framework   
In an IMC setting, control signal saturation would not 

cause any 'reset-windup' problem, so long as the saturated 
input ut is fed into the model Gm rather than the control 
signal, vt computed by the controller [6]. The proposed 
IMC structure with control input saturation is thus 
constructed in accordance with this proposition with the 
saturated input fed into the plant and model. 
The saturation function is given by: 
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As discussed earlier, to achieve near perfect control, one 

would ideally like to use the model inverse as the 
controller. Since the saturation nonlinearity forms part of 
the plant, it is impossible to invert the saturation function, 
as doing so will yield ‘infinite’ values when control signal 
exceeds –usat or +usat. To achieve perfect control, a fully 
realizable IMC controller incorporating with the inverse of 
the saturation function has to be made available. 

If no limitation was placed on the demand signal rt or its 
derivatives, vt would be unbounded. A single static 
saturation non-linearity function defined by (6) can be 
characterized by:  
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t
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v
u
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The saturation non-linearity represented by (7) is said to be 
bounded by the conic sector (0,1].  

The standard IMC model of Fig. 1 can be restructured to 
give the proposed IMC structure shown in Fig. 3.  In Fig. 3, 
if assumption on the plant and internal model are exact (or 
equal), then 
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where a0=1, nb=na or na-1. 
 

 
Fig. 3 Proposed IMC Structure 
 

 

Within this new structure, a gain term K>0 is added to 
the internal model to replace the saturation function. This 
also results in the output signal from the internal model 
being scaled by a gain. When the feedback signal (the 
output difference between the plant and internal model) is 
fed back into the forward loop, the set-point entering the 
controller is modified. This approach is similar to the 
conditioning technique in [3], where tuning the gain in the 
internal model has the effect of de-saturating the actuator 
by modifying the set-point. For good set-point tracking and 
disturbance rejection, a first-order filter, FIMC(z-1) is 
introduced into the forward loop. This filter is given by:  
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with 0≤ c <1, the value of c to be chosen. 
The first-order exponential filter, FIMC(z-1) is added to 

make the inverse of the internal model viable and causal. 
This filter thus ensures that the implementation of the 
inverse model is practically feasible. The pole position of 
the first-order filter, c, is selected to provide the desired 
closed-loop bandwidth [12]. In the event that nb=na-1 in 
(8), taking Gc as the inverse of the internal model (i.e. 
Gc=Gm

-1) results in a non-causal inverse model controller. 
This situation is resolved by having the first-order 
exponential filter, FIMC(z-1) in the feedforward controller. 
This makes the implementation of the inverse model 
feasible. The configuration of the proposed IMC structure 
is shown in Fig. 3. 
Remarks: The performance of the compensated system 
under the influence of the saturating non-linearity is closely 
related to the chosen gain in the internal model. A rule of 
thumb for tuning the gain is first to select a large enough 
gain to maximize the full potential of the actuator. The gain 
can then be reduced to improve the speed of the response 
until overshoot starts to occur. Alternatively, the gain can 
be fine-tuned so as to minimize a defined function, e.g. the 
sum of squared errors.  

III. STABILITY ANALYSIS 
In the proposed IMC structure, the closed-loop system 

remains globally stable as long as the plant model is equal 
to the nominal model (Gp = Gm). This global stability 
property will be shown in this section.    

Within the system shown in Fig. 3, an equivalent 
feedback connection represented by two subsystems, one 
with a dynamic linear transfer function, and another with 
the static saturation nonlinearity, can be established. This is 
as shown in Fig. 4. The dynamic linear transfer function 
relating the unsaturated signal vt and the saturated signal ut 
is given by:   
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Fig. 4 Modeling loop as one linear and one static nonlinear subsystem  
 
Also, the following equations can be derived from Fig. 3: 

tpp uGy =            (11) 

  tmm vKGy =           (12) 
 
Now, consider the feedback loop of Fig. 3 ignoring the 
reference signal rt as this does not contribute to the loop 
gain. The calculated unsaturated control signal vt is given 
by:  

))(( 11
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Substituting (11) and (12) into (13), and rearranging gives: 

tmmIMCtpmIMCt KvKGGFuKGGFv 1111 −−−− +−=   (14)  
 
Assuming perfect modeling, with Gp=Gm, then Gm

-1Gp=1, 
so, (13) can be rewritten as:  

tIMCtIMCt vFuKFv +−= −1       (15) 
 
Rearranging (15) to give 
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Then use (10) and (16) gives  
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Consider a single-input-single-output nonlinear system 
(in this case saturation) represented by the feedback 
connection as shown in Fig. 5, where G(z-1) is strictly 
proper (or Hurwitz, i.e. has its eigenvalues strictly in the 
left half-plane), and ψ is a single time-invariant, 
memoryless nonlinearity.   

 

 
Fig.5  Nonlinearity Feedback Connection 

Popov’s criterion gives a sufficient condition for 
asymptotic stability. Given that the saturation nonlinearity 
belongs to the conic sector (0,1], Popov’s criterion requires 
the following inequality to be fulfilled [13]: 
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Equation (18) can be rewritten as: 
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From the definition given above, the following stability 
theorem can be established: 
Theorem: For any choice of K and c chosen for the 
proposed IMC synthesis, global asymptotic stability can be 
achieved in the presence of control signal saturation 
provided that that Re(N( Tje ω− ) >0 whenever Im(N( Tje ω− ) 
= 0  for any frequency .0≥ω  
 
Substitute (9) into (20) gives: 
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Thus (21) can be rewritten as, 
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It can be shown that,  
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Inspection of (24) implies that the proposed IMC 

structure is robustly stable for all frequencies range, thus 
global asymptotic stability is achieved for all positive K 
and 0<c<1.  

IV. EXAMPLES AND SIMULATION RESULTS 
The plant model used in this example is taken from [5], 

itself adapted from [12]. This plant is a fourth-order lead-
lag Butterworth, with a pair of lightly damped poles. The 
original continuous-time plant given in [5] is: 
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with  ζ1=0.3827, ζ2=0.9239, ω1=0.2115 , ω1=0.0473.   
For digital controller implementation, this plant is 
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discretized using a bilinear transformation with a sampling 
time of 1s to give, 
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Next, controller design using the proposed IMC 

framework is demonstrated in the following 3 examples. 
The assumption of exact modeling is made for all these 
examples, or mathematically, the internal model, Gm(z-1) is 
the same as the transfer function for the plant Gp(z-1). 

 

A. Example 1(Varying K) 
The controller design begins with choosing a value of c that 
provides the desire closed-loop bandwidth. Choose c = 0.2 
and this gives the following IMC filter FIMC(z-1): 

        FIMC(z-1) = 
12.01

8.0
−− z

     

With this fixed filter structure, the remaining task is to 
selecting an appropriate gain term, K. With a saturation 
limits set at ±1, the effect of changing gain K is shown in 
the simulation response plots in Fig. 6.  For K= 20, the 
resulting controller no longer causes actuator saturation. It 
is clear that once the gain is optimally tuned, a good 
tracking performance can be achieved. This inherent 
property of a classical IMC scheme is being exhibited using 
the proposed IMC structure.  For larger K values, the 
responses become sluggish, as the control signals are 
reduced. 
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Fig. 6 Step responses with different K values. 
 

B. Example 2(Varying step size) 
In this example, the gain K is fixed at 20 while the 
reference step size take the values of 0.5,1, 2, 5 and 10. The 
simulation results are as shown in Fig. 7, with the reference  
and output being scaled down by their step sizes to aid 

comparison. It can be seen from these plots that the gain set 
at K=20 is only suitable for a step size no greater than 1. 
For step sizes above 1, the fixed gain is no longer able to 
‘desaturate’ the actuator and hence the response 
deteriorates. When this happens, gain K must be increased 
to further reduce the control signal size. Fig. 8 shows the 
step response of the system with step size of 10, with gain 
K = 200. 
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Fig 7. Step responses with varying saturation limit. 
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Fig. 8 Step response for step size of 10 and K=200 
 

C.  Example 3(Disturbance rejection) 
In this example, a disturbance input with magnitude of 5 at 
t=0, switching to –5 at t=4 is introduced.  Using the same 
saturation limits as in example 1, the controller design task 
is to re-design the first-order filter by choosing c and tune 
the gain to give the optimum response. Choosing c=0.4 and 
K=72, the response of the proposed IMC controller 
compared to the conventional IMC is shown in Fig. 9. 
Using the proposed IMC structure, significant improvement 
in the response over conventional IMC is obtained. 
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Fig. 9 Step disturbance rejection response. 
 
In general, increasing K results in a more sluggish 
response, as the forward loop gain is decreased but a 
smaller control signal is required for the actuator. The 
proposed scheme has the advantage for the plant with 
limitation on the actuator’s physical size or the output 
compliance. Under such circumstances, the gain can be 
tuned to tolerate the control limit while giving perfect 
tracking performance.   
 

V. CONCLUSION 
It has been shown through the simulation results the 

validity and superiority of the proposed method utilizing a 
IMC structure for control input constraints non-linearity. In 
attempts to compensate for the saturation non-linearity, a 
gain has been proposed to be included in the internal 
model. In effect, this arrangement generates a feedback 
signal that modifies the set-point that is fed into the 
feedforward controller, and reduces the control signal 
required under conventional IMC. From the simulation 
results, it is apparent that the gain tuning process in the 
proposed IMC structure fulfills the compensation objective 
for the control signal saturation non-linearity. Overshoot 
can be eliminated by increasing gain, K. The increase of 
gain is done at the expense of compromising the speed of 
the response. Larger gain results in more sluggish response 
as shown in example 1, but allows tighter actuator limits to 
be accommodated.  

It is also apparent that under the proposed IMC method 
the entire process of designing a controller for saturation 
non-linearity is reduced to choosing an appropriate IMC 
filter FIMC(z-1) and gain, K. In the event that the step size 
changes, due to the change of the plant configuration or 
output requirement, only a single parameter (gain K) needs 
to be altered. A tuning process to find the optimum gain 

that meets the tracking performance criteria is required. By 
comparison, most of the conventional compensation 
techniques require the re-design of the entire set of 
controllers. 

Also, the stability analysis in section III showed that the 
proposed IMC structure is globally asymptotic stable.  This 
is indeed a special case of the off-axis circle criterion, 
where graphical interpretation (i.e. polar plot) is used to 
examine the global asymptotic stability of the proposed 
controller.   Intrinsic robustness of proposed IMC scheme 
can also be shown, where global stability can be achieved 
for any choice of IMC filter term, c and gain, K. The effect 
of limit cycles or windup problem often encountered in a 
constraint system can be effectively eliminated with the 
proposed IMC structure.  

Although the proposed method does not yield the fastest 
possible response, this approach has proven to be robust to 
step size variation, and is thus a general solution to the 
saturating actuator problem. The modified IMC synthesis 
can be used for the handling of other sector-bounded non-
linearities, for example, a dead zone. 
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