Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004

FrAl7.2

Control using Nondeterministic Supervisors for
Partially Observed Discrete Event Systems

Ratnesh Kumar?, Shengbing Jiang®, Changyan Zhou?, and Wenbin Qiu®
2Department of ECE, lowa State University, Ames, |A 50011
®GM R&D and Planning, MC: 480-106-200, Warren, M| 48090-9055

Abstract—  We study the supervisory control of discrete
event systems under partial observation using nondeterministic
supervisors. We formally defne a nondeterministic control
policy and also a control & observation compatible nonde-
terministic state machine and prove their equivalence. We
show that when control is exercised using a nondeterministic
supervisor, the specifcation language is required to satisfy
a weaker notion of observability, which we defne in terms
recognizability and achievability. Achievability serves as nec-
essary and suffcient condition for the existence of a nonde-
terministic supervisor, and it is weaker than controllability
and observability combined. When all events are controllable,
achievability reduces to recognizability. We show that both
existence, and synthesis of nondeterministic supervisors can be
determined polynomially. (For deterministic supervisors, only
existence can be determined polynomially.) Both achievability
and recognizability are preserved under union, also and under
intersection (when restricted over prefx-closed languages).
Using the intersection closure property we derive a necessary
and suffcient condition for the range control problem for the
pre£x-closed case. Unlike the deterministic supervisory setting
where the complexity of existence is exponential, our existence
condition is polynomially verifable, and also a supervisor can
be polynomially synthesized.

Keywords: Discrete event system, Nondeterministic supervi-
sory control, Partial observation, Controllability, Recognizabil-
ity, Achievability

I. INTRODUCTION

Discrete event systems (DESs) are event-driven sys-
tems possessing discrete states that change when events
occur. Supervisory control theory for DESs was proposed
by Ramadge-Wonham [10]. Under a complete observation
of events, the controllability of the desired behavior serves
as a key property for the existence of a supervisor that can
enforce the desired specifcation.

The extension of supervisory control theory to deal with
partial observability of events was presented in [9], [2].
It was shown that the additional property of observability
plays an equal role in the existence of a supervisor enforcing
the specifcation. The property of observability can be tested
polynomially in the size of the states of the plant and the
speci£cation [13]. However, even when the observability
holds, an off-line computation of the supervisor for control
under partial observation has an exponential complexity
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[13]. For preEx-closed specifcations, a procedure for the
off-line computation of a maximally permissive supervisor
is reported in [1], and an algorithm for the on-line compu-
tation of a maximally permissive supervisor, possessing a
polynomial step-wise complexity, is reported in [3]. One
issue with the computation of a maximally permissive
supervisor for control under partial observation is that
the property of observability is preserved only over an
increasing chain, but not in general [9]. So while a unique
supremal observable sublanguage does not exist, maximal
observable sublanguages exist, which is what maximally
permissive supervisors attain.

The reason for (i) the exponential complexity of the
off-line computation of the supervisor for control under
partial observation when observability holds, and (ii) the
non-existence of a unique maximally permissive supervi-
sor is the underlying requirement that the supervisor be
deterministic, where the next control action is uniquely
determined as a function of the history of the observations.
There is no reason for having this underlying restriction
of determinism, and in fact in control of stochastic systems
both deterministic and randomized control policies are used
[6].

In this paper, we formally defne a nondeterministic
control policy and also a control & observation compatible
nondeterministic state machine and prove their equivalence.
We show that a nondeterministic control policy can be
concisely represented as a control & observation compatible
nondeterministic state machine. When control is exercised
using a nondeterministic supervisor, the speci£cation lan-
guage is required to satisfy a weaker notion of observability,
which we defne in terms recognizability and achievability.
Achievability servers as a necessary and suf£cient condition
for the existence of a nondeterministic supervisor, and it
is weaker than controllability and observability combined.
When all events are controllable, achievability reduces to
recognizability. l.e., the recognizability captures the re-
striction arising from observational limitations, whereas
the achievability captures the restriction caused by the
combined control and observation limitations. We further
show that both existence, and synthesis of nondeterminis-
tic supervisors can be done polynomially. (As mentioned
above, for deterministic supervisors, only existence can be
determined polynomially.) Furthermore, both achievability
and recognizability are preserved under union, which are
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their another advantage over observability. Consequently, a
unique maximally permissive supervisor for control under
partial observation exists. Although the computation of the
maximally permissive supervisor is beyond the scope of this
paper, we have shown its existence by showing the closure
of achievability under set union.

Inan [4], [5] £rst advocated the use of nondetermin-
istic supervisors for control under partial observation. In
his study, nondeterministic supervisors were restricted to
have no silent or e-transitions, and partial observation
was restricted to be a projection type observation mask.
Inan introduced the notion of weakly controllable and
observable languages for the characterization of languages
achievable under nondeterministic supervisors. The class of
such languages was shown to be closed under union, and
an algorithm of exponential complexity for computing the
supremal element was provided. The notion of achievability
de£ned in this paper can be viewed as a generalization of the
weak controllability and observability to allow for the silent
transitions in the supervisors and also non-projection type
observation masks. Inclusion of silent transitions makes the
supervisors more general. Achievability is a weaker notion
than the weak controllability and observability. Moreover,
our characterization of the properties of recognizability and
achievability has quite a different form that lets us separate
the observation issues from the control issues. Finally,
the form in which we defne the properties of recogniz-
ability and achievability, it lends to an easy polynomial
complexity verifcation algorithm. In contrast, the weak
controllability and observability verifcation issue was not
explicitly addressed in [5]. One could compute the supremal
sublanguage using the algorithm given in [5] and check
it’s equality with the language itself, but that would have a
double exponential complexity.

In [12], it was studied how two “process-objects” in-
teracting via “masked-composition” can achieve a certain
closed-loop language. The logic of process-objects was
represented as nondeterministic state machines, but the
work did not explicitly explore any issue pertaining to
nondeterministic control.

While observability is not preserved under union, it is
preserved under intersection when restricted over pre£x-
closed languages [9]. As a result a unique inEmal pre£x-
closed and observable superlanguage of the specifcation
language exists. Its computation is useful in the solution
of preEx-closed “range” control problem where the con-
trolled behavior is required to lie in a specifed range
given as upper and lower bound pre£x-closed languages.
The computation of infEmal pref£x-closed and observable
superlanguage is reported in [11] and that of the infmal
pref£x-closed controllable and observable superlanguage in
[7], [8]. In this paper we show that alike observability
and controllability, recognizability and achievability are
preserved under intersection (when restricted over pre£x-
closed languages). Using the intersection closure property
we derive a necessary and suffcient condition for the

range control problem for the prefx-closed case. Unlike
the deterministic supervisory setting where the complexity
of existence is exponential [13], our existence condition
is polynomially verifable, and also a supervisor can be
polynomially synthesized.

Il. NONDETERMINISTIC CONTROL

In this section we formally defne a nondeterministic
control policy, and a control & observation compatible
nondeterministic supervisor state machine. We prove that
given a nondeterministic control policy it can be represented
as a control & observation compatible supervisor state
machine, and vice-versa, in the sense that the two achieve
the same class of languages as the closed-loop behavior.

A. Nondeterministic Control Policy

We use ¥, C ¥ to denote the set of uncontrollable
events, and ' = { C X | & D %,} to denote the set of
control actions. Letting M : > — A with M(¢) = e denote
the observation mask (we use 3 to denote $U{e}), we know
that a deterministic control policy isa map f : A* — T’
that maps each history (a sequence of observation symbols)
into a unique control action.

A nondeterministic control policy generalizes such a

deterministic one in several ways:

« Instead of specifying a unique control action for each
history, it specifes a set of control actions, one of
which is to be nondeterministically chosen at the run-
time (at the time when control is being exercised). This
is captured by having the range of f as 2T (instead of
).

« Off-line a nondeterministic control policy specifes a
set of control action choices, one of which is selected
nondeterministically on-line. So a history now consists
of an observation-trace together with a trace of selected
control actions. In other words, a history of length &
may be of the form

dk = (2177_1)5 cee (ika’rk) € (F X A>*7

where for i < k, 3; € T is the ith control action
selected, and 7; € A is the ith observed symbol.

« A nondeterministic control policy can change the con-
trol action prior to the arrival of a new observation.
This is captured by allowing 7; to be € in above, i.e.,
7, € AU{e} = A. Thus the set of all possible histories
is given by (I x A)*.

Defnition 1: A non-deterministic control policy f over

(X, M) is a partial function

f: (' x A —2F

such that Vdy, = (21, 71) - (Sp, %) € (D x A)*, f(dy) is
defned if f(d;) is defned for all 0 < i < k (here do = ¢),
and for all i < k, ; € f(di_1), and 7; € M(3;) U {e} =
M ().

Remark 1: In order to implement a nondeterministic
control policy a mechanism is needed for the on-line
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nondeterministic selection of the control action (from the
set of choices computed off-line), and another mechanism
is needed to determine when to nondeterministically change
the control action. For the £rst purpose, a “coin toss” (with
as many possible outcomes as the number of control action
choices) can be used. For the second purpose, a “random
timer” can be used. In the lack of any new observation, the
control action is changed if and when the timer goes off.

Remark 2: Note that when f is a deterministic control

policy, there is a unique choice for the control action
selection at each occurrence of observation. Due to the
uniqueness of choice, there is no need to maintain the
control action selections made as part of the history. The
history can simply be collapsed to the set A* since given an
observation history in A* and a deterministic control policy
f, it is possible to uniquely reconstruct the entire control
& observation history in (I x A)*.

In De£nition 1, while the selected control action ¥; is
in effect, the following possibilities exist for the events
executed by the plant:

o Plant executes a sequence of enabled unobservable
events followed by an enabled observable event, i.e.,
the plant executes a trace t;o; € X*% with ¢; €
(N M~ (e)* and o; € (£; — M~1(¢)). In such
a case, M(o;) = ;.

o Plant executes a sequence of enabled unobservable
events, and before the occurrence of any observable
event the supervisor changes its control action, i.e., the
plant executes a trace t; € (3; N M ~1(¢))*. Further in
this case, 7; = e.

The above two cases can be combined into a single case
by saying that while the selected control action 3; is in
effect, and ith “observation” is 7;, the plant executes a trace
tio; € ¥*Y = ¥* such that t; € (£; N1 M~'(e))* and
o €[S N M~Y(r;)].

The above discussion leads to the following de£nition of

traces enabled under a nondeterministic control policy.

Defnition 2: Consider a nondeterministic control pol-

icy f (I' x A)* — 2V, and suppose d; =
(1,71) - (Zr, ) € (T x A)* is such that f(dy) is
defned. Then the set of traces that are enabled by dy is
defned as:
Enabled(dy) == {s = (t101...txox) € B* |
ti € (2N M~1e)),
oi € [N M~ ()]}
with Enabled(dy) = {e}.
Remark 3: The above de£nition can recursively be stated
as follows.
Enabled(dy) =
Enabled(dy) =

{ehs

Enabled(dy—1){to |

te (SN M),
oeXN M ()}

In the following we defne the closed-loop behavior
achieved under a nondeterministic control policy.

Defnition 3: Let X be a set of events, X, be the set of
uncontrollable events, M be the observation mask, f be a
non-deterministic control policy over (X, M), and (L, L,,,)
be the language model of a plant. Then the generated
and the marked languages of the controlled plant under f,
denoted by (L/f, L.,/ f), are defned as follows:

e Vse€L,se L/fif and only if 3d;, € (T x A)* such

that s € Enabled(dy).

o Ly/f:=L/fN Ly,

B. (X, M)-Compatible Nondeterministic Sate Machine

Having de£ned the notion of nondeterministic control
policy we next defne the notion of control & observa-
tion compatible NSM, called (X,,, M )-compatible NSM. A
(X, M)-compatible NSM restricts the behavior of a plant
by operating in synchrony with the plant state machine.
The motivation for defning (X, M)-compatible NSMs
is to show that there exists a one-to-one correspondence
between the class of nondeterministic control policies and
the class of (3, M)-compatible NSMs in the sense that
they enforce the same class of controlled behavior. This way
a nondeterministic control policy can be more concisely
represented as a (X, M)-compatible NSM. Through out
this paper, it is assumed that for each state = of a NSM,
there exists a silent transition (z, €, x).

Defnition 4: Let S = (X,X%,6,Xo) be a non-
deterministic state machine, and ¥, C X be the set of
uncontrollable events and M : ¥ — A be the observation
mask, then

e S is called X, -compatible if V2 € X and Va € X%,
§(z,a) # 0.

« S is called M-compatible if V2 € X and Va,b € %, if
M(a) = M(b) and both é(x,a) and &(x,b) are non-
empty, then §(z,a) = §(z,b).

» Sis called (X,, M)-compatible if S is 3, -compatible
and M-compatible.

Remark 4: The nondeterministic control exercised by a
NSM S = (X, X, 4, Xo) is determined as follows. For = €
X, let X, :={o € X |d(x,0) # 0} be the set of events
defned at x. From X ,-compatibility, ¥, C X, for each
rze X,ie., X, €I foreach z € X.

The choice for the initial control action is given by the set,
{¥; € ¥ | z € Xo}. The supervisor nondeterministically
starts from one of its initial states, say zo € Xo, thereby
choosing (nondeterministically) it’s initial control action to
be ;.

When at state z, depending on whether or not an e-
transition is defned at x, the following possibilities exist:

« Plant executes an enabled event o € X,. Then the
choice for the next control action is given by the set
{3, € X |ye€d(z, o)} The supervisor nondetermin-
istically updates it’s state to some yo € §(z, o), thereby
choosing (nondeterministically) it’s next control action
to be X,,.

Note that the supervisor does not observe ¢ € X,

directly. However it’s M -compatibility guarantees that
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the choice for the next control action is given by the
same set for any o’ € M~1M (o).

o If an e-transition is defned at x, then the supervisor
can nondeterministically change it’s control action by
transitioning (nondeterministically) to one of the states
in §(x, €), say yo. Then the new control action is given
by Xy,.

As in Remark 1, for a nondeterministic selection of ini-
tial state and a nondeterministic state update upon an
observation, a “coin-toss” may be used; whereas for a
nondeterministic control action change a “random-timer”
may be used.

The following theorem establishes the one-to-one corre-
spondence between the set of nondeterministic control poli-
cies and the set of (X,,, M)-compatible NSMs.

Theorem 1: The following relationship exists between
nondeterministic control policies over (X,,M) and
(3, M)-compatible NSMs:

« For a nondeterministic control policy f over (X,, M),
there exists a (3, M)-compatible nondeterministic
state machine Sy such that L(S;) = X*/f.

« For a (X3,, M)-compatible nondeterministic state ma-
chine S, there exists a nondeterministic control policy
fs over (¥, M) such that ¥*/fs = L(95).

I1l. M-RECOGNIZABILITY AND
(X4, M)-ACHIEVABILITY

In the previous section we showed that the class of
controlled languages achieved by nondeterministic control
policies and (X, M)-compatible NSMs are identical. In
this section, we characterize this class of languages in terms
of the property of achievability. We show that alike con-
trollability both achievability and recognizability are pre-
served under union and intersection (in the later case, when
restricted over pre£x-closed languages). We also present
a polynomial algorithm for computing the infEmal pref£x-
closed and achievable/recognizable superlanguage. This lets
us verify achievability/recognizability polynomially.

Defnition 5: Let K C X%, then

o K is said to be X, -controllable with respect to X* if
Vs € pr(K) and Ya € £, sa € pr(K).

o K is said to be M-recognizable with respect to >* if
Vs,t € ¥* and Ya € ¥ with M(a) = ¢, sat € pr(K)
= sa*t C pr(K).

o K is said to be (X,, M)-achievable with respect to
¥* if K is 3,-controllable and M-recognizable with
respect to ¥*, and Vs,t € ¥*, Va € X,b € X, with
M(a) = M(b), sat € pr(K) = {sbt} C pr(K).

Theorem 2: (X,,, M)-achievability with respect to X* is

closed under set union over arbitrary languages and under
set intersection over pref£x-closed languages.

For K C X*, the class of prefx-closed and (X,, M)-
achievable superlanguages of K with respect to >* is
defned as:

PAs«(K):= {KCK' CL|K' =pr(K'),K'is

(2., M)-achievable wrt X*}.

The infmal pre£x-closed and (X ,,, M )-achievable superlan-
guage of K with respect to ©* is denoted infPAs-(K).

Lemma 1: VK C ¥*, K is (X,, M)-achievable with
respect to X* if and only if pr(K) = infPAs-(K).

Defnition 6: Let K C L = pr(L), then K is said
to be (X, M)-achievable with respect to L if pr(K) =
infPAs-(K)NL

Theorem 3: Let K C L = pr(L), then K is (X,, M)-
achievable with respect to L if and only if there exists K’ C
¥* such that K’ is (X,,, M)-achievable with respect to X*
and pr(K) = pr(K')N L.

Theorem 4: (X, M )-achievability with respect to L =

pr(L) C X* is closed under set union over arbitrary
languages and under set intersection over pref£x-closed
languages.
Next we develop an algorithm that shows a polynomial
verifcation of achievability is possible. We need the next
result about the infmal pre£x-closed and achievable super-
language. For K C L = pr(L), the class of pre£x-closed
and (X,,, M)-achievable superlanguages of K contained in
L is defned as:

PAL(K):= {KCK' CL|K =pr(K'),K'is

(3., M)-achievable wrt L}.

The infmal pre£x-closed and (X ,,, M )-achievable superlan-
guage of K with respect to L is denoted infPAL(K).
Theorem 5: Let K C L = pr(L). Then infPAL(K) =
infPAs-(K)N L.
We next present an algorithm for computing infPAy (K).
From the result of the previous theorem we only need an
algorithm for computing infPAs-(K).
Algorithm 1: Let S; be a deterministic state machine
such that L(Sy) = pr(K), then we have the following
algorithm for the computation of infPAs- (K).

1) Separate the states in S;: for every transition (z, b, y)
with either M (b) = e or J(z,b,y’) st. M(b) =
M(V') # e, replace (x,b,y) by a pair of transitions
(z,e,2') and (2’,b,y), where z’ is a newly added
state.

2) For every transition (z,b,y) with M(b) = ¢, add
transitions (z,b,x) and (z,¢,y).

3) For every state = and every event b € ¥, N M ~1(e),
if b is not defned at z, then add b-labeled transitions
to let 6(x,b) = d(x, €).

4) For every state z, every event b € X,N(X—M~1(e)),
and every transition (x, a, y) with M (a) = M (b), add
a transition (x,b,y).

5) For every state = and every event b € X, N (2 —
M~(¢)), if no b-indistinguishable event a is de£ned
at «, then add a transition (z, b, dump), where dump
is an added state such that Vo € X, 6(dump, o) =
{dump}.

6) Return the modifed S; as the generator Sx of

Theorem 6. Algorithm 1 is correct, ie., L(Sk) =

infPAs-(K).
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Remark 5: It is clear from the construction in Algorithm
1 that the complexity of computing infPAs-(K) is linear
in the number of states in the acceptor for K. Also, since
infPAL(K) = infPAs.(K) N L, the complexity of
computing inf PAr (K) is linear in the number of states of
both the acceptor for K and the generator for L. In contrast
in the deterministic setting, the complexity of computing the
inEmal pref£x-closed controllable and observable superlan-
guage is exponential in the number of states of the acceptor
for the language.

Further since K is (X,,, M)-achievable with respect to
L if and only if infPAL(K) C pr(K), the complexity of
verifying (X, M )-achievability of K with respect to L is
quadratic in the number of states of the acceptor for K and
linear in the number of states of the generator for L. This
is the same as the complexity of verifying observability.

Theorem 7: Let K C X*, then there exists a (2, M)-
compatible non-deterministic state machine Sx such that
L(Sk) = pr(K) if and only if K is (X, M)-achievable
with respect to 3*.

1V. SUPERVISORY CONTROL BY NONDETERMINISTIC
PoLicy

In this section we study supervisory control using non-
deterministic control. The £rst theorem studies the “target”
control problem and presents a necessary and suffcient
condition for the existence of a supervisor in terms of
(X, M)-achievability. Later we study the “range” control
problem.

Theorem 8 For K C L = pr(L) there exists a nonde-
terministic control policy f over (3., M) such that L/ f =
pr(K) if and only if K is (3,,, M)-achievable with respect
to L.

Theorem 9: Given A, E C L = pr(L), there exists a
nondeterministic control policy f over (2,, M) such that
ACL/fCEifandonlyif infPA(A) C E.

Remark 6: It follows from the two theorems of this
section that both the target and range control problem us-
ing nondeterministic supervision is polynomially solvable.
The target control problem requires the specifcation to
be achievable with respect to the plant, the complexity of
verifcation of which is quadratic in the number of states
of the acceptor for the target specifcation K, and linear in
the number of states of the generator for the plant language
L. The complexity of range control problem is linear in the
number of states of all three: the acceptor for the lower
bound specifcation A, the acceptor for the upper bound
specifcation F, and the generator for the plant language L.

V. CONCLUSION

The supervisory control problem under partial obser-
vation using nondeterministic supervisors is formulated and
studied in this paper. Various results are obtained.

There are three fold advantages of using nondeterministic
controllers as opposed to deterministic ones: (i) Complex-
ity reduction from being exponential to polynomial; (ii)

Existence condition is weaker and so more speci£cations
are attainable using nondeterministic supervisors, and (iii)
Given a speci£cation, more sensors will be needed to satisfy
observability than achievability (since achievability is a
weaker requirement), and so there will be a saving in sensor
cost when sensors for all events can be available.

REFERENCES

[1] H. Cho and S. I. Marcus. Supremal and maximal sublanguages
arising in supervisor synthesis problems with partial observations.
Mathematical Systems Theory, 22:177-211, 1989.

[2] R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya. Supervisory
control of discrete event processes with partial observation. IEEE
Transactions on Automatic Control, 33(3):249-260, 1988.

[3] N. B. Hadj-Alouane, S. Lafortune, and F. Lin. Centralized and dis-
tributed algorithm for on-line synthesis of maximal control policies
under partial observation. Discrete Event Dynamical Systems: Theory
and Applications, 6(41):379-427, 1996.

[4] K. Inan. Supervisory control: Theory and application to the gateway
synthesis problem. In Belgian-French-Netherlands Summer School
on Discrete Event Systems, page 25 pages. Spa, Belgium, 1993.

[5] K. Inan. Nondeterministic supervision under partial observations.
In Guy Cohen and Jean-Pierre Quadrat, editors, Lecture Notes in
Control and Information Sciences 199, pages 39-48. Springer-Verlag,
New York, 1994.

[6] P. R. Kumar and P. Varaiya. Stochastic Systems. Estimation, identi-
£cation and adaptive control. Prentice Hall, 1986.

[7] R. Kumar and V. K. Garg. Optimal supervisory control of discrete
event dynamical systems. S/AM Journal of Control and Optimization,
33(2):419-439, March 1995.

[8] R. Kumar and M. A. Shayman. Formulae relating controllability, ob-
servability, and co-observability. Automatica, 34(2):211-215, 1998.

[9] F. Lin and W. M. Wonham. On observability of discrete-event
systems. Information Sciences, 44(3):173-198, 1988.

[10] P.J. Ramadge and W. M. Wonham. Supervisory control of a class of
discrete event processes. SSAM Journal of Control and Optimization,
25(1):206-230, 1987.

[11] K. Rudie and W. M. Wonham. The infmal prefx closed and
observable superlanguage of a given language. Systems and Control
Letters, 15(5):361-371, 1990.

[12] M. A. Shayman and R. Kumar. Process objects/masked compo-
sition: An object oriented approach for modeling and control of
discrete event systems. |EEE Transactions on Automatic Control,
44(10):1864-1869, 1999.

[13] J. N. Tsitsiklis. On the control of discrete event dynamical systems.
Mathematics of Control Signals and Systems, 2(2):95-107, 1989.

4476



	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrA17.2
	Page0: 4472
	Page1: 4473
	Page2: 4474
	Page3: 4475
	Page4: 4476


