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Abstract—The Akaike Information Criterion ( AIC) larger data sets facilitates the use of very powerful large
is often used as a measure of model accuracy. The sample distribution theory. Such theory leads to an optimal
AAIC statistic is defined by the difference between detection procedure for small changes in dynamic systems.
AIC values for two nested models. TheAAIC statistic  This will become apparent in the development of this paper.
corresponding to a particular change detection problem The AAIC statistic for the detection of changes or faults
has been shown to detect extremely small changesin dynamic systems was developed by Larimore [1], and
in a dynamic system as compared with traditional compared with traditional failure detection methods such
change detection monitoring procedures. In this paper, as CUSUM and principal component analysis by Wang
a theoretical analysis is developed that shows thAAIC  et. al. [2]. Significant improvements in detection sensitivity
is actually an optimal test for the detection of any were achieved using thAAIC statistic, in some cases by
small changes in the characteristics of a process. It is a factor greater than 100. Th& AIC applies simply to
also shown that the change/no-change hypotheses areboth static regression models as well as complex dynamic
nested. This result leads to a generalized likelihood systems. However, the major issue when usingAhelC
ratio test with optimal properties as well as the precise has been the lack of a theory for the distribution of the
large sample distribution for the test. A simulation of test statistic that is needed to determine the probability
a dynamic system with small changes demonstrates the of detection and false alarms. This paper addresses this
precision of the distribution theory as compared with  shortcoming.
the empirical results. To introduce the use oAAIC for detecting a change,

suppose thaD,; and D, are two data sets that are disjoint
I OVERVIEW and possibly noncontiguous. Of primary interest is deter-

The problem of detecting small changes in dynamitining if a change has occured between the data Bets
systems is important in a number of applications. In somand D,. The following two hypotheses are considered:
systems, there is a change in the dynamics over time, suche No Change HypothesH,,: a single model\Z,, is valid
as the occurrence of a small leak, a build up of soot for the two data sets); and D-.
in a boiler, or valve fouling or stiction. These changes « Change Hypothesiél,: different models are required
may be small relative to the noise and disturbances in the for the two data setsD; and D,. These models are
system, requiring a significant amount of data to detect assumed to be statistically independent and will be
their presence. Although the changes in the relevant systems denotedd/; and M.
parameters may be small, the potential consequencesBach of the models\/;, M,, and M,, is the result of
terms of economics, reliability, or safety may be very largeparameter estimation using the maximum likelihood (ML)
In such cases, the accurate determination of the presencemaéthod. The ML method is used because of the optimal
a change and the precise determination of the nature of sugtoperties of such models particularly concerning the use
a change can be critical. of likelihood ratio (LR) tests and thel/C. We will also

The nature of this small change detection problem is quitefer to the no change hypothesis as the null hypothesis
different than many detection and identification method$f,, because it is to be tested for rejection against the
currently under study in the literature. Many detectiormore general, alternative hypothegis as in the traditional
methods focus on the rapid detection of large changes hypothesis testing terminology. It will be shown thét,

a process. By their nature, the detection of small changés nested inH,, which means that the no change or null
requires substantial amounts of data following the proces$s/pothesisH,, is a special case of the change, or alternative
change, so that this is a class of problems distinct frorypothesisH,.

the rapid detection of large changes. One advantage in theThere are several approaches for comparing the two hy-
problem of detecting small changes is that the need to upethesedi,, andH,. The traditional approach is to compute
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the likelihood ratio statistic, while a closely related approach is optimal. Thus the GLR statistic provides an optimal
is to compute the difference of th&/C values for the two global test for any changes in the process.
hypotheses. The similarities and differences between thesein developing the distribution theory for th& AIC
two approaches will be discussed in more detail in followingtatistic, some of the extensive theory of likelihood ratio
sections. TheAIC statistic is an asymptotically unbiasedtests will be utilized. The contribution of this paper is
estimator of the Kullback—Leibler information quantity andin Showing that theAAJC statistic does indeed fit this
is equal to two times the negative log of the maximizedramework for the case of a fixed model order. Also we
likelihood function p|US two times the number of eStimateq:jevek)p some of the specific details for showing that the
parameters [3], [4]: problem of optimal change detection is indeed a nested
_ A & problem so that the generalized likelihood ratio testing
AIC = —210gL(0, ) + 2v @) theory applies. It is hoped that a distribution theory for the
The first term is a measure of model fit white can be AAIC will lead to a much greater use of it, because it is
viewed as a penalty term that encourages the use of parsbw possible to calculate confidence limits for the detection
monious models. For comparing two hypotheses using tleé process faults and changes.
AIC, the values of thedIC for the respective hypotheses In the development below, the multivariate regression
are differenced. Thus thA AIC' statistic is defined as the model is discussed in Section Il and the no change hypoth-

difference of theAIC's for the hypothese&/, and H,,, esis is shown to be a special case of the model change
N hypothesis. Thus, the hypotheses are nested. The gener-
AAIC = AIC(H,,) — AIC(H,) alized likelihood ratio test and its asymptotic distribution

= AIC(M,) — AIC(M;) — AIC(M,) (2) forthe nested case are discussed in Section IIl. Ah¢&
is developed in Section IV and related to the likelihood
ratio test to obtain the asymptotic distribution of thel/C'

¢ he ind q fth q q though statistic for the nested case. A simulation of an ARX time—
rom the independence of the modél§ and/>. Although  gejeg process is given in Section V, and the observed

the AAIC quantity is fundamental to comparisons@f@ _distribution of the AAIC statistic is compared to the
for various hypotheses, the authors are not aware of it be”ﬂﬁeoretical distribution.

applied to the comparison of the hypotheses of no change

where the equality follows because tHéC for the change
hypothesisH,, is simply the sum of the respectiv&/C's,

H,, and changeH,. Also we are not aware of it having Il. MULTIVARIATE REGRESSION ANDNESTED
been shown that these hypotheses are nested as discussed STRUCTURE
below.

) o ) In this section, the change detection problem is developed
In this paper, theAAIC stafistic is analyzed in SOMe o the case of multivariate regression. It will lead to

depth to reveal the distribution theory for a number ofne gistribution theory for the large sample case for ML
particular cases. ThAAIC is particularly attractive as a agtimators.

statistic to test for changes and faults in dynamic systems: the multivariate regression model
o First, it will be shown that for a fixed order of the

various models, the\ AIC is a nested test of the null Yi=Ouit+¢; ; N=_E(ee]) 3)
hypothesisH,, verses the alternative hypothegis of
a change in the process. Y —0U + E )

e« The AIC is an estimate of the Kullbaekeibler
information that is a fundamental measure of modebver some specified set of measurements, for example
approximation. It is a measure of model disparityy = 1,...,N, will be considered below with several
based on the fundamental principles of sufficiency andariations. Heref is the population average or expectation
repeated sampling [5]-[7]. operation,Y is the (p x N) measurement matrix with

o For fixed orders of the various models, tied/C  theith measurements as thedimensional column vector
is a likelihood ratio test that has optimal statisticaly;, and E is the (p x N) measurement error matrix with
properties as the sample size becomes large. ith measurement error vectef. It is assumed that; is

» BecauseAAIC is a likelihood ratio test, for large normally distributed, independent ef for j # ¢, and has
samples it is a uniformly most powerful invariantcovariance matrix.. The (p x ¢) matrix © is the unknown
test statistic for the detection of all possible changeparameter matrix, and@’ is the (¢ x N) regressor matrix
that might occur in the hypothesized model structureyith the ith columnu,;. The dimensions o® andU in the
including changes in dynamics, input and output gaingliscussion below will depend on the particular model under
and disturbance characteristics described as a tingensideration.
invariant linear system. For the no change hypothes,,, which is the null

« In using a single test statistic for determining if ahypothesis of a single model valid for both data sBts
change has occurred in any combination of the paand D, the subscript 'n” will be used. Thus the unknown
rameters, the generalized likelihood ratio (GLR) tesparameter matriX®,, is (p X ¢) , and the regressor matrix
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U, is (¢ x N). The multivariate regression model for the
no change hypothesid,, is then

T

yi = Opu; +e; 5 B, = E(ese;

fori=1,...,N.

Under the change, or alternative hypotheéls, suppose
that the two data set®; and D, are distributed indepen-
dently with samplegY7,U;) and (Y3, Us) of sample sizes
N; and N, respectively withNV = Ny + Ny, and thatU in
Eq. 4 is correspondingly partitioned &= (U, Us). If the
(p x ¢) parameter matri® is estimated separately &
and ©, for each of the data set#); and D, respectively,
then two independent regression models are obtained

) ®)

Yi =O1u; +e ; X1 =E(esel) (6)
fori=1,..., N, that is data seD,, and
Yi = Oou; +e; ; To=E(eie}) 7

fori=N;+1,...,N that is data seD,. Thus the model
for the alternative hypothesis is given in the form of (4) by

 3)-[a 3]l 20 5] e

O Y2 0 @2 0 U2 0 E2

and the parameter matrix for the mod#l, can be repre-
sented as:

©; 0
0 O

Now it is shown that the no change hypothedi,
is a special case of the change hypothdadjs when the
parameter matrice®,,, ©;, and ©, all have the same
dimension,i.e. the model orders are all the same ftf,,,
My, and M. To show this, the log likelihood function for
H, is expressed with the valués, andX,, substituted for
01,0, andX,X,, respectively. The resulting log likelihoo
function is

0, = [ ©)

d

log L(Y1|U1;01 = ©,,%1 = ¥,)
+log L(Y2|Us; 02 = O, 33 = 5y,)

N 1

1 —_

= 7 log |Zn| + § Z(y'b - enui)Tznl(yi - @nul)
=1
N

N. 1
+ 72 IOg |2n| + 5 Z (yz - @nul)TE:Ll(yl - 677.'“1')
i=N1+1

N

N 1 _
= b} log |, | + B ;(3/7 - enui)Tznl(yi — Onuy)

=log L(Y|U;0,,%,) (10)

This function is precisely the log likelihood fdt,, .
From the above analysis, Theorem 1 follows:

Theorem 1. Nested Model Structure. |If U = (Uy,U,), SO
the matrix dimensions 08,,, ©;, and ©, are identical,
then the parameter§®©,,Y,) under the no change
hypothesisH,, lie in the subspace of the parameter spac

(01,049,341, %,) for the change hypothesH,, defined by
the constraints@; = ©, andX; = Xs.

The maximum likelihood estimators for the model (3)
obtained by maximization of the likelihood function are
developed in Anderson [8] as

6=vuTwuh)1,; o= (yr-evuTeT)/N (11)

For the case of the change modd), that consists of model
M, for datasetD; and modelM; for datasetD-, the log
likelihood function is as in (10) except that the parameter
values are not constrained to be the same for both datasets.
Then the two likelihood expressions for each datagst,
and D,, are maximized separately in maximizing the sum.
Thus there is no difficulty in considering a concatenation
of two models that involve separate parametés, >,) or
(02, X5) associated with the respective disjoint datagets
and D..

The ML estimators have the optimum statistical proper-
ties asymptotically in large samples under regularity condi-
tions of:

« Unbiased parameter estimates referred to as consistent

estimates.

« Minimum variance estimates referred to as efficient

estimators relative to the Cramer-Rao lower bound.

The ML estimators are used extensively below in both
the GLR tests that are also called maximum likelihood ratio
tests as well as in the computation of tHéC, which uses
the logarithm of the maximized likelihood function.

IIl. LIKELIHOOD RATIO TESTS

A traditional approach in statistics for testing nested
hypotheses as in Theorem 1 is to use generalized likelihood
ratio tests. We compare two models, modé}, under the
null hypothesisH,, and modelM, under the alternative
hypothesisH,, identified from the same dataset of length
N, but allow for concatenated submodels as in Theorem
1. The models have,, andr, parameters, respectively. In
this section, the null hypothesis moddl, is assumed to be
a subset of the alternative hypothesis modi&]. In other
words, model),, is nestedin model M,, and v, < v,.

Let A denote thegeneralized likelihood ratighat is also
sometimes called the maximum likelihood ratio:

s Ln(©4)

A(On,0,) (12)

La(©4)

The maximized likelihood functiong.,,(©,,) and L, (©,)
are for models\/,, and M,,. In particular in the discussion,
the null hypothesisd,, and the alternative hypothesig,
are nested by Theorem 1. To satisfy the regularity conditions
for the asymptotic large sample results, we will consider
the situation where the sample sizd% and N, increase
without bound in a fixed rational proportion= n,./m,. of
the form Ny /Ny, = r wheren,. andm,. are integers.

First consider the case that the null hypotheAis is
#ue. Thelog likelihood ratio statistic —2logA(©,,, ©,),
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can be used to test the null hypothesis that the additionaiodelfé’g(x) and the true modef.(x) is given by:
parameters in model/, are not significantly different

from zero. Asymptatically for large sample size, the log I (f*,f@ E) é/f*(x)log fi(x)
likelihood ratio statistic for the test of additional parameters ’ fé,i(x)
in nested models has been shown to follow?adistribution Asymptotically for large samples, théIC is an unbiased

dz (13)

with v, — v, degrees of freedom [9]. estimator of KL information, so:
Now consider the case where the null hypothdgjsis .
false,i.e., a single model is not valid for both datasets. We AIO:g@i [I (f*’ féi)] (14)

still require modelM,, to be nested within modell,, but  \yhere g, . is the expectation taken with respect to the
instead of testing that the additional parameters are zero, = A .
ndom variablesd, ) of estimated parameters.

we are testing if their estimated values are significant. Wald®

[10] has shown that the log likelihood ratio statistic follows,, The value of .thEAIC can be S*.‘OW” o be.equal to two
9 g " times the negative log of the maximized likelihood function
a noncentraj“ distribution if the additional model structure

is significant (that is, the null hypothesig,, is false). Let PIUS WO times the number of estimated parameters],

X2(va — vn,62) denote a noncentray? distribution with [4]. Repeating Eq. 1.
v, — v, degrees of freedom andoncentrality parameter AIC = —21ogL(é, 2) + 2v (15)

§2. If the noncentrality paramete¥® is nonzero, then the Th ber of estimated ters i Lo th b
probability of rejecting the null hypothesig,, is increased. € number ot estimated parameters 1S equal to the numboer

This will be illustrated in Section V with a simulation P4 of elements o plus th? numbgp(p+ 1)/2 of unique
example. elements of the symmetric matriX. Thus v = pq +

Asymptotically for large samples, GLR tests are uni-p(p+ 1)/2. The AIC value for a dataset oV independent

formly most powerful invariant tests [11]. The invariance()bservatlons and the regression model of Eq. 5 is:

property derives from the asymptotic property of ML es- AIC' = N (log(27) + 1) + Nlog|S| + 2pg+p(p+1) (16)
timators, that transformation of the data by scaling, rota-

tion, or translation of the data produces a correspondi ote that for the special case where the c_ovariance matrix
transformation on the parameter estimates to leave t S a known d'agF’”a' structure, only the diagonal elements
distributional properties unchanged. As a result for larg8' > need be estimated, and= pq + p.

samples, such transformations on the data leave the GLRTO compare two models, let the/C values for mod_els
statistic invariant so that decisions are not affected by theé\é[" and M, be dgn.oted byAIC,, and AIC,. We wil
transformations. This guarantees that among such invariafit® theAA_I C stat|s_t|c to_ compare these two models. The
tests, the GLR test is the optimal single test of all possibléAIC statistic, defined in Eq. 2 is:

changes that may potentially occur in the process. This AAIC = AIC,, — AIC, (17)
property guarantees that no other single invariant test has .

lower probabilities of errors than the GLR test. In the nexEOF @ nested hypothesis test, thel/C’ can be related to the

section thed IC will be discussed. A derivation linking the GLR statistic. In the case of a nested model comparison,

AAIC statistic to GLR testing will be presented. the theoretical probability dis_trit_)ution A AIC depends
on whether the null hypothesis is true or false.
IV. AKAIKE INFORMATION CRITERION For the case where the null hypotheéls is true, from

In this section, the concept of thdIC is developed the GLR discussion it can be shown that thel 7 C statistic,

starting with the KullbackLeibler information. Unless oth- Ed- 2 follows ax®(v, — vy) distribution shifted by a

erwise noted, the asymptotic large sample behavior of tHP"Stant2(va —vy), for regression models and maximum
AIC will be primarily discussed. likelihood estimation [4], [13]. Starting from the result of

A natural starting point for thed/C' is the use of the Wilks [9],

K—L information as the natural measure of model approx- —210g M(©1,04) ~ X2 (Va — 1) (18)
imation. Based on the fundamental statistical principles of .
sufficiency and repeated sampling, it has been shown that —2log Ln((?n) ~ X2 (Ve — V) (19)

the K-L information gives the natural measure of statistical L,(0.)
model approximation [5]-[7]. This result applies to a very A A 9
general class of problems including finite sample size and —2(10g Ln(On) —log La(Oa)) ~ X" (va —va)  (20)
arbitrary probability distributions. In many of the papers of To count parameters, the number of outpptss always
Akaike, arguments involving entropy or information werefixed. In the simplest case of Theorem 1, each maddgl
used, although no fundamental justification for the use af/;, or M> haspq + p(p + 1)/2 parameters so that the
information measures was given. number of additional parameters i, is

Adoption of the KL information as the measure of v, — v, = pg+p(p+1)/2. In more general cases with the
model approximation gives a very clear justification for thenodels still nestedy, —v,, = p(¢1 +¢2 — ¢n) + p(p+1) /2.
AIC. The K-L information [4], [12] between the estimated In any nested case, using (15), (17), and (20) gives:
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TABLE |
SIGNIFICANCE LEVEL FOR THETESTAAIC — 2(v, — v,) > 0.

[ Degrees of freedomy, — vn 1 2 3 4 5 8 11 16 20
[ Significance leveln 0.157 0.135 0.112 0.092 0.075 0.042 0.024 0.010 0.005 |

factor approaches one for large samples. Asymptotically,
AAIC + 2(vy — v) ~ X2 (Vg — V) (21) AAIC.— AAIC. The distribution of the likelihood ratio

: ) (18) is much more complicated in the small sample case,
For the case where the null hypothesls is false, using but the bias of thedIC is corrected as in thelIC..
the result of Wald [10] and taking expected values of Eq. ¢

. In the above discussion, the nested case has been dis-
21 gives,

cussed for comparison with the GLR test. Further, A&’
E[AAIC] + 2(vq — vn) = E[X*(Va — m,0%)]  (22) applies to the comparison of a multitude of hypotheses, not
) just two as in the GLR test. In complex processes such

Using the fact that the expected value of a noncentfal a5 dynamic systems, there are a multitude of models and

distribution, x*(v, 6) is equal tov + 62, hypotheses because typically the state order or ARX order
E[AAIC] = (v — v) + E[6?] (23) is unknown and must be estimated from the data.

Or, solving for the expected value of the noncentrality V. SIMULATION EXAMPLE

parameter, A simple simulation example is used to confirm the

theoretical result for the distribution of th® AIC statistic.
EB[5*] = E[AAIC] + (va = va) (24) The following ARX model was simulated by specifying
Thus an unbiased estimator of the noncentrality paramet#€e input,u to be a zeremean gaussian process with unit
is [13]: variance:
62 = AAIC + (vg — 1) (25)
The AAIC is a GLR test where the probability of y(t) = 02y(t = 1) + 0.1y(t = 2) = 0.7u(t) + 3u(t — 1)
e

rejection o of the null hypothesis is a function of the +12u(t = 2) = 0.15u(t = 8) +e(t) (27)
number of additional parameters. Because the test statislibe unmeasured noise,t) was a zeremean gaussian
AAIC — 2(v, — v,) is the GLR condition for rejecting process with a variance of 0.1. One thousand sets of
the null hypothesis, then under large sample theory, Tabte'o 500 point data series were generatéd (= N, =
| shows the probabilitye, of rejecting the null hypothesis 500, N = 1000), and theAAIC statistic was calculated as
H, when it is true.« is also called the significance level described in Section IV, assuming the correct model order
of the test. is known. A histogram of the calculateNAIC values and

The reason why ther level adjusts with the number of the theoretical?(8,0) distribution are shown in Figure 1.
additional parameters is because the shapepf(a) dis- Next, the simulation was repeated, making a small change
tribution changes when the number of degrees of freedoraf £0.01 to each model parameter in Eq. 27 for the second
v, increases. The automatic adjustment of thkevel with  dataset. Using the same method to calculate A/C
the number of additional parameters deals with one of thsatistic, a new histogram was produced and is shown in
major issues in using GLR tests with few or many additionaFigure 2. It is clear that th& AIC statistic does not follow
parameters: the need that it take into account the numbire theoreticaly?(8,0) distribution when a small process
of additional parameters being estimated. Of course, khange is present for the second dataset. When a process
choosing a criterion different frod A7C'—2(v,—v,,) > 0, change occurs, the null hypothesiH,, is false and the
the « values in Table | can be changed. AAIC statistic follows ay?(8,62) distribution, where an

Finally, we discuss a small sample version of théC'  estimate of the noncentrality parameter is given in Eq. 25,
derived by Hurvich and Tsai [14]. The correctetfC 6% = AAIC + (Vg — V).
value, AIC,, is of particular use when the sample size is
small relative to the number of estimated parametédis.,
is asymptotically equivalent todIC for large samples, The theoretical probability distribution oAAIC has
and provides an asymptotically unbiased estimator ef Kbeen derived for the nested case based on mild assumptions.
L information. The small sample bias correction fafC It was shown that under suitable regularity conditions on

VI. SUMMARY

using N data points is: the estimated parameters, and assuming independence of
o N the two datasets)A AIC follows a x? distribution, shifted
AIC, = _21ogL(@,2)+2y< ) (26) by 2(v, — v,,), and with v, — v, degrees of freedom.
N-v-(p+1)/2 The AAIC can also be calculated for the case of two

The AIC, has a small sample correction factor multiply-noncontiguous datasets. In such a case, the comparison is
ing the 2v penalty term that appears in th&/C. This made between a model obtained from the entire dataset and
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