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Abstract— This paper analyses a variable reconstruction Since the model plane and the residual subspace are
technique for identifying a faulty sensor. The reconstruction is spanned by eigenvectors of the covariance matrix of the
associated with the application of princi_pal component analysis sensor readings, it is shown here that the above changes
(PCA) and attempts to remove “fault information” from the : .
sensor reading. It is shown that the reconstruction (i) affects can be despnbed by the mflut_ance of the reconstruct.ed
the geometry of the PCA decomposition (i) leads to changes S€NSOr readings upon this covariance matrix. The alteratio
in the covariance matrix of the sensor readings and (iii) alters of the covariance matrix also implies that either the PCA
the determination of PCA based monitoring statistics in terms  pased monitoring statistics or their confidence limits are
of their confidence limits. These changes must be incorporated 4ttected by this reconstruction. If this effect is not reradv
into the monitoring scheme, as false alarms may otherwise be from these statistics, it is demonstrated that an “out-of-
encountered. Consequently, an improved reconstruction based o > " i
fault diagnosis is proposed here. statistical-control” situation may remain even if the “flau
information” is correctly removed from the sensor. An im-
proved technique is then introduced, which incorporates th

Sensors provide vital information about the current statalterations caused by the reconstruction upon the covaian
of the operation of a large-scale process, which is requiredatrix.
for process control, optimization or monitoring. It is ther ~ The paper is divided into the following sections. A brief
fore essential to detect abnormal sensor readings, suchrasiew of PCA is given prior to a discussion of how to
sensor bias, failure, drift or precision degradation. detect faulty sensors and how to identify which sensor

MacGregor et al. [1] highlighted that the processes, comreading is “faulty” using the reconstruction techniqueeith
monly found in the chemical and manufacturing industrya geometric analysis of the reconstruction technique is
frequently produced large sets of highly correlated precegiven, which is followed by a description of the influence
variables. This has led to the development of statisticalf the reconstruction upon the covariance matrix and the
modelling techniques that are collectively referred to amonitoring statistics and their confidence limits. Finally
multivariate statistical process control (MSPC) [2], [3]. an application study is presented to (i) demonstrate the

One of the most popular MSPC methods is PCA. Detecout-of-statistical” situation may be noticeable aftereth
ting abnormal sensor readings relies on PCA based morieorrect” sensor reading has been reconstructed and (ii)
toring statistics. Dunia et al. [4] proposed a reconstarcti show that removing the influence of the reconstruction
approach for identifying which sensor produced “faulty’from the covariance matrix and the monitoring statistics
readings. This utilized the linear relationships betweden t overcomes this deficiency.
different sensors to predict, for example, the reading of
one sensor from the readings of the others. Therefore, by II. PRINCIPAL COMPONENTANALYSIS
predic_ting the sensor that produced an incor.rect readheg, t The application of PCA involves the construction of a
“fault information” can be removed from this sensor. The

itori tatisti 410 sh i-staisti reduced set of score variables that represents linear com-
monitoring statisics were assumed 1o S “OW an”| S © binations of a set of sensor readings. The values of these
control situation after the reading of the “faulty” sensadh

variables are given by:
been reconstructed.

This paper provides a thorough geometric and mathe- t=P7z, (1)
matical analysis of this technique, which reveals that re-
constructing a sensor reading leads to changes in the P@/eret € R™ is the vector of: score variables? € RV*"
decomposition that describe the relationships between tfgea transformation matrix with column vectors as the first
sensors. More precisely, the PCA model plane, describing dominant eigenvectors of the correlation matfix; =
the linear combinations among the sensors, remains up'<Z”Z € R¥*Y. This is established using a reference
changed although the base vectors, which span the modkita setZ” = [ 7, Zo ... ZK } with K being the
plane, change their orientation. Furthermore, the dingensi number of mean-centered and scaled sensor readings,
of the residual subspace that, representing the direcfion BY is the vector of the(fN > n) sensor readings. The
the residuals of the PCA model, reduces by one. mismatch error between the measured and predicted sensor
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readings is: where Z; is the reconstructed reading of thi& sensor
z;. Geometrically, the reconstruction process shifts tha dat
e=z-Pt= [IN N PPT] z ) point, representing the values of the sensor readings ¥ an
The application of PCA divides the sensor readings into dimensional space, along the direction of tHe variable.
model plane and a residual subspace. The model plane isAfter Z; replaces; to form the vector of sensor readings
spanned by the first dominant eigenvectors @&, and z, theT? and( statistics can be computed. This is followed
describes the linear combinations of the sensor readings. by updating of the on-line monitoring charts. If the “fadilty
contrast, the residual subspace is spanned by the remaing®nsor has been correctly identified, it is assumed that
(N —n) eigenvectors o8, and represents the mismatchthe monitoring statistics show an ‘“in-statistical-cofitro
error of the PCA prediction of the sensor readings. situation. However, it is explained in this paper that the
“out-of-statistical-control” situation may still remaiaeven
[1l. FAULT DETECTION USING UNIVARIATE STATISTICS ¢ the “faulty” sensor has been reconstructed.
Two univariate statistics, denoted by &nd Q, can be

established using the values of the score variatleand V. GEOMETRIC ANALYSIS OF RECONSTRUCTIONBASED

the mismatch erroe: FAULT DIAGNOSIS
72 — tTAt — Z_z and The geometrical properties of the reconstruction tech-
N nique proposed by Dunia et al. [4] are now analysed. The
N distance of a shift of the data point to the model plane can
Q = efe= Z 63, (3) be described by Theorem 1.
j=1 Theorem 1: The reconstruction of thé” sensor reading

results in a shift of the data point along the direction of the

it" variable in the N-dimensional space. This leads to a

score ande; is the j** residual error. Each of the above minimi_zation of the_distance between the model plane and

statistics can be plotted against time and the conﬁdenf:l%e shifted data point. . ) ) .

limit for the T2 statistics is given by: A proof of' Thgorem l.|s given in Appendm A. Given that

a data pointz is described in av dimensional space, the

n(K— 1)F K 4) reconstruction ok; to form z results in a projection of
K—n ~ 070 onto a(N — 1)-dimensional plane, as described in Theorem

where « is the confidence, typically 95% or 99%, and?2.

F, k—nq is the value representing the confidence limit of Theorem 2: The reconstruction of; is equivalent to the

a F-distribution. The confidence limit for the Q statistieica projection ofz onto a(/N —1)-dimensional plane (subspace)

Here A is a diagonal matrix containing the largest
eigenvalues\; of Sz, in descending ordet; is the i'"

2 —
Tn,K,a -

be calculated as follows: II along the direction of the®" variable. This plane is
1 spanned by the following base vectors:
Ca\/ 292h3 92h0 (ho - 1) "o
1 0
Wheret91 = Z /\i, 02 = Z )\12, 93 = Z )\?, h() = : : :
i=n—+1 i1=n-+1 i=n—+1 0 0 1
1 — 289 and the variable., is based on the inverse error [T = e Ul e o eay |
function, evaluated for a confidence[5]. 1—Ocm 1—007:7, 170%
IV. FAULT DIAGNOSISUSING VARIABLE .
RECONSTRUCTION 0 (‘) 0
The reconstruction of a “faulty” sensor reading is based 0
on the prediction of the sensor readingsysing the PCA 0 0
model:
7z =Pt =PP’z = Cz, (6) : :
whereC = PP’ More precisely, given that thé" sensor ci<?+1> o C?N ) (8)
is “faulty”, the prediction of thei’” sensor replaces the T—ci; T—cii
recorded reading of this sensor to filter out the “faulty” 1 0
information. Using the elements of th& row of C, Cij : :
the prediction of the*” sensor reading is equal to: 0 1
N Note that this plane includes the model plane and the resi-
% = Z - Gij 2 (7) dual subspace. A proof of Theorem 2 is given in Appendix
. L= Gy B
J=1#1 :
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VI. RECONSTRUCTION OF THECOVARIANCE MATRIX Remark 3: Since the dominant eigenvectors o8,

The last section highlighted that reconstructing iHe May be different from those o6~ implies that (i) the
sensor reading gives rise to a description of each data poﬁf‘?CtiO“S for which the score variab!es have maximum
by a (V — 1)-dimensional subspace rather than the originaf@riance may change and (i) the variance of each score
N-dimensional one. variable may change.

Since the mode_l plane and the _re;idl_JaI sub_space ke Changes of the Residual Subspace
spanned by the eigenvectors 8f,, it is imperative to
analyze the influence of the variable reconstruction upon AS shown in Section V, the reconstruction results in a
the covariance matrix. This allows the influence of th&hift of a data point along thé" variable so that the squared
reconstruction upon the model plane and the residual sul§ngth of the error vector is minimal (Theorem 1). Since
space to be analyzed. The next subsection discusses h\@ reconstruction procedure is, in fact, a projectionzof
to determine the “reconstructed covariance matrix”, whicQMo II, which is of dimension(N — 1) (Theorem 2), it

is followed by an evaluation of the changes in the moddP!lows that the dimension of the residual subspacgNs-
plane and the residual subspace. n — 1), because the dimension of the model plane remains

) ) . unchanged.
A. Calculation of the Reconstructed Covariance Matrix Since the model plane is assumed to describe the linear
The reconstruction of thé” sensor reading requires therelationships between the sensors, the eigenvalues of the
ith row and thei'” column of Sz~ to be recalculated as discarded eigenvectors represent the variance of the measu

follows: N rement uncertainty of the sensor reading. Given tSat;
. Cia has rank(N — 1), one eigenvalue is equal to zero. The
iSik = E Ska- ) ; ; ;
1—cy measurement uncertainty of each sensor reading is assumed

_ to be represented by normally distributed, independently
In (9) i%i,, are the non-diagonal elements of thé row and identically distributed (i.i.d.) sequences. This i@pl
and thei’" column of reconstruction 08, ;Szz. The that the nonzero eigenvalues of the discarded eigenvectors

it" diagonal element ofS is given by: are equivalent.
N 2 Remark 4: The squared length of the error vector is equal
8 = Z %saa (10) to the scaled sum of the “discarded” eigenvalues. This
a:l;éi,( ~ Cii) implies that the squared length of the error vector after

N-1 N o reconstruction is smaller, or equal to the length of thererro
+ o2y Y et vector of the unreconstructed data point.

— )2
a=1#ib=a+1#i (1 —cu)
I VII. ADAPTATION OF THE CONFIDENCELIMITS
Remark 1: The rank of;Sz is N — 1, as theit" row or

column is linearly dependent on the remainiNg- 1 rows
or columns.

Subsection VI-C highlighted that a change in the model
plane and residual subspace arise, as a consequence of the
reconstruction procedure. These changes can be described
B. Changes in the Model Plane by ;Sz~ and may lead to a different set of eigenvalue and

Pearson [6] showed that the squared length of the residigipenvectors. Given the definition of th€* and @ statis-
vector, between a set of data points of dimensiérand tics, which are determined using the eigenvector-eigerval
a given model plane of dimension, is minimized if the decomposition ofSzz, it is necessary to account for such
model plane is spanned by the firsdominant eigenvectors changes, if the reconstruction procedure has been applied.
of the covariance matrix which is established on the basis If the i*" sensor reading is to be reconstructed, the
of this set of data points. following steps must be carried out to incorporate the

Theorems 1 and 2 show that the projections of a set dffluence of the reconstruction upon the model plane and
data points ontdI leads to a minimum distance betweenthe residual subspace: (i) reconstruct the covariancematr
the projected points and the model plane. This gives rise tty applying (9) and (10), (ii) calculate the eigenvalues

the following Lemma: and eigenvectors ofSy, (iii) calculate theT? statistic
Lemma 1: The reconstruction of thé” sensor reading using the retained ~eigen\£ec~tors~ and eigenvaluesSef,

does not influence the orientation of the model plane. i.e.t = P’z andT? = t"A~'t , (iv) compute theQ

The above lemma follows from [6]. statistic usingé = z — Pt and (v) estimate the corrected

Remark 2: The fact that the orientation of the modelconfidence limits for th&) statistic by reapplying (5) using
plane is not affected by the reconstruction procedure do#ise “discarded” eigenvalues ¢8 ;.
not imply that the orientation of the firstk dominant
eigenvectors remain unchanged.
The above remark is a result of the changes that the A simulation study is used to demonstrate that the ap-
reconstruction procedure imposes 8p,. Moreover, the plication of the conventional reconstruction technique by
dominant eigenvalues o, may also change. Dunia et al. [4] may present an “out-of-statistical-cofitro
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situation even if the “faulty” sensor is correctly identifie Hotelling’s T2 Statistic
The improved reconstruction technique, introduced in Set " " " " " " " j
tion 7 is shown to correct this anomalous situation. 20f

The simulation dat& involves 10 sensors of which any %13
5 are linearly independent upon the remaining 5 ones. ]
reference data set containing 500 samples was genera
as follows: 500 samples of 5 normally distributed randon
variablesx of zero mean were simulated and the element "
of z were determined as linear combinationsxofAfter sca-
ling z to unit variance, normally distributed i.i.d sequence: ©
of variance 0.05 were superimposed »oio represent the
measurement uncertainty.

The retained eigenvecto®, and eigenvaluesy, of Sz »
were computed to be:

>
o 10]

A= (_ 444077 0.54 037 0.12 ) (_11) 0 50 100 150 200 250 300 350 400 450 500
-0.34 0.03 -0.18 0.27 —0.33 Number of Data Point
—-0.34 0.15 0.15 -0.21 0.31 . - ' .
033 014 —007 —053 012 gghrﬁdueﬁrgggsgdsé?lgtﬁigﬁ:tr ;ll.alilzla]ble reconstruction based ongo th
-0.27 -0.70 -0.17 0.16 0.26

P — —0.30  0.59 0.06 032 -0.10 ' Hotelling’s T2 Statistic
-0.33 —-0.09 —-0.21 042 0.26 2 T T T T T T T T T
-031 =029 034 -041 -0.37 i d
—0.32 —0.12 048 026 —0.39 2" T T
-0.30 0.08 -0.69 -0.23 -0.30 S 19 ]

| —0.34 0.14 022 -0.04 051 | T+

The discarded eigenvalues are equali®5. The second . ¢ !
sensor reading of the reference data set was first recor © 50 100 150 200 250 300 350 400 450 500
tructed using the technique by Dunia et al. [4] then by Q Statistic

applying the improved reconstruction technique discusse i i i i i i
in Section VII. The influence of the reconstruction upor g

the retained eigenvector®, and eigenvalues), is shown T
below.

A= (1453 1.01 057 042 0.17) (12)
[ —0.34 0.01 0.20 —0.18 0.38 0 50 100 150 200 250 300 350 400 450 500

—0.33 —0.18 —0.13 0.10 —0.36 Number of Data Point
—0.32 —0.22 0.01 0.48  —0.21 Fig. 2. T2 and Q statistic with adapted confidence limits after a progose
-0.29 0.75 0.04 —-0.03 -0.14 variable reconstruction

P - —0.28 —-0.52 0.12 —-0.41 0.09

~ | —034 024 026 —0.37 —0.16 _ o o

—0.31 0.07 =049 0.42 0.31 the confidence limit of the) statistic appears to be too
—0.31  0.02 —047 —-029 041 large. Using the improved reconstruction technique, the “i
—0.29 —0.04 0.61 0.40 0.29 statistical-control” situation is noticeable for t& statistic
—0.34 —0.11 =015 —0.10 —053 and the confidence limit of thé€) statistic is also much

. smaller. Consequently, this reconstruction of the second
As expected, the effect of the reconstruction of the secoRgyriable has shown that the technique by Dunia et al. [4]

sensor slightly increases the values of the retained esgenynay run into difficulties, whilst the proposed technique
lues and produces a different set of eigenvectors. The successfully removes the deficiency.

and @ statistics for the reconstructed data poiatsf the

reference set are shown in Fig. 1 using the conventional IX. CONCLUSIONS

reconstruction technique by Dunia et al. [4] and in Fig. 2 The mathematical and geometric properties of the propo-

for the proposed improved reconstruction technique. sed variable reconstruction technique by Dunia et al. f#], f
The T2 and () statistics that were obtained using theidentifying sensor faults, were analyzed. This revealed th

technique by Dunia et al. [4] represent an “out-of-statédti  the reconstruction results in shifting a data point alorgy th

control” situation for the7? statistic and suggest that variable that is to be reconstructed in a multidimensional
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space of dimensionV. It was further shown that the To show that the reconstruction of tifé sensor reading
reconstruction is, in fact, a projection along the direttiois, in fact, a projection ok onto a(N — 1)-dimensional
of the reconstructed variable onto(& — 1)-dimensional subspace, the computation @fcan be revisited:

plane.

The reconstruction itself gives rise to changes in the
model plane and the residual subspace, which can be :
described by incorporating the influence of the reconstruc- Zio1
tion procedure upon the covariance matrix of the sensor _ N
readings. However, the changes in this matrix also im- Z=| 2 1Y | (18)
ply that the monitoring statistics are also affected by the
reconstruction procedure. Since it is assumed that after
a “faulty” sensor has been reconstructed, the monitoring
statistics show the “in-statistical-control” situatioit, is N
important to incorporate the effect of the reconstruction f The projection plane is therefore described by the follgwin
determining these statistics. Otherwise an “out-of-stiathl- (N — 1) base vectors:
control” situation may arise as was shown by a simulation

21

study that involved a total of 10 sensors. This application 0 0 0
study also demonstrated that by incorporating the influence 0 0 0 0
of the effect of the reconstruction upon these statisthos, t : : : :
“in-statistical-control” situation prevailed. 0 1 0 0
APPENDIX 0" 0" i 0"
Following the reconstruction technique of Dunia et al. 0 0 0 0
[4] the reconstruction of thé!” variable is analyzed and .
it is shown for the N dimensional case that a minimal 0 0 0 1
distance is determined by applying this projection. Where
the prediction error is equal 8= [I — C]z, and ACKNOWLEDGEMENT
N Dirk Lieftucht would like to acknowledge the financial
2<z1 Zilc1 Y. QaZa Zit1 zN). (13) support from the Queen’s University of Belfast and the
a=17#i European Social Fund.
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N N
(1—6”) Z Qg — Z Cai:(). (16)

a:l;ﬁi a:l;ﬁi

This leads to

Cia

Qg = fora=1...N Aa#i. a7

o l-ca
Based on this, the prediction error of the projected points
has to be smaller or equal to the original prediction error.
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