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Nonlinear Sliding Mode Control and Feasible Workspace Analysis
for a Cable Suspended Robot with Input Constraints and
Disturbances

So-Ryeok Oh and Sunil Kumar Agrawal

Abstract— This paper deals with the characterization of the Il. SYSTEM DYNAMIC MODEL
feasible workspace of set-point control for a cable suspended
robot. The motivation behind this work is to find admissible
set points for the system under disturbances as well as input ~ Consider an inertial coordinate franie with origin Oy
constraints. The main ideas are: (i) designing a sliding mode and basis vectora;, n,, ns. The end-effector of the robot
controller as a stabilizing controller for the given uncertain has a coordinate framé& fixed to it with origin O and

system, (ii) finding the range of system states in terms of set . . .
points by analyzing the reaching condition and sliding mode, basis vectorsh;, bz, bs. We choose the orientation dfs

and (iii) substituting states in inequalities of the input with t0 be given by a space-three rotation sequence about

either their upper values or lower values so that constraints nj, # aboutn,, and¢ aboutns. A vector written in terms
are satisfied. This method results in 6 inequalities in terms of of coordinate frameFz can be written in terms of inertial
set point which can be drawn graphically in the 3-dimensional frame using the rotation matriXY R which is given as

A. End-effector Kinematics

space.
I. INTRODUCTION CoC¢p SPpSHCH — S¢Crp  CpSOCH + SpStp
) ) . NRp=|00S¢p SyS0Sp+ CHCyp C¥SISh — ChSy | . (1)
Cable driven robots are a class of robotic mechanisms —50 SyCo CyCo

which utilize multiple actuated cables to manipulate objects.

Although there are many advantages to the use of cable The position ofOp in F, is described by another three
robots, cables have a unique property - a cable can not préariables(z,, ym, zm)" along three coordinate directions.
vide compression force on an end-effector. This constraifthese six variables are denoted By = (zy,, ¥m, 2m,

leads to performance deterioration and even instability, i, 6, ¢)”.

not properly accounted for in the design procedure. If the angular velocity ofF 5 in Fy is wib1 +wsb2 +wsbs,
The idea of redundancy has been used to satisfy ttieom rigid body kinematics,

positive tension in the cables ([2],[3]). Based on the static wi 1 0 s "

modellr_lg and geometry, approaches were suggested to w |l =10 Ccv  Sypce i|=pPo, (2

determine the workspace ([1],[5].[6]). ws 0 —Si CypCo é

In this paper, we propose a technique to estimate the
admissible workspace of set-point control for a cablewhere® = (1/},9, <;5)T. If the angular acceleration ¢f; in
suspended robot under disturbances. The computationgls is a;b; + asbs + asbg, then
procedure to obtain the admissible workspace consists of
designing a stabilizing controller, calculating the range of o
system states in term§ of set-points b_y solving the close_d- ay | = PO+ PO. 3)
loop system’s dynamics, and replacing all the states in
the constraints with their upper and lower values so that
constraints are met. This procedure results in 6 inequlitidé we define the position 00 g in Fir as(zm, Ym, 2m
for set-points, by which the feasible region can be sketchethe configuration of the end-effector plate is given by

The remainder of this paper is organized as followsx & [T, Yms 2m, ¥, 0, "

Section Il presents the kinematic and dynamic equaﬂor@ Kinematics and Statics

of the robot. The feedback controller based on Lyapunov™ )

method is outlined in Section IIl. In Section IV, we show Fig- 1 shows the cable attachment points D, E, F on
how to characterize the feasible workspace of set-points [R€ end-effector and A, B, C in the inertial frame. The

detail. The feasible workspace obtained by the proposé&@ordinates of cable attachment points D, E, F can be
method is sketched in 3 dimensional space. written in terms of x and geometric parameters of the
end-effector. Similarly, the coordinates of attachment points
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where m is the mass and is the moment of inertia of
the end-effector about its center of mass with respect to the
basis vectorg; , bs, bs, and&(t) is a disturbance vector on
the end-effector. Again, we write the equations of motion
in terms ofx coordinates with the following general form:

M(x)% + C(x, %)%+ g(x) = —JT (qQu+d(t) (10)

I
W

where,

Fig. 1. A sketch of the cable system along with geometric parameters.

ml. 0
M(X)—|: 03 PTIP:|’

On definingg A [g1, g2, - - -, gs], the position kinematics  C(x,x)x = [PT {IP(/) i (g@) y I(P(’))}] ;
of the robot is captured in the following nonlinear map 0
a=alx) ®) g = | oo |oan =5 g an
With the velocity of the reference point defined as 05

Zmny + ymns + Z,ng and angular velocity ofFz as _
wiby + wsbs + wsbs, both with respect to the inertial WhereOs is a (3 x 1) zero vector.
reference frame,

- . [1l. FEEDBACK CONTROLLER
q:J(xmaymazmawlaw27w3) ? (6)

. _ _ _ _ A. Siding Mode Controller

where J is (6 x 6) matrix and is theinverse Jacobian

map for the robot. It is also well known that there is a We implement the sliding mode controller for the set-
dual relation between externally applied wrench on the endroint control of the end-effector and show how to obtain

effector and the cable tensions required to keep the systdfie admissible range of the set-points that ensures positive
in equilibrium, This relationship is cable tension during motion. First of all, we define a sliding
surface and a Lyapunov function in the following equations.

(Fuy Fy, Foy My, Mo, My)" = —J ", (7)
Wh_ere_ the external force on the end-effector at the reference Sox1 = X + A(X — Xg) |, (12)
point is F;nq + Fyna + F.ng and the external moment on 1
the end-effector plate is given by/; by + Msbs + Msbg. V= §STS ; (13)
Here, u is the vector of cable tensions. A positive cable
tensionu; is in opposite direction to the cable elongation A1 0]
;- Through simple substitution, it can be shown that theind A = )
gradient of Egn. (5) and are related in the following way: 19) X6
Differentiating Eqg. (13) w.r.t. time leads to
J=1g=j|h U 8) Vo= sTs |
x 0 P B T .
= st [x 4+ Ax] (14)
where I3 is a (3 x 3) identity matrix, andP is the 3 x 3 = ST[Mfl(X)g—.JT(X)UJF d(t)
matrix defined in Eqn. (2). - C(x, %)% — g(x)) + Ax].
C. Dynamic Equations of Motion To makeV negative, we select the control law as
On using Newton-Euler’s laws, the equations of motion u=—(JNC(x, %)% + g(x)
can be written in the following form. + M(x)(—Ax — Ksgn(s)] , (15)
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k1 0 Similarily, in case ofs, > 0, we can derive the limitation

where K = is diagonal matrix and of § as
sgn(le) —Ap—-n<s<-nq (19)
sgn(s) = : . This leads to In order to makeV/ (x) a constant matrix, we focus on the
sgn(sg) case wherjy, 0] = [0, 0]. For such a casél/(x) becomes
. i a diagonal matrixM = diag(m,m,m, 1,12, I3). [, 6]
V.= S [M(X)ﬁ d(t) — Ksgn(s)] , remain at zero during the motion by settipg;, 64] = [0, 0]
< S sl (D (M ( VYl fi — ki) and [¢o, 0p] = [0,0] due to the nature of the stabilizing
i=1 le (16)  controller. In this caseAn andk become
- —;m|51| An:2[ﬁ Lo B i b E]T (20)

- m ’ m ’ m ’ Il ’ IQ ’ 13
where k; = Z (M) )il fj + i = [m,---,m6]",  andk = LAn + n, wherek = [ky, - -, kq] 7.
In summary,s has an upper bound as well as a lower

and |d;(t)] < fl, i =1,---,6. The total energy decreasesIOOunol

sinceV < 0 and the |nvar|ant set that satisfi#s= 0 has

onlys; =0, i=1,---,6, as its canditates. Hence, there n o <s$<n, (21)
does not exist any other points where system will get stuck.

Hence, the equilibrium ak, is globally asymptotically wheren, =1, n,, = An+n. Note that they are state

stable as long as cables are in tension during motion. independent, or_constant vectors. Using Eg. (12), we can
express Eqg. (21) in terms of derivativesofas

B. Bounds on states .. )
n, <x+Ax<n, . (22)

We calculate the bounds on statesndx in terms of set
pointsx for the cable robot with the stabilizing controller, Without using index, we definé” inequality in Eq. (22)
This will be used to check the admissibility of set-point for&S
system constraints in the following section. Starting from an
initial condition, the state trajectory reaches a slide surface
(s = 0) in a finite time, and then slides along the surface Given initial conditions ¢, #o = 0), we can solve the
towardsx, exponentially, with a time-constant equalttg). ~ equationz + A& = n, such thaty,, <n < 7, to result in

nmgi‘i‘)\:&SnM- (23)

Under the assumptions(0) = x,, %(0) = 0, andxg < T 2o+ Lt 4 (1 — e M)
X4, so IS placed in the region of < 0. We will show that o )\ﬂ(l _Aeﬂ\t) . (24)
the states of the system are governedsby n until they i A ne= M

reach the sliding surface = 0. The calculation procedure
to find the range of states then will depend on the casek®!S definez, andt, as the value otr and the corre-
(i) reaching phase witts > 7, (i) and sliding phases — sponding time on arrival at the sliding surface. Heneg,

0. In addition, we need to know the upper boundiofo ~ Should satisfys = 0, or @, + A(zs —z4) = 0, which gives

determine the interval of states precisely. From Eq. (16{” < Td smce:cs > 0 from Eq. (24). Also, as well known
we get the equation fos as follows 7, ts = —%2. From Eq. (24), we observe that keeps

increasing towards:S because of: > 0 and i varies over
—Ats

5 = M-1(x)d(t) — Ksgn(s) , [ne ,n]. Referring ton,, <n < ny, we can know that
6 6 r€ [xo, max(x™, xM )]
Z(Mﬁl(x))ljdj Z [(M~1(x))15lf; (25)
j=1 j=1 . ™
a7) At”
= : —+ : _;,_77 T e [ 77m€ ) 77M ]7

4 6 B where x%, t! is the reaching state and time governed by
];(M () ; (M) e 5 $=mn; , i =m, M, respectively.
Next, we look into the behavior on the sliding surface

Since|di| < f; ;i =1,---,6, we can find the bounds &f = 0. With an initial value z,(reaching state), we can

as solve fors = 0, or &: 4+ A(x —z4) = 0. This gives us simple
6 .
_ solutions as
2 (M (%)
j=1 x Tq+ (x, — xg)e Mt
n<s<2 : +1, (18) | =] —A@s— xg)e ME—te) (26)
6 o Z N (zg — xg)e At
2 (M7 (x))e;1 _ _ _
i=1 @ varies over[A\?(zs — z4), 0]. x5 continues to increase
An towards x4 along the sliding surface without overshoot,
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which means thatc keeps on increasing from, to x4 Plugging system matrices shown above into Egn. (10), we
during the motion. Combining solutions from the reachingcan solve Eqn. (10) w.rit,
phase and the sliding phase leads us to find the overall range

1
of z, & as follows : 1
4= 5= d.(t 1
d = w= e -g- ZU) 11 @)
r € [ro, maz(z™ M) U [z, x4 , 1
N (27)
$=n s=0 1
. —Atm 20, _ where the disturbance vector is given bg(t) =
T € |nme s, 7n U [M(zs —x4), 0], - 9
h- h i [ M] [ ( d) ] d(t) - [anadz(t)aOaOaO]T! |dz(t)| S fZ and Cz =
wnic Ives —4ba+4a z . :
g Ve 4&;4(:% W%~ 0, since z(t) > 0 during the
S [z0 wd] , motion. Therefore, the sign af in Egn. (31) is determined
) ) (28) only by the terms in the parenthesis. Hence, the condition
i e [M(ws—za), nml. to make all the cable tensions positive is given as
ition, & 20— i d.(t
In addition,i € [A?(zo—=4), 1] Sincezy < z5. Hence, g ( )) >0, (32)

we successfully obtained the range of the control state in
terms ofzqg, x4, 1, which will be used to do an analysis on In the case of the downward motiory( < z4) of the
the admissible region of set points in the following sectionend-effector, we know that is varying over [\2(zq —
Zd); Nmax,.) from the result of the previous section. The
determination ofZ in Eqn. (32) should be made in such
Based on a quantitative analysis, we estimate the feasile way that LHS of the egn. (32) is minimized. Using

workspace in the first octant(> 0,y > 0,z > 0) for maz(2) = 7,,,, . andmin(d.(t)) = —f. leads to
a set-point control. In this paper, we deal with only two

IV. FEASIBLE WORKSPACE

translational motionsz andxz —y motion) for want of space. Nmae,. + 9+ (=3F) 20,
This method can be used for determination on the feasible = —(2L4yn)+g9-% >0, (33)
workspace in other octants. => No < g — % )
_ T _oF.
A. Mation in z Direction wheren =1 [1,1,1,1, L 1" and iy, . = 272 + 7lo- 7o

that satisfies the condition in the egn. (33) guarantees that
We search for the admissible region of set-points whethe system is feasible for any set point

the end-effector’s initial and final configurations are set t% Motion i P

Xo = [O 0 20 00 O] andxd = [O 0 2d 00 O], Wherezo, Zd > ’ otion in Xy Flane

0. Due to the fact that the states of the closed loop system In this section, we look into the feasible area of the
converges tox; exponentially, we can assure that during theset-points £4,y4) on the x-y plane. The initial and final

motion the variables:, y, v, 6, ¢ remain at zero. In other configuration is set tazo = [z, o, 2, 0, 0, 0] and
words, onlyz is in a motion without overshoot, ranging over z¢ = [%a, ¥Ya, z, 0, 0, 0]. Here,j:;d > 0, ya > 0,
[20 zq]. In this case, system matrices can be simplified a8(t) = d(t) = [Da(t), Dy(t),0,0,0,0]".
M = diag(m, m, m, I, Is, I3) , C(x,%)x + g(x) =
[0, 0, mg, 0, 0, 0]7, and CoylUzyl
Cry2Uzy2
J(x) = u= | Crstens | (34)
r_atb a—2b a—2b a+tb —2a+b  —2a+b CoydUzyd
Lo Vi Vi e Vi Vo Coystiays
B o2 o2 1 I3 I3 Cay6Uzy6
W W S % |, @9 where
4L 2bz 2bz 3L 53 i Ugyl = V328 — 2+ (V3x —y + a)g
L V3cj1  VBejz  V3Bea -\/30.71 ﬁcle \/-_3.0.73 - . Ugy2 = 2 + (_2y + CL)g + 2z, di(:) ’
where2a, 2b are respectively the dimension of triangular o . dy (t)
Ugys = 229+ 2y 4+ a)g — 22,42,
edges of the upper platform and end-effector. The expres- . . m
_ Upya =  V3zd + 2.0+ (V3 +y—+a)g
sion forcyy, cjo, cy3 are d, (1) dy (1) (35)
—V3z e — a
2 . .
cj1 = \/—(agb) +(a—0)%2+22, Usys = —V32E — 2+ (—\/gdx —y+a)g
cj2 = \/ (0207 4 g2 4 22 (30) +V3e 20 42, 0
J2= 3 . ’ Ugys = V328 + 2.+ (—V3x +y +a)g
s = \/(Qa;b) 22 V32 djit) — dig) ’
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and

18“ \/(\/_:E—a—b) +3(y+a—0b)2+ 322,

Coy1l =

Cay2 = 18“ \/(\/_m—a+2b) +3(y+a)? +322,
Cay3 = 18“ \/(\/_r—a+2b)2+3(y—a)2+3z§,
Caya = f%\/(\/_m—a—b)2+3(y+a+b)2+3zg,
Coys = 18“ ™ \/(VB2 + 20— b)% + 3(y +b)% + 322,
Cays = 22/(V3z + 20— )2 +3(y — b)2 + 322

Now, we can substituté, i, =, andy in Eqn. (35) with

For uzys > 0, we get

—V32:(2E2 4 mp) + 2 [N2(yo — yd)]
+(—V3Bxa+yo + a)g — V3z.E= _ZCm 20,

. 41
=> ydé—ﬂzx +ZZA;2Lgy —V;f? 4D
_(3\/_FI+F ) i
mA2 zc)\2 .

The feasible region can be sketched by the six linear
inequalities given by Eqns. (36)-(41) for the first quadrant
(x >0,y > 0).

either their minimum or maximum values in such a way

that w,,:, i = 1,---,
procedure is
V3zemin(i) — zemaz (i) + (V3xo
—ya+a)g — V3zLEe 4 2, CE)
For u,,1 > 0, we get

\/_ZC[ (xO - xd)] - ZC(Z% + 77(?)"‘
(V3o — ya + a)g — V3z.Ix — 2. 1x

>
m — )
2 2
ya < _ﬁZCAO . V3(zcA2+g) o

g
jfg(\/gFm +3F,) .

man(Ugy1) =

(36)

min(ugye) =  —2zemaz(ij) — 2gya + ag + 2z S22

For u,y2 > 0, we get
—2zc(2— + 1) — 29yq + ag — 2zc >0,
ya < 3ch zcgno +

= "myg

(37)

min(Ugys) = 2zemin(§) + (2yo +a)g — 2zcﬁy .

For ugys > 0, we get
223 (40 — )] +

Zc O+g
yd =z )\2

(2yo + a)g - 2zc% >0,
F, (38)
Yo + 22 )\2 -

5 .
mA2

\/_zcmzn( 2 + zemin(ij) + (yo + V3o
) - \/_ch - P

2e Tt

man(Ugya) =

For uzy4 > 0, we get
VB2e[N5(z0 — a)] + 2e[A3(y0 — ya)]

+(yo +\/_$0+a)g— \/gchn —Zcif >0,
i < —3zq + \/§(ch§+9) o0+ (ZCA +g) (39)
+ ag (\/QZ;F JrF)
zc)\2 mA2

mzn(umy5) e —\/gzcmax(i) - Zcmax(y) + (_\/gxd
—ya+a)g+ NEYR (:5’”) + 2z (:fy) .
For ugys > 0, we get
:\/gzc(2% + 770) - ZC(Z% + 770)
+(—V3zq —ya + a)g \/_ZCR—ZC%ZO " (40)
Yo < —v/3xq — (f+1>zcno
— 3% (V3F, + F, )+
mzn(umyg) e —\/_Zcmax( ) + Zcmln( ) ( \/_:Cd
+y0+a)g+\/_zc m Fa) _Zcm .

6 can be minimized as follows The

V. SIMULATIONS

In this section, we sketch the feasible workspace obtained
by the method described in the previous sections. The
parameter values are listed in Table 1. In Tabled and

TABLE |
SIMULATION PARAMETERS
Parameter Value Parameter  Value
m 11.68 x0 0
I .58 Yo 0
I .58 20 1
I3 1.16 Ze 1
a 47.28e72 Mo 0.1
b 14.85e~2 Ao 0.1

2b are the edge lengths of the upper platform and the end-
effector respectively]; is theit" diagonal entry of the end-
effector’s inertia matrix in the local frame.

A. Results

The feasible region was sketched using MAPiIdequal
and plot3d function.

Fig. 2. Feasible workspaces of— y motion ( LHS : F, = F, = 0,
RHS: F, = Fy = 3[N])

1) The feasible regions obtained were different accord-
ing to disturbaces on the end-effector. The disturbance
reduced the feasible region of the set-points as de-
picted in Fig. 2-4.

2) In the case free of disturbances, the upper bound
of the admissible region off motion in Fig. 3 was
similar to that of z — y motion in Fig. 2 and the
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Fig. 3. Feasible workspaces gfmotion ( LHS : F}y = 0, RHS: F, = -
3[N]) i

.. . . . i . Fig. 5. Feasible workspaces of— y — z motion : F;y = Fyy = F, =0
admissible maximum set-point af motion in Fig. 4

was slightly less than that af — y motion in Fig. 2.

3) In Fig. 5, the feasible volume was bounded by twaset-point control. The computational procedures to obtain
inequalities,u,y .3 and uqy-4. In addition, the shape the admissible workspace consist of calculating the range
of a feasible area on they plane withz = 1 in  of system states during motion in terms of set-points by
Fig. 5 was similar to LHS plot of Fig. 2. In Fig. 5, solving the reaching conditions(> 7) and sliding mode
the feasible area iny plane decreased according to(s — () and replacing all the states in the control law
the increasing:. with their upper and lower values in such a way that the

positive input constraints are met. Inequalities obtained by
the proposed method were sketched graphically to see the
effect of the disturbances on the set-point’s feasible region.
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