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Abstract—This paper deals with the characterization of the
feasible workspace of set-point control for a cable suspended
robot. The motivation behind this work is to find admissible
set points for the system under disturbances as well as input
constraints. The main ideas are: (i) designing a sliding mode
controller as a stabilizing controller for the given uncertain
system, (ii) finding the range of system states in terms of set
points by analyzing the reaching condition and sliding mode,
and (iii) substituting states in inequalities of the input with
either their upper values or lower values so that constraints
are satisfied. This method results in 6 inequalities in terms of
set point which can be drawn graphically in the 3-dimensional
space.

I. INTRODUCTION

Cable driven robots are a class of robotic mechanisms
which utilize multiple actuated cables to manipulate objects.
Although there are many advantages to the use of cable
robots, cables have a unique property - a cable can not pro-
vide compression force on an end-effector. This constraint
leads to performance deterioration and even instability, if
not properly accounted for in the design procedure.

The idea of redundancy has been used to satisfy the
positive tension in the cables ([2],[3]). Based on the static
modeling and geometry, approaches were suggested to
determine the workspace ([1],[5],[6]).

In this paper, we propose a technique to estimate the
admissible workspace of set-point control for a cable-
suspended robot under disturbances. The computational
procedure to obtain the admissible workspace consists of
designing a stabilizing controller, calculating the range of
system states in terms of set-points by solving the closed-
loop system’s dynamics, and replacing all the states in
the constraints with their upper and lower values so that
constraints are met. This procedure results in 6 inequlities
for set-points, by which the feasible region can be sketched.

The remainder of this paper is organized as follows:
Section II presents the kinematic and dynamic equations
of the robot. The feedback controller based on Lyapunov
method is outlined in Section III. In Section IV, we show
how to characterize the feasible workspace of set-points in
detail. The feasible workspace obtained by the proposed
method is sketched in 3 dimensional space.
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II. SYSTEM DYNAMIC MODEL

A. End-effector Kinematics

Consider an inertial coordinate frameFN with originON

and basis vectorsn1,n2,n3. The end-effector of the robot
has a coordinate frameFB fixed to it with origin O and
basis vectorsb1,b2,b3. We choose the orientation ofFB
to be given by a space-three rotation sequence ofψ about
n1, θ aboutn2, andφ aboutn3. A vector written in terms
of coordinate frameFB can be written in terms of inertial
frame using the rotation matrix,NRB which is given as

NRB =

[
CθCφ SψSθCφ − SφCψ CψSθCφ + SφSψ
CθSφ SψSθSφ + CφCψ CψSθSφ − CφSψ
−Sθ SψCθ CψCθ

]
. (1)

The position ofOB in FN is described by another three
variables(xm, ym, zm)T along three coordinate directions.
These six variables are denoted byx = (xm, ym, zm,
ψ, θ, φ)T .
If the angular velocity ofFB in FN is ω1b1+ω2b2+ω3b3,
from rigid body kinematics,



ω1

ω2

ω3


 =




1 0 −Sθ
0 Cψ SψCθ
0 −Sψ CψCθ






ψ̇
θ̇
φ̇


 = P Ȯ, (2)

whereȮ = (ψ̇, θ̇, φ̇)T . If the angular acceleration ofFB in
FN is α1b1 + α2b2 + α3b3, then



α1

α2

α3


 = Ṗ Ȯ + P Ö. (3)

If we define the position ofOB in FN as (xm, ym, zm)T ,
the configuration of the end-effector plate is given by
x4 [xm, ym, zm, ψ, θ, φ]T .

B. Kinematics and Statics

Fig. 1 shows the cable attachment points D, E, F on
the end-effector and A, B, C in the inertial frame. The
coordinates of cable attachment points D, E, F can be
written in terms of x and geometric parameters of the
end-effector. Similarly, the coordinates of attachment points
A, B, C of the cables are also known inFN . Using the
coordinates of the two end-points of a cable, the lengthqi

of cablei is given by

qi = qi(x), i = 1, · · · , 6. (4)



Fig. 1. A sketch of the cable system along with geometric parameters.

On definingq4 [q1, q2, · · · , q6]T , the position kinematics
of the robot is captured in the following nonlinear map

q = q(x). (5)

With the velocity of the reference point defined as
ẋmn1 + ẏmn2 + żmn3 and angular velocity ofFB as
ω1b1 + ω2b2 + ω3b3, both with respect to the inertial
reference frame,

q̇ = J̃(ẋm, ẏm, żm, ω1, ω2, ω3)T , (6)

where J̃ is (6 × 6) matrix and is theinverse Jacobian
map for the robot. It is also well known that there is a
dual relation between externally applied wrench on the end-
effector and the cable tensions required to keep the system
in equilibrium, This relationship is

(Fx, Fy, Fz,M1,M2,M3)T = −J̃T u, (7)

where the external force on the end-effector at the reference
point isFxn1 +Fyn2 +Fzn3 and the external moment on
the end-effector plate is given byM1b1 +M2b2 +M3b3.
Here, u is the vector of cable tensions. A positive cable
tensionui is in opposite direction to the cable elongation
qi. Through simple substitution, it can be shown that the
gradient of Eqn. (5) and̃J are related in the following way:

J = [ ∂q
∂x ] = J̃

[
I3 0
0 P

]
, (8)

whereI3 is a (3 × 3) identity matrix, andP is the 3 × 3
matrix defined in Eqn. (2).

C. Dynamic Equations of Motion

On using Newton-Euler’s laws, the equations of motion
can be written in the following form.




mẍm

mÿm

m(z̈m − g)

I



α1

α2

α3


 +



ω1

ω2

ω3


 × I



ω1

ω2

ω3






− d̃(t) = −J̃T (q)u,

(9)
wherem is the mass andI is the moment of inertia of
the end-effector about its center of mass with respect to the
basis vectorsb1,b2,b3, andd̃(t) is a disturbance vector on
the end-effector. Again, we write the equations of motion
in terms ofx coordinates with the following general form:

M (x)ẍ +C(x, ẋ)ẋ + g(x) = −JT (q)u + d(t) (10)

where,

M (x) =
[
mI3 0
0 P T IP

]
,

C(x, ẋ)ẋ =
[

0
P T

{
IṖ Ȯ + (P Ȯ) × I(P Ȯ)

}
]
,

g(x) =




0
0

−mg
03


 , d(t) =

[
I3 0
0 P T

]
d̃(t) (11)

where03 is a (3 × 1) zero vector.

III. F EEDBACK CONTROLLER

A. Sliding Mode Controller

We implement the sliding mode controller for the set-
point control of the end-effector and show how to obtain
the admissible range of the set-points that ensures positive
cable tension during motion. First of all, we define a sliding
surface and a Lyapunov function in the following equations.

s6×1 = ẋ + Λ(x − xd) , (12)

V =
1
2
sT s , (13)

andΛ =



λ1 O

. . .
O λ6


.

Differentiating Eq. (13) w.r.t. time leads to

V̇ = sT ṡ ,
= sT [ẍ + Λẋ] ,
= sT [M−1(x)(−JT (x)u + d(t)

− C(x, ẋ)ẋ− g(x)) + Λẋ].

(14)

To makeV̇ negative, we select the control law as

u = −(JT )−1[C(x, ẋ)ẋ + g(x)
+M (x)(−Λẋ −Ksgn(s)] , (15)



where K =



k1 O

. . .
O k6


 is diagonal matrix and

sgn(s) =



sgn(s1)

...
sgn(s6)


. This leads to

V̇ = sT [M (x)−1(x)d(t) −Ksgn(s)] ,

≤
6∑

i=1

|si|(
6∑

j=1

|(M (x)−1)ij |fj − ki) ,

= −
6∑

i=1
ηi|si| .

(16)

where ki =
6∑

j=1
|(M (x)−1)ij|fj + ηi, η = [η1, · · · , η6]T ,

and |di(t)| ≤ fi, i = 1, · · · , 6. The total energy decreases
since V̇ ≤ 0 and the invariant set that satisfiesV̇ = 0 has
only si = 0 , i = 1, · · · , 6, as its canditates. Hence, there
does not exist any other points where system will get stuck.
Hence, the equilibrium atxd is globally asymptotically
stable as long as cables are in tension during motion.

B. Bounds on states

We calculate the bounds on statesx andẍ in terms of set
pointsxd for the cable robot with the stabilizing controller.
This will be used to check the admissibility of set-point for
system constraints in the following section. Starting from an
initial condition, the state trajectory reaches a slide surface
(s = 0) in a finite time, and then slides along the surface
towardsxd exponentially, with a time-constant equal to1/λ.

Under the assumptionsx(0) = x0, ẋ(0) = 0, andx0 ≤
xd, s0 is placed in the region ofs < 0. We will show that
the states of the system are governed byṡ ≥ η until they
reach the sliding surfaces = 0. The calculation procedure
to find the range of states then will depend on the cases:
(i) reaching phase witḣs ≥ η, (ii) and sliding phases =
0. In addition, we need to know the upper bound ofṡ to
determine the interval of states precisely. From Eq. (16),
we get the equation foṙs as follows

ṡ = M−1(x)d(t)− Ksgn(s) ,

=




6∑
j=1

(M−1(x))1jdj

...
6∑

j=1

(M−1(x))6jdj




+




6∑
j=1

|(M−1(x))1j |fj

...
6∑

j=1

|(M−1(x))6j |fj




+ η.
(17)

Since|di| ≤ fi , i = 1, · · · , 6, we can find the bounds ofṡ
as

η ≤ ṡ ≤ 2




6∑
j=1

|(M−1(x))1j |fj

...
6∑

j=1
|(M−1(x))6j |fj




︸ ︷︷ ︸
∆η

+η, (18)

Similarily, in case ofs0 > 0, we can derive the limitation
of ṡ as

−∆η − η ≤ ṡ ≤ −η (19)

In order to makeM (x) a constant matrix, we focus on the
case when[ψ, θ] = [0, 0]. For such a case,M (x) becomes
a diagonal matrixM = diag(m,m,m, I1, I2, I3). [ψ, θ]
remain at zero during the motion by setting[ψd, θd] = [0, 0]
and [ψ0, θ0] = [0, 0] due to the nature of the stabilizing
controller. In this case,∆η andk become

∆η = 2 [
f1
m

,
f2
m

,
f3
m

,
f4
I1

,
f5
I2

,
f6
I3

]T (20)

andk = 1
2∆η+ η, wherek = [k1, · · · , k6]T .

In summary, ṡ has an upper bound as well as a lower
bound

η
m

≤ ṡ ≤ η
M
, (21)

whereη
m

= η, η
M

= ∆η + η. Note that they are state
independent, or constant vectors. Using Eq. (12), we can
express Eq. (21) in terms of derivatives ofx as

η
m

≤ ẍ + Λẋ ≤ η
M
. (22)

Without using index, we defineith inequality in Eq. (22)
as

ηm ≤ ẍ+ λẋ ≤ ηM . (23)

Given initial conditions (x0, ẋ0 = 0), we can solve the
equationẍ+ λẋ = η, such thatηm ≤ η ≤ ηM , to result in



x
ẋ
ẍ


 =



x0 + η

λt + η
λ2 (1 − e−λt)

η
λ (1 − e−λt)
ηe−λt


 . (24)

Let’s definexs and ts as the value ofx and the corre-
sponding time on arrival at the sliding surface. Hence,xs

should satisfys = 0, or ẋs + λ(xs − xd) = 0, which gives
xs < xd sinceẋs > 0 from Eq. (24). Also, as well known
[7], ts = − s0

η
. From Eq. (24), we observe thatx keeps

increasing towardsxs because oḟx > 0 and ẍ varies over
[ηe−λts , η]. Referring toηm ≤ η ≤ ηM , we can know that

x ∈ [ x0 , max(xm
s , x

M
s ) ]

ẍ ∈ [ ηme
−λtm

s , ηM ],
(25)

wherexi
s, tis is the reaching state and time governed by

ṡ = ηi , i = m,M , respectively.
Next, we look into the behavior on the sliding surface

s = 0. With an initial valuexs(reaching state), we can
solve fors = 0, or ẋ+λ(x−xd) = 0. This gives us simple
solutions as


x
ẋ
ẍ


 =



xd + (xs − xd)e−λ(t−ts)

−λ(xs − xd)e−λ(t−ts)

λ2(xs − xd)e−λ(t−ts)


 (26)

ẍ varies over[λ2(xs − xd), 0]. xs continues to increase
towards xd along the sliding surface without overshoot,



which means thatx keeps on increasing fromx0 to xd

during the motion. Combining solutions from the reaching
phase and the sliding phase leads us to find the overall range
of x, ẍ as follows :

x ∈

ṡ=η︷ ︸︸ ︷
[x0, max(xm

s , x
M
s )] ∪

s=0︷ ︸︸ ︷
[ xs , xd] ,

ẍ ∈

ṡ=η︷ ︸︸ ︷
[ηme

−λtm
s , ηM ] ∪

s=0︷ ︸︸ ︷
[λ2(xs − xd), 0],

(27)

which gives

x ∈ [ x0 xd] ,

ẍ ∈ [λ2(xs − xd), ηM ] .
(28)

In addition,ẍ ∈ [λ2(x0−xd), ηM ] sincex0 < xs. Hence,
we successfully obtained the range of the control state in
terms ofx0, xd, η, which will be used to do an analysis on
the admissible region of set points in the following section.

IV. FEASIBLE WORKSPACE

Based on a quantitative analysis, we estimate the feasible
workspace in the first octant (x > 0,y > 0, z > 0) for
a set-point control. In this paper, we deal with only two
translational motions (z andx−y motion) for want of space.
This method can be used for determination on the feasible
workspace in other octants.

A. Motion in z Direction

We search for the admissible region of set-points when
the end-effector’s initial and final configurations are set to
x0 = [0 0 z0 0 0 0] andxd = [0 0 zd 0 0 0], wherez0, zd ≥
0. Due to the fact that the states of the closed loop system
converges toxd exponentially, we can assure that during the
motion the variablesx, y, ψ, θ, φ remain at zero. In other
words, onlyz is in a motion without overshoot, ranging over
[z0 zd]. In this case, system matrices can be simplified as
M = diag(m, m, m, I1, I2, I3) , C(x, ẋ)ẋ + g(x) =
[0, 0, mg, 0, 0, 0]T , and

J(x) =


a+b√
3cJ1

a−2b√
3cJ2

a−2b√
3cJ2

a+b√
3cJ1

−2a+b√
3cJ3

−2a+b√
3cJ3−a+b

cJ1

−a
cJ2

a
cJ2

a−b
cJ1

−b
cJ3

b
cJ3−z

cJ1

−z
cJ2

−z
cJ2

−z
cJ1

−z
cJ3

−z
cJ3

bz
cJ1

0 0 −bz
cJ1

−bz
cJ3

bz
cJ3−bz√

3cJ1

2bz√
3cJ2

2bz√
3cJ2

−bz√
3cJ1

−bz√
3cJ3

−bz√
3cJ3

2ab√
3cJ1

−2ab√
3cJ2

2ab√
3cJ2

−2ab√
3cJ1

2ab√
3cJ3

−2ab√
3cJ3



, (29)

where2a, 2b are respectively the dimension of triangular
edges of the upper platform and end-effector. The expres-
sion for cJ1, cJ2, cJ3 are

cJ1 =
√

(a+b)2

3
+ (a − b)2 + z2 ,

cJ2 =
√

(a−2b)2

3 + a2 + z2 ,

cJ3 =
√

(2a−b)2

3 + b2 + z2 .

(30)

Plugging system matrices shown above into Eqn. (10), we
can solve Eqn. (10) w.r.tu,

u = −cz(z̈(t) − g − dz(t)
m

)




1
1
1
1
1
1



, (31)

where the disturbance vector is given byd(t) =
d̃(t) = [0, 0, dz(t), 0, 0, 0]T, |dz(t)| ≤ fz and cz =√

4b2−4ba+4a2+3z(t)2

6
√

3z(t)
> 0, since z(t) > 0 during the

motion. Therefore, the sign ofu in Eqn. (31) is determined
only by the terms in the parenthesis. Hence, the condition
to make all the cable tensions positive is given as

−(z̈ − g −
dz(t)
m

) ≥ 0 . (32)

In the case of the downward motion (z0 < zd) of the
end-effector, we know thaẗz is varying over [λ2

o(z0 −
zd), ηmax,z] from the result of the previous section. The
determination ofz̈ in Eqn. (32) should be made in such
a way that LHS of the eqn. (32) is minimized. Using
max(z̈) = ηmax,z andmin(dz(t)) = −fz leads to

−ηmax,z + g + (−Fz

m
) ≥ 0 ,

=> −(2Fz

m + ηo) + g − Fz

m ≥ 0 ,
=> ηo ≤ g − 3Fz

m
,

(33)

whereη = ηo [1, 1, 1, 1, 1,1]T andηmax,z = 2Fz

m
+ ηo. ηo

that satisfies the condition in the eqn. (33) guarantees that
the system is feasible for any set pointzd.

B. Motion in x-y Plane

In this section, we look into the feasible area of the
set-points (xd,yd) on the x-y plane. The initial and final
configuration is set toz0 = [x0, y0, zc, 0, 0, 0] and
zd = [xd, yd, zc, 0, 0, 0]. Here, xd > 0, yd > 0,
d(t) = d̃(t) = [Dx(t), Dy(t), 0, 0, 0, 0]T.

u =




cxy1uxy1

cxy2uxy2

cxy3uxy3

cxy4uxy4

cxy5uxy5

cxy6uxy6



, (34)

where
uxy1 =

√
3zcẍ− zc ÿ + (

√
3x− y + a)g

−
√

3zc
dx(t)

m + zc
dy (t)

m ,

uxy2 = −2zc ÿ + (−2y + a)g + 2zc
dy(t)

m ,

uxy3 = 2zcÿ + (2y + a)g − 2zc
dy(t)

m ,

uxy4 =
√

3zcẍ+ zc ÿ + (
√

3x+ y + a)g
−
√

3zc
dx(t)

m − zc
dy (t)

m ,

uxy5 = −
√

3zcẍ− zc ÿ + (−
√

3x− y + a)g
+
√

3zc
dx(t)

m
+ zc

dy (t)
m

,

uxy6 = −
√

3zcẍ+ zc ÿ + (−
√

3x+ y + a)g
+
√

3zc
dx(t)

m − zc
dy (t)

m ,

(35)



and

cxy1 =
√

3m
18azc

√
(
√

3x− a− b)2 + 3(y + a− b)2 + 3z2c ,

cxy2 =
√

3m
18azc

√
(
√

3x− a+ 2b)2 + 3(y + a)2 + 3z2c ,

cxy3 =
√

3m
18azc

√
(
√

3x− a+ 2b)2 + 3(y − a)2 + 3z2c ,

cxy4 =
√

3m
18azc

√
(
√

3x− a− b)2 + 3(y + a+ b)2 + 3z2c ,

cxy5 =
√

3m
18azc

√
(
√

3x+ 2a− b)2 + 3(y + b)2 + 3z2c ,

cxy6 =
√

3m
18azc

√
(
√

3x+ 2a− b)2 + 3(y − b)2 + 3z2c .

Now, we can substitutëx, ÿ, x, andy in Eqn. (35) with
either their minimum or maximum values in such a way
that uxyi, i = 1, · · · , 6 can be minimized as follows The
procedure is

min(uxy1) =
√

3zcmin(ẍ) − zcmax(ÿ) + (
√

3x0

−yd + a)g −
√

3zc
Fx

m + zc
(−Fy)

m .

For uxy1 ≥ 0, we get
√

3zc[λ2
o(x0 − xd)] − zc(2

Fy

m
+ ηo)+

(
√

3x0 − yd + a)g −
√

3zc
Fx

m − zc
Fy

m ≥ 0 ,
yd ≤ −

√
3zcλ2

o

g
xd +

√
3(zcλ2

o+g)
g

x0

− zcηo

g + a− zc

mg (
√

3Fx + 3Fy) .

(36)

min(uxy2) = −2zcmax(ÿ) − 2gyd + ag + 2zc
(−Fy)

m
.

For uxy2 ≥ 0, we get

−2zc(2
Fy

m + ηo) − 2gyd + ag − 2zc
Fy

m ≥ 0 ,
yd ≤ −3zc

mg Fy − zcηo

g + a
2 .

(37)

min(uxy3) = 2zcmin(ÿ) + (2y0 + a)g − 2zc
Fy

m
.

For uxy3 ≥ 0, we get

2zc[λ2
o(y0 − yd)] + (2y0 + a)g − 2zc

Fy

m ≥ 0 ,
yd ≤ zcλ2

o+g
zcλ2

o
y0 + ga

2zcλ2
o
− Fy

mλ2
o
.

(38)

min(uxy4) =
√

3zcmin(ẍ) + zcmin(ÿ) + (y0 +
√

3x0

+a)g −
√

3zc
Fx

m − zc
Fy

m .

For uxy4 ≥ 0, we get
√

3zc[λ2
o(x0 − xd)] + zc[λ2

o(y0 − yd)]
+(y0 +

√
3x0 + a)g −

√
3zc

Fx

m − zc
Fy

m ≥ 0 ,
yd ≤ −

√
3xd +

√
3(zcλ2

o+g)
zcλ2

o
x0 + (zcλ2

o+g)
zcλ2

o
y0

+ ag
zcλ2

o
− (

√
3Fx+Fy )
mλ2

o
.

(39)

min(uxy5) = −
√

3zcmax(ẍ) − zcmax(ÿ) + (−
√

3xd

−yd + a)g +
√

3zc
(−Fx)

m + zc
(−Fy)

m .

For uxy5 ≥ 0, we get

−
√

3zc(2Fx

m
+ ηo) − zc(2Fx

m
+ ηo)

+(−
√

3xd − yd + a)g −
√

3zc
Fx

m − zc
Fy

m ≥ 0 ,
yd ≤ −

√
3xd − (

√
3+1)
g zcηo

−3zc

mg (
√

3Fx + Fy) + a .

(40)

min(uxy6) = −
√

3zcmax(ẍ) + zcmin(ÿ) + (−
√

3xd

+y0 + a)g +
√

3zc
(−Fx)

m − zc
Fy

m .

For uxy6 ≥ 0, we get

−
√

3zc(2Fx

m + ηo) + zc[λ2
o(y0 − yd)]

+(−
√

3xd + y0 + a)g −
√

3zc
Fx

m − zc
Fy

m ≥ 0 ,
=> yd ≤ −

√
3g

zcλ2
o
xd + zcλ2

o+g
zcλ2

o
y0 −

√
3ηo

λ2
o

− (3
√

3Fx+Fy )
mλ2

o
+ ag

zcλ2
o
.

(41)

The feasible region can be sketched by the six linear
inequalities given by Eqns. (36)-(41) for the first quadrant
(x > 0, y > 0).

V. SIMULATIONS

In this section, we sketch the feasible workspace obtained
by the method described in the previous sections. The
parameter values are listed in Table 1. In Table 1,2a and

TABLE I

SIMULATION PARAMETERS

Parameter Value Parameter Value
m 11.68 x0 0
I1 .58 y0 0
I2 .58 z0 1
I3 1.16 zc 1
a 47.28e−2 ηo 0.1
b 14.85e−2 λo 0.1

2b are the edge lengths of the upper platform and the end-
effector respectively,Ii is theith diagonal entry of the end-
effector’s inertia matrix in the local frame.

A. Results

The feasible region was sketched using MAPLEinequal
andplot3d function.

Fig. 2. Feasible workspaces ofx − y motion ( LHS :Fx = Fy = 0,
RHS:Fx = Fy = 3[N ] )

1) The feasible regions obtained were different accord-
ing to disturbaces on the end-effector. The disturbance
reduced the feasible region of the set-points as de-
picted in Fig. 2-4.

2) In the case free of disturbances, the upper bound
of the admissible region ofy motion in Fig. 3 was
similar to that of x − y motion in Fig. 2 and the



Fig. 3. Feasible workspaces ofy motion ( LHS :Fy = 0, RHS:Fy =
3[N ] )

admissible maximum set-point ofx motion in Fig. 4
was slightly less than that ofx− y motion in Fig. 2.

3) In Fig. 5, the feasible volume was bounded by two
inequalities,uxyz3 anduxyz4. In addition, the shape
of a feasible area on thexy plane with z = 1 in
Fig. 5 was similar to LHS plot of Fig. 2. In Fig. 5,
the feasible area inxy plane decreased according to
the increasingz.

Fig. 4. Feasible workspaces ofx motion ( Upper :Fx = 0, Lower:
Fx = 3[N ] )

4) At (x, y, z) = (0, 0,−) of Fig. 5, the value ofz
had a singularity. This fact comes from the results
of Section 4.1: inz motion, the system is always
safe for any selection of set-pointzd as long as the
condition in the Section 4.1 is met. For the other
octants(2nd − 8th), we can apply the same method
to determine the feasible workspace.

VI. CONCLUSION

This paper deals with the characterization of the feasible
workspace for set point control of a cable-suspended robot
under input constraints and disturbances. To do this, we
implemented a sliding mode controller as a stabilizing
controller for a given uncertain system and then we pro-
posed a method to estimate the admissible workspace for

Fig. 5. Feasible workspaces ofx− y− z motion :Fx = Fy = Fz = 0

set-point control. The computational procedures to obtain
the admissible workspace consist of calculating the range
of system states during motion in terms of set-points by
solving the reaching condition (ṡ > η) and sliding mode
(s = 0) and replacing all the states in the control law
with their upper and lower values in such a way that the
positive input constraints are met. Inequalities obtained by
the proposed method were sketched graphically to see the
effect of the disturbances on the set-point’s feasible region.

VII. ACKNOWLEDGMENTS

The authors appreciate financial supports of NIST
MEL Award No. 60NANB-2D0137, NSF Award No. IIS-
0117733, PTI/NIST Award No. AGR20020506, and NIST
Award No. SB 1341-03-W-0338.

REFERENCES

[1] Robert, L., Williams II and Paolo Gallina, “Planar Cable-Direct-
Driven Robots, Part I: Kinematics and Statics”,Proceedings of the
2001 ASME Design Technical Conferences 27TH Design Automation
Conference, DETC2001/DAC-21145, 2001.

[2] W. Shiang, D. Cannon, J. Gorman, “Dynamic Analysis of the
Cable Array Robotic Crane”,Proceedings of the IEEE International
Conference on Robotics and Automation, Detroit, Michigan, 2495-
2500, 1999.

[3] S. Oh, S. K. Agrawal, “Cable-Suspended Planar Parallel Robots
with Redundant Cables: Controllers with Positive Cable Tensions”,
Proceedings of the IEEE International Conference on Robotics and
Automation, Taipei, Taiwan, 3023-3028, 2003.

[4] Isidori, A. “Nonlinear Control Systems: an Introduction”,Berlin:
Springer Verlag, 1995.

[5] Y. Zheng, “Workspace Analysis of a Six DOF Wire-Driven Parallel
Manipulator”, Proceedings of the WORKSHOP on Fundamental
Issues and Future Research Derection for Parallel Mechanisms and
Manipulators, Quebec, Canada, 287-293, 2002.

[6] P. Lafourcade, M. Llibre, and C. Reboulet, “Design of a Parallel
Wire-Driven Manipulator for Wind Tunnels”,Proceedings of the
WORKSHOP on Fundamental Issues and Future Research Derection
for Parallel Mechanisms and Manipulators , Quebec, Canada, 187-
293, 2002.

[7] Slotine, J.-J. E., and Weiping, L., “Applied Nonlinear Control”,
Prentice Hall, 1991.


	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrM03.1
	Page0: 4631
	Page1: 4632
	Page2: 4633
	Page3: 4634
	Page4: 4635
	Page5: 4636


