
Software for Auxiliary Signal Design

S. L. Campbell1 R. Nikoukhah2

Abstract— Recently an approach for multi-model identifica-
tion and failure detection in the presence of model uncertainty
and bounded energy noise over finite time intervals has been
introduced. This approach involved offline computation of an
auxiliary signal and online application of a hyperplane test.
This paper discusses progress in developing a software package
to carry out this procedure.

I. INTRODUCTION

Failure detection has been the subject of many studies.
Most of this work concerned passive failure detection. In
the passive approach, for material or security reasons, the
detector monitors the system but has no way of acting
upon it. A major drawback with the passive approach
is that failures can be masked by the operation of the
system. This is true, in particular, for controlled systems
where the desirable robustness of control systems tends to
mask abnormal behaviors of the systems. In contrast, active
detection consists in acting upon the system using a test
signal in order to detect abnormal behaviors which would
otherwise remain undetected during normal operation. The
use of extra input signals specifically in the context of
failure detection has been introduced by Zhang [11] and
later developed by [5], [6]. We consider robustness in a
deterministic setting.

Here the normal and failed behaviors of a process are
modeled by two or more linear uncertain systems. In
this paper we restrict ourselves to two models. Failure
detectability in linear systems thus becomes a linear multi-
model identification problem. In most cases, there is no
guarantee that one of the models can be ruled out by simply
observing the inputs and outputs of the system. For this
reason in some cases a test signal, usually referred to as
auxiliary signal, is injected into the system to expose its
behavior and facilitate the detection (identification) of the
failure.

Let v be the inputs taken over by the failure detector
mechanism, u the rest of the inputs, if any, and y the outputs
of the system. An auxiliary signal v guarantees failure
detection if and only if A0(v) ∩ A1(v) = ∅ where Ai(v)
is the set of input-outputs {u, y} consistent with Model i,
i = 0, 1, for a given input v. We call such a v a proper
auxiliary signal. Unreasonably “large” signals are often
proper, but cannot be applied in practice. There are many

1 Department of Mathematics, North Carolina State University, Raleigh,
NC 27695-8205. USA. e-mail: slc@math.ncsu.edu Research sup-
ported in part by the National Science Foundation under DMS-0101802,
DMS-020695, and ECS-0114095.

2 INRIA, Rocquencourt BP 105, 78153 Le Chesnay Cedex, France.

requirements on a test signal during the test period including
the desire that the system should continue to operate in a
reasonable manner, the test period [0 T] should be short, and
the effect of the auxiliary signal on the system minimal. In
a series of papers [7], [8], [3] we have developed such an
approach. The full mathematical description can be found
in the monograph [2] which will appear in 2004. Here we
discuss the numerical implementation of this approach. All
material in Section 3 and beyond has not been published
before.

II. SUMMARY OF APPROACH: CONTINUOUS CASE

Both continuous and discrete systems are of importance.
Space limitations force us to restrict the summary to the
continuous case. We first summarize the general procedure.
The linear model (1) represents normal and failed systems.
It can be considered as a generalization of the model used
in Chapter 4 of [10].

ẋi = Aixi +Biv +Miνi, (1a)

Eiy = Cixi +Div +Niνi. (1b)

Here i = 0, 1 correspond to the normal and failed system
models respectively, y is the measured output, and νi

and xi are model noises and states. We assume here for
simplicity that the systems have no measured inputs besides
the auxiliary signal v. System matrices have arbitrary but
consistent dimensions; the only conditions are that Ni’s
have full row rank and Ei’s have full column rank.

The constraint (or noise measure) on the initial condition
and uncertainties is

Si(v, s) = xi(0)TP−1
i0 xi(0) +

∫ s

0

νT
i Jiνi dt < 1,

∀s ∈ [0, T], (2)

where Ji’s are signature matrices. The bound (2) allows
for both additive and model uncertainty. With only additive
uncertainty we have Ji = I and need only consider s = T .

The assumption is that for failure detection, we have
access to y, given a v, consistent with one of the models.
The problem is to find an optimal v for which observation
of y provides enough information to decide from which
model y has been generated. That is, there exist no solution
to (1a), (1b) and (2) for i = 0 and 1 simultaneously. We
consider cost functions on v of the form:

δ(v) = ξ(T)TWξ(T) +
∫ T

0

|v|2 + ξTUξ dt, (3a)

where W and U are positive semi-definite matrices and

ξ̇ = Fξ +Gv, ξ(0) = 0. (3b)

Here F and G are matrices, with appropriate dimensions,
chosen by design considerations. In many applications, one
takes F = A0 and G = B0 so that (3b) represents the
normal behavior of the system without the uncertainties.
Then ξ(t) is an a-priori estimate of x0(t). Thus penalizing ξ
amounts to penalizing the perturbation of the system during
the test period assuming no failure has occurred. It is also
possible to consider ξ to contain both an estimate of x0

and x1 in order to reduce the effect of the auxiliary signal
on the behavior of the system whether or not a failure has
occurred.

Since the Ni’s are full row rank, we have that for any
L2 functions v and y, there exist L2 functions νi satisfying
(1a)-(1b). Thus the non-existence of a solution to (1a), (1b)
and (2) is equivalent to σ(v, s) ≥ 1 for some s where
σ(v, s) = infν0,ν1,y

x0,x1
max(S0(v, s),S1(v, s)) subject to (1a)-

(1b), for i = 0, 1. Then

σ(v, s) = max
β∈[0,1]

φβ(v, s), (4a)

where

φβ(v, s) = inf
ν0,ν1,y
x0,x1

βS0(v, s) + (1 − β)S1(v, s), (4b)

subject to (1a)-(1b), i = 0, 1. Let X⊥ and X⊥ denote
maximal rank right and left annihilators of matrix X . Let

(
F0 F1

)
=

(
E0

E1

)⊥
,

x =
(
x0

x1

)
, ν =

(
ν0

ν1

)
, A =

(
A0 0
0 A1

)
,

B =
(
B0

B1

)
,M =

(
M0 0
0 M1

)
, N =

(
F0N0 F1N1

)
,

D = F0D0 + F1D1, C =
(
F0C0 F1C1

)
,

P−1
β =

(
βP−1

0,0 0
0 (1 − β)P−1

1,0

)
, Jβ =

(
βJ0 0
0 (1 − β)J1

)
.

We reformulate Problem (4) as

φβ(v, s) = inf
ν,x

x(0)TP−1
β x(0) +

∫ s

0

νTJβν dt (5)

subject to

ẋ = Ax+Bv +Mν, (6a)

0 = Cx+Dv +Nν. (6b)

We assume that for some β ∈ [0, 1], that NT
⊥JβN⊥ > 0,

and the Riccati equation

Ṗ = (A− SβR
−1
β C)P + P (A− SβR

−1
β C)T −

PCTR−1
β CP +Qβ − SβR

−1
β ST

β , (7)

where P (0) = Pβ and

(
Qβ Sβ

ST
β Rβ

)
=

(
M
N

)
J−1

β

(
M
N

)T

,

has a solution on [0,T]. Then the problem is: minv δ(v)
subject to max β∈B

s∈[0,T]

φβ(v, s) ≥ 1. Define

λβ,s = max
v �=0

φβ(v, s)
ξ(s)TWξ(s) +

∫ s

0
|v|2 + ξTUξ dt

,

λβ = max
s≤T

λβ,s, (8)

so that we end up having to solve the following problem

max
v

inf
ν,x

x(0)TP−1
β x(0) − λξ(T)TWξ(T) +∫ s

0

νTJβν − λ(ξTUξ + |v|2) dt (9)

subject to (3b) and (6). Rewriting these constraints with
µT =

(
xT ξT

)T
, the cost in (9) becomes

µ(0)T

(
P−1

β 0
0 0

)
µ(0) + µ(s)T

(
0 0
0 −λW

)
µ(s)

+
∫ s

0

νTJβν − λ|v|2 − µTQλµdt,

where Qλ =
(

0 0
0 λU

)
. A necessary condition for this

minimization problem can be expressed as the following
two-point boundary-value problem (TPBVP)

d

dt

(
µ
ζ

)
=

(
Ω̄11 Ω̄12

Ω̄21 Ω̄22

) (
µ
ζ

)
= H

(
µ
ζ

)
, (10a)

V0

(
µ(0)
ζ(0)

)
+ Vs

(
µ(s)
ζ(s)

)
= 0. (10b)

Here

V0 =


I

(
−Pβ 0

0 0

)

0 0


 , Vs =


 0 0(

0 0
0 −λW

)
I




(
Q̄λ,β S̄λ,β

S̄T
λ,β R̄λ,β

)
=

(
B̄
D̄

)
Γ−1

λ,β

(
B̄
D̄

)T

,

Γλ,β =
(
Jβ 0
0 −λI

)
,

Ā =
(
A 0
0 F

)
, B̄ =

(
M B
0 G

)
,

C̄ =
(
C 0

)
, D̄ =

(
N D

)
.

Ω̄11 = −Ω̄T
22 = Ā− S̄λ,βR̄

−1
λ,βC̄,

Ω̄12 = Q̄λ,β − S̄λ,βR̄
−1
λ,βS̄

T
λ,β ,

Ω̄21 = C̄TR−1
λ,βC̄ + Qλ.

The optimal v and ν satisfy(
ν
v

)
= αΓ−1

λ,β

(
D̄T R̄−1

λ,βC̄ D̄T R̄−1
λ,βS̄

T
λ,β − B̄T

) (
µ
ξ

)
,

(11)

where α is a to be determined scalar. We need to compute
first λβ which is the largest value of λ for which the TPBVP
(10) is not well-posed for some s ∈ [0, T].

Lemma 2.1: The TPBVP

ẋ = Hx, (12a)

0 = V0x(0) + Vsx(s), (12b)

is well-posed if and only if V0 +VsΦ(s) is invertible where

Φ̇ = HΦ, Φ(0) = I. (13)
Computation of Φ based on (13) is in general not

practical, except on short intervals, since H is a Hamiltonian
matrix and hence is not stable. When H is time-invariant, a
simple and numerically efficient test of the well-posedness
of (12) can be done by block diagonalizing H ,

SHS−1 =
(
Af 0
0 −Ab

)
, (14)

where Af and Ab do not have any eigenvalues with strictly
positive real parts. A calculation shows that invertibility of
V0 + VsΦ(s) is equivalent to the invertibility of the better
conditioned

Ψ(s) � V0S
−1

(
I 0
0 eAbs

)
+ VsS

−1

(
eAf s 0

0 I

)
.

Lemma 2.2: Under our assumptions, λ > λβ if and only
if Ψ(s) is invertible for all s ∈ [0, T].

A λ-iteration scheme can now be implemented using any
standard ordinary differential equation solver with a root
finder option. In particular, we have to solve:

Ψ̇f = AfΨf , Ψf (0) = I, (15a)

Ψ̇b = AbΨb, Ψb(0) = I, (15b)

and test to see if the surface

0 = det(Ψ(s)) (16)

is crossed. Then λβ is the infinum over the set of λ’s for
which the above system can be solved over the interval
[0, T] without any surface crossing. Then optimal λ∗ and β∗

are obtained by λ∗ = maxβ∈B λβ . Note that for λ = λβ , the
surface crossing may happen inside the interval [0, T], say
at T ∗. This simply means that the optimal proper auxiliary
signal can be defined over the interval [0, T ∗]. Nothing is
gained by increasing the test period and s we can let T =
T ∗.

When λ = λ∗ and β = β∗, (10) has a non-zero solution.
This solution allows us to compute the optimal proper
auxiliary signal from (11). By computing a vector in the
nullspace of the matrix


(
−Ψf (s) 0

0 I

) (
I 0
0 −Ψb(s)

)

V0S
−1 VsS

−1


 ,

we can find consistent values of xf (0) and xb(T). But xf

and xb satisfy

ẋf = Afxf , (17a)

ẋb = −Abxb, (17b)

with Af and Ab which do not have eigenvalues with positive
real parts. Thus xf and xb can be computed from (17a) and
(17b) respectively by forward and backward integration.
Finally, the solution of the boundary value problem is
obtained from

x =
(
µ
ξ

)
= S−1

(
xf

xb

)
. (18)

The optimal auxiliary signal is computed from (11) by
choosing α such that ‖v‖−1 =

√
λ∗.

III. SOFTWARE

We have implemented these procedures for the continu-
ous case in Scilab programs. Scilab is a software environ-
ment developed at INRIA [1], [4]. It is used at a number
of industries and has a large user base. It has a very similar
syntax to MATLAB so that a Scilab program can be easily
converted to MATLAB. However, Scilab has the advantage
that it is publicly available and can be downloaded to
a number of different operating systems. Scilab may be
downloaded form the French research center INRIA (Institut
National de Recherche en Informatique et en Automatique).
The Scilab website is at http://www.scilab.org/.

These are not industrial grade programs. Rather they
are given to illustrate the methodology and to solve
simple examples. They should, however, be useful for
constructing the solution to reasonable sized, well-
posed problems. We have tested them on a number of
examples. Some large or close to singular problems may
require adjusting certain parameters. Page limitations
prohibit a full listing of programs. The programs
described here can be downloaded from the web site
http://www.math.ncsu.edu/˜slc/www/BOOKS/
AuxSig.html. Other software will be placed there as it
becomes available.

Matrices A, B, C, D, M , N used in problem formulation
(6) are obtained from the two candidate models. A Scilab
function datas generates all the matrices needed for the
algorithms. datas also returns matrices F , E0 and E1 to
be used for the computation of the separating hyperplane. To
use the functions defined below, the user must have defined
the sizes of x and v in the current Scilab environment as
nx and nv, respectively. Two distinct methods have been
implemented.

A. Riccati-based solution

One method, not discussed in the earlier sections, is based
on the computation of a solution to a parameterized Riccati
equation. This is done using the built-in Scilab function

ode which solves the ODE defined by Scilab function
Ricci. Function rio computes the coefficients of the
Riccati equation. These coefficients depend on λ and β so
they are evaluated frequently. Function lbcalc computes
λβ for a given β.

B. The block diagonalization approach

The block diagonalization approach is simpler than the
Riccati based solution and is particularly well suited to the
case where the cost is in the form (3).

The function lbcalc2 is similar to lbcalc, but lb-
calc2 uses a different approach to compute λβ . It also
takes F , G, U and W as additional arguments. The logic
of the program is very similar to lbcalc, but the test used
for the bisection method is based on Lemma 2.2 and uses
the function tpbvs to find the shortest time interval over
which the BVP is singular. tpbvs uses the built-in Scilab
ODE solver ode with option root (with root finder). The
function being integrated is defined in sys corresponding to
(15) and the zero crossing surface is in sysr corresponding
to (16). The function matbdiag block diagonalizes H as
indicated in (14),

C. Suspension example

To illustrate we consider an example of a vehicle sus-
pension. The model is somewhat idealized but serves to
illustrate the application of the software presented in this
paper. It is modeled as a mass M attached to a rolling
wheel through a spring mass system. The control is a torque
applied to the wheel. Friction in the wheel and axle are
ignored. The model is:

Mÿ −Mr sin(b)θ̈ + aẏ + ky = 0, (19a)

−Mr sin(b)ÿ + ((m+M)r2 + J)θ̈ = w, (19b)

where a and k are suspension parameters, J , m and r are
wheel parameters (rotational inertia, mass and radius), b is
the angle the suspension makes with the vertical (assumed
constant), w is the torque variation on the wheel, θ measures
the rotation of the wheel and y is the variation in the length
of the suspension from its rest length. Note that y = 0, θ =
θ0 +αt is a solution of (19) when w = 0. This corresponds
to traveling down a level road at a constant speed with
no disturbances. We replace θ in (19) by θ − θ0 − αt so
that θ is now the deviation from this reference angle and
disturbances in the initial conditions are disturbances from
y = 0, θ = θ0 + αt. If wheel friction is included, then
w becomes the change in torque from wo where wo is the
constant torque needed to maintain the speed α. The outputs
are (noisy) measurements of the suspension length y and the
rotational rate θ̇ so that the output equations, without the
measurement noise, are

y1 = y, (20a)

y2 = θ̇. (20b)

1) Additive noise formulation: System (19) is already
linear and can be put into first order form by by defining
the state as y, ẏ, θ and θ̇. Even if both equations in (19) have
additive noise, x1 = ẏ, x3 = θ̇ would not have noise. This
situation is common in applications and illustrates why we
never assumed the matrices Mi were full row rank. We will
assume that the noise in the suspension itself is negligible
and that there is a noise variable added to (19b) which
one could think of as noise (in force units) arising from
irregularities in the road surface. In addition, we assume an
additive noise on each of the output channels to represent
measurement noise. The failure to be modeled is a complete
failure of the sensor measuring y. That is, y1 = 0. Let

P =
(

M −Mr sin(b)
−Mr sin(b) (m+M)r2 + J

)
, (21)

RT =
(
k 0 0 0

)
, Q =

(
a 0
0 0

)
. (22)

The normal system can be modeled as in (1a) where

A0 =
(

0 I
−P−1R −P−1Q

)
, D0 = 0,

B0 =


 0

P−1

(
0
1

)
 , C0 =

(
1 0 0 0
0 0 0 1

)
.

M0 =




0 0 0
0 0 0
0 0 0

.001 0 0


 , N0 =

(
0 .01 0
0 0 .01

)
. (23)

The failed system is identical to the normal system except
the first row of C1 is set to zero because the failed first
sensor now only outputs noise:

C1 =
(

0 0 0 0
0 0 0 1

)
. (24)

The objective is to find a torque signal w(t) of minimum
energy (optimal proper auxiliary signal v of smallest L2

norm) so that the failure of the sensor can be detected,
and to construct the associated hyperplane test over the
interval [0, 36]. The optimal auxiliary signal is illustrated in
Fig. 1. The h vector of the hyperplane test in this case has
two components. They are illustrated in Figure 2. Note the
difference in scale. The hyperplane test greatly emphasizes
the output of the first sensor.

We set the noise bound at 10 and used the minimal proper
auxiliary signal computed using a bound of only one in ten
simulations using white noise. White noise is far from being
worse case noise. The amplitude of the white noise yields
results for which it is difficult to detect failure by visual
inspection. The hyperplane test, however, provided correct
detection in every simulation. A typical simulation result is
given in Figures 3 and 4.

0 4 8 12 16 20 24 28 32 36
 –0.4

 –0.3

– 0.2

– 0.1

0

0.1

0.2

0.3

0.4

Fig. 1. Optimal auxiliary signal for the suspension problem: additive
noise case.

0 4 8 12 16 20 24 28 32 36
– 60

 –40

– 20

0

20

40

60

80

0 4 8 12 16 20 24 28 32 36
– 0.3

– 0.2

 –0.1

0

0.1

0.2

0.3

0.4

0.5

Fig. 2. The first (left) and second (right) component’s of the h vector of
the hyperplane test.

2) Model uncertainty formulation: Let us now consider
again the same suspension problem but with the following
modification in (19b):

−Mr sin(b)ÿ + ((m+M)r2 + J)θ̈ = (1 + δ)w, (25)

where |δ| < δ̄ is a possibly time varying model uncertainty.
This corresponds to uncertainty in the gain of the torque
control input w. The resulting models are the same as those
of the previous example except for the Mi matrices which
become

Mi =


 0 0

P−1

(
0
1

)
0


 , (26)

0 8 16 24 48 56 64 72 80

 –0.016

 –0.008

0.000

0.008

0.016

0 8 16 24 32 40 48 56 64 72 80

 –0.016
 –0.008

0.000

0.008

0.016

64 72 80

 –0.4

 –0.2

0.0

0.2

0.4

32 40

0 8 16 24 32 40 48 56

Fig. 3. Normal system. The outputs of the sensors and v.

0 8 16 24 32 40 48 56 64 72 80

–0.016
–0.008

0.000

0.008

0.016

+

0 8 16 24 32 40 48 56 64 72 80

 –0.016

 –0.008

0.000

0.008

0.016

+

0 8 16 24 32 40 48 56 64 72 80

 –0.4

 –0.2

0.0

0.2

0.4

+

Fig. 4. Failed system. The outputs of the sensors and v.

i = 0, 1, and the presence of G and H matrices Gi =(
0 0 0

)
, Hi = δ̄. For this particular problem, the

shape of the resulting optimal auxiliary signal is not that
much different from the one obtained in the previous case
where added uncertainty was considered. However, since
the model uncertainty is in the Bi matrices, a stronger input
signal is needed to overcome the possibly lower norm of
the input to output function.

One advantage of the current formulation is that it is easy
to consider a number of different problems. For example, it
is easy to consider the situation where instead of measuring
θ̇, we measure θ. For that, we simply need to modify C0

and C1 by exchanging their 2nd and fourth columns.
3) General cost formulation: Suppose that we not only

want to have the test signal small but, if a failure has not
occurred, we also want the system to have returned close
to its original steady operating point at the end of the test
period. This can be done by using a nominal model of the
normal system for (3b), setting U = 0 in (3) and using W in
(3) to put a weight on the final value of the nominal system.
By nominal system, we mean the model of the unfailed
system with zero initial condition and no noise. This gives
the effect of the test signal on the unfailed system if there
had been no noise and amounts to taking F = A0 and
G = B0 in (3).

The choice of the weight to be placed on the final
condition, however, should be made with care. Suppose we
simply set W = cI where c is a scalar. Figure 5 shows the
results using the nominal model and different values of c.
The top is c = 0, then a small c, and finally at the bottom,
large c. It is clear that the final weighting affects primarily
one of the components of the state which is θ. Indeed, since
the auxiliary signal starts by speeding up the vehicle before
slowing it down, if c = 0, then the distance traveled by the
car during the test period is more than what would have
been if no auxiliary signal were used. When c > 0, the
extra distance traveled is reduced. This is done by larger

0 4 8 12 16 20 24 28 32 36
 0.3

 0.2

 0.1

0

0.1

0.2

0.3

0 4 8 12 16 20 24 28 32 36
 0.01

0.01
0.03
0.05
0.07
0.09
0.11
0.13
0.15
0.17
0.19

0 4 8 12 16 20 24 28 32 36
 0.4

 0.3

 0.2

 0.1

0

0.1

0.2

0 4 8 12 16 20 24 28 32 36
 0.01

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

0 4 8 12 16 20 24 28 32 36
 0.4

 0.3

 0.2

 0.1

0

0.1

0.2

0 4 8 12 16 20 24 28 32 36
 0.01

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Fig. 5. The auxiliary signal (left) and the state trajectory of the nominal
model (right) for three values of c

negative torque in the second half of the test period. The
L2 norm of v increases as c is increased. In addition, in
the lowest graph we see that the effort to make θ(T) small
has actually made the final values of the other variables
worse then they were with c = 0. But the actual distance
covered has no importance in this problem. What matters
is the vertical position of the suspension, its speed, and the
speed of the vehicle. So not only is the W = cI weight
useless as far as the final value of θ is concerned, it made
things worse.

The correct way to choose W would be to put a weight
on y and ẏ. It would also be reasonable to put a weight
on θ̇ so that the test does not affect too much the speed
of the vehicle. Thus W should be in the form W =
Diag(w1, w2, 0, w4)where w1, w2 and w4 are positive num-
bers to be chosen properly based on design considerations.

4) Program for suspension problem: A Scilab program
for solving the suspension problem is given below. In
order to run these programs the functions described above
are supposed to be defined in the file function.sci.
The script assumes that the function tpbmodel, used
for integrating the complete TPBVP, the function bakeq,
used for integrating the backward system, and the function
intrp used for the computation of P (t) by interpolation,
are also included in the file function.sci. A user only
has to specify the problem in the lines up to end of user
input. The rest of the program uses default values of the
parameters including Ng and n. For sensitive problems they
can be reset. n sets the mesh used to find β and Ng is the
number of points used to find the Riccati equation solution.
Note that since we are seeking to estimate where the Riccati
equation solutions fails it is important to use a fixed grid or
else the grid size would grow too large as we approached
the desired point.

IV. DISCRETE SYSTEMS

The theory for the discrete case is carried out similarly to
the continuous case. More recently, since [2] was written,
we have considered also sampled data systems [9].

With discrete systems there is always the option to just
address the problem as a large optimization problem. We
refer to this as the static case since the special structure
due to the dynamic equations is not exploited. However,
these static problems can become very large so it is often
better to use discrete versions of Riccati equations and
similar techniques. A suite of Scilab programs to carry out
the design of discrete auxiliary signals is currently under
development for both the static and the discrete time cases.
They should be complete by late fall and will be available
on the same web site as the continuous codes.

V. CONCLUSION

We have outlined a procedure for active failure detec-
tion over finite time horizons in the presence of bounded
uncertainty. We have introduced software to carry out this
procedure, and illustrated the software’s use on the example
of a vehicle suspension. The software can handle both
additive and model uncertainty and allows for a variety of
ways to measure the size of the auxiliary signal. Several
of these possibilities are demonstrated on the suspension
example.

REFERENCES

[1] C. Bunks, J. P. Chancelier, F. Delebecque, C. Gomez (ed.), M.
Goursat, R. Nikoukhah, and S. Steer, Engineering and Scientific
Computing with Scilab, 1999, Birkhauser, Basel.

[2] S. L. Campbell and R. Nikoukhah, Auxiliary Signal Design for
Failure Detection, Princeton University Press, to appear in 2004.

[3] S. Campbell and R. Nikoukhah, Auxiliary signal design for robust
active failure detection: the general cost case, Proc. Safeprocess
2003, Washington, DC, 2003, 259-264.

[4] J. P. Chancelier, F. Delebecque, C. Gomez, M. Goursat, R.
Nikoukhah, and S. Steer”, Introduction à Scilab, Springer-Verlag,
France, 2002.

[5] F. Kerestecioǧlu, Change Detection and Input Design in Dynamical
Systems, Research Studies Press, Taunton, U.K., 1993.

[6] F. Kerestecioǧlu and M. B. Zarrop, Input design for detection of
abrupt changes in dynamical systems, Int. J. Control, 59 (1994),
1063-1084.

[7] R. Nikoukhah, S. L. Campbell, K. Horton, and F. Delebecque,
Auxiliary signal design for robust multi-model identification, IEEE
Transactions Automatic Control, 47 (2002), 158–163.

[8] R. Nikoukhah and S. L. Campbell, Active failure detection: Auxiliary
signal design and on-line detection, Proc. IEEE Med. Conf. Control
and Automation, 2002.

[9] R. Nikoukhah and S. L. Campbell, Auxiliary signal design for failure
detection in uncertain sampled-data systems, Proc. 2003 European
Control Conference, 2003, to appear.

[10] I.R. Petersen, A.V. Savkin, Robust Kalman Filtering for Signals and
Systems with Large Uncertainties, Birkhauser, 1999.

[11] X. J. Zhang, Auxiliary Signal Design in Fault Detection and Diag-
nosis, Springer-Verlag, Heidelberg, 1989.

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrA15.4
	Page0: 4414
	Page1: 4415
	Page2: 4416
	Page3: 4417
	Page4: 4418
	Page5: 4419

