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Abstract— In many problems of estimation, the high gain
technic is used to compensate for nonlinear terms in order
to guarantee the convergence of the estimator. However, the
use of the high gain generally generates the so-called peak
phenomena (at the beginning, the estimated trajectory deviates
from the desired one). In this paper we extend the observer
stated in [5] to a class of MIMO nonlinear systems. The
proposed observer takes into account the peak phenomena.
An application to a heat exchanger is illustrated in simulation.

I. INTRODUCTION

Consider the nonlinear system:
{

ẋ = f (x,u)
y = h(x)

(I.1)

where the statex(t)∈Rn, the inputu(t)∈Rm and the output
y(t) ∈ Rp.
An observer is generally a dynamical system of the form:







˙̂x = f (x̂,u)− k(t)(h(x̂)− y(t))
ġ = G(x̂,g,y,u)

k(t) = K(g(t))
(I.2)

where k(t) is the gain of the observer, ˆx(t) ∈ Rn, g(t)
belongs to someRN , such that:
g(t) is bounded, lim

t−→∞
‖x̂(t)− x(t)‖ = 0 and if x̂(0) = x(0)

then x̂(t) = x(t), ∀t ≥ 0.
In many observation problems the second equation of (I.2)
is an algebraic one(ġ = 0), see for instance [1], [2], [3],
[4], [5], [6],[10], [11], [12].
To design an observer, many approaches can be considered:
One of them consists in applying the E.K.F. (Extended
Kalman Filter). The gain of this observer derives from a
Ricatti differential equation.
The second approach is a structural one. It consists in
characterizing a special class of nonlinear systems for which
an observer can be designed: linear systems up to output
injection [10], [11], [12], state affine systems up to output
injection [7], [8], [9].
For many systems, the use of a high gain is necessary to
guarantee the convergence of the observer [2], [3], [4], [5],
[6]. However, the use of such gain generates the so-called
peak phenomena:‖x̂(t)−x(t)‖ becomes large at the starting
of the observer. This phenomena is generally undesirable in

the control problems.
This paper is organized as follows:
In section 2, we extend the high gain observer stated in
[5] to a multi-output case. This observer takes into account
the peak phenomena. In section 3, an application to a heat
exchanger is illustrated in simulation.

II. H IGH GAIN OBSERVER: PEAK PHENOMENA

First, let us recall the high gain observer stated in [5].
Consider the class of single output systems of the form:

{

ẋ = Ax+ψ(x,u)
y = Cx

(II.1)

A =













0 1 0
...

...
... 1
0 · · · · · · 0













, C =
[

1 0 . . . 0
]

,

ψi(x,u) = ψi(x1, . . . ,xi,u)

Under the assumption that the nonlinear termsψ are global
Lipschitz functions w.r.t.x, the authors in [5], show that the
following system:

˙̂x = Ax̂+ψ(x̂,u)−S−1
θ CT (Cx̂− y) (II.2)

forms an exponential observer, whereθ > 0 is a constant
which must be chosen sufficiently large andSθ is the
solution of:

θSθ +AT Sθ +Sθ A = CTC

More precisely, it is shown that eT (t)Sθ e(t) ≤
e−(θ−λ )teT (0)Sθ e(0), where e(t) = x̂(t) − x(t) is the
error equation andλ is a positive constant which only
depends on the Lipschitz constant ofψ. This last inequality
implies that:

‖e(t)‖2 ≤ θ nαe−(θ−λ )t‖e(0)‖2 (II.3)

for some positive constantα.
Hence‖e(t)‖ may become close toθ n‖e(0)‖, for t close
to 0. This implies that at the beginning, the estimate state
may deviate from the unknown state of the system (the peak
phenomena).



In this section, we will give an extension of the high
gain observer (II.2) which takes into account this peak
phenomena. The considered class of systems is given by:



















ẋ1 = A1(s,y)x1 +ϕ1(x,u)
...

ẋp = Ap(s,y)xp +ϕ p(x,u)

y =
[

C1x1, . . . ,Cpxp
]T

(II.4)

u is a known input which takes its values in a com-
pact subsetU of Rm, s(t) is a known signal andxi =
[

xi
1, . . . , xi

ni

]T
∈ Rni ; x =

[

x1T
, . . . ,xpT

]T
∈ Rn.

Ai(s,y) =













0 ai1(s,y) 0
...

...
... aini−1(s,y)
0 · · · · · · 0













,

Ci =
[

1 0 . . . 0
]

andϕ i =
[

ϕ i
1 . . . ϕ i

ni

]T
,

The ai j ’s and theϕ i’s are of classC1 w.r.t. their arguments
and are satisfying the following triangular structure:







ϕ i
1 = ϕ i

1(y,u),
ϕ i

j = ϕ i
j(π i

j(x
i),y,u), 2≤ j ≤ ni −1

ϕ i
ni

= ϕ i
ni
(x,u)

(II.5)

whereπ i
j is the projection fromRni into R j−1 defined by:

π i
j(x

i) = (xi
2, . . . ,x

i
j).

In the sequel, we will assume the following hypotheses:
H1) The ϕ i

j ’s are global Lipschitz w.r.t.π i
j(x

i):
∃c ≥ 0;∀x;∀x̄, |ϕ i

j(π i
j(x

i),y,u)−ϕ i
j(π i

j(x̄
i),y,u)| ≤ c‖x− x̄‖

H2) y(t), s(t) and their derivatives ˙y(t), ṡ(t) are bounded.
H3) The ai j ’s never vanish on the compact subsetY ×S
whereY andS are the bounded sets containing the signals
y(t) and s(t).
Our candidate observer takes the following form:



















˙̂x1 = A1(s,y)x̂1 + ϕ̂1(x̂,u)+Λ−1
1 K1(C1x̂1− y1)

...
˙̂xp = Ap(s,y)x̂p + ϕ̂ p(x̂,u)+Λ−1

p Kp(Cpx̂p − yp)

θ̇ = −k(θ −θ0)
(II.6)

wherek is a positive constant. TheKi’s are such that the
real parts of eigenvalues of(Ãi +KiCi) are negative, where

Ãi =













0 1 0
...

...
... 1
0 · · · · · · 0













is theni ×ni matrix

and Λi is the ni × ni diagonal matrix:
diag

(

θ−δi , θ−2δiai1(s,y), . . . , θ−niδiΠni−1
j=1 ai j(s,y)

)

.

Noticing that fromH3), Λ−1
i (t) is well defined for every

t ≥ 0. Finally, δ1 > 0, · · · ,δp > 0 are constants satisfying
the following linear program:

−niδi +n jδ j <
δi
2 ; 1≤ i, j ≤ p (II.7)

Noticing that one solution of (II.7) consists in takingδi =
1
ni

.
Now, we can state our main result:

Theorem 1: Let δ1 > 0, · · · ,δp > 0 be any parameters
satisfying (II.7). Then there exists̄θ0 > 0 such that:∀θ0 ≥
θ̄0;∃t(θ0)≥ 0;∀t ≥ t(θ0);∀x(0);∀x̂(0);∀θ(0) > 0, we have:

‖x̂(t)− x(t)‖ ≤ λe−µt‖x̂(0)− x(0)‖

whereλ > 0, µ > 0 are constants.
Remark 1: if θ(0) = θ0, then ∀t ≥ 0, θ(t) = θ0, and

hence observer (II.2) becomes a particular case of (II.6).
Remark 2: The choice of small valueθ(0) permits to

obtain a small gain at the starting of the observer. This
allows to reduce the peak phenomena (see simulations
below).
Proof of theorem 1
Set ei(t) = x̂i(t)− xi(t) and e(t) = [e1T

(t), · · · ,epT
(t)]T , we

get:

ėi = (Ai(s,y)+Λ−1
i KiCi)ei +δϕ i 1≤ i ≤ p

whereδϕ i = ϕ̂ i −ϕ i.
Now consider the following change of coordinates:

ēi = Λie
i (II.8)

A simple calculation gives:

˙̄ei = θ δi [Ãi +KiCi]ē
i +Λiδϕ i + Λ̃i(t)ē

i 1≤ i ≤ p (II.9)

where

Λ̃i(t) = diag






−

δiθ̇
θ

,
−2δiθ̇

θ
+

ȧi1

ai1
, . . . ,

−niδiθ̇
θ

+

˙̂
Πni−1

l=1 ail

Πni−1
l=1 ail







(II.10)
Now, setV = V1 + · · ·+Vp, whereVi = ēiT Piēi and Pi is a
S.P.D. matrix such that:

(Ãi +KiCi)
T Pi +Pi(Ãi +KiCi) = −Ii (II.11)

whereIi is theni ×ni identity matrix.
To prove theorem 1, it suffices to show thatV (t) expo-
nentially asymptotically decreases to zero. Indeed, from
hypothesesH1),H2), ‖Λi(t)‖, ‖Λ−1

i (t)‖ become bounded.
Hence, there exist two constantsλ1 > 0, λ2 > 0 which may

depend onθ0 such thatλ1‖e‖2 ≤V =
p

∑
i=1

Vi ≤ λ2‖e‖2. Thus

V (t) → 0 is equivalent to‖e(t)‖
exp
−−→ 0.

Now, let us prove thatV (t) exponentially converges to zero.
Combining (II.9), (II.11) we deduce:

V̇i = −θ δi‖ēi‖2 +2ēiT PiΛiδϕ i +2ēiT Λ̃(t)Piēi

≤ −η−1
i θ δiVi +2‖Pi‖‖ēi‖‖Λiδϕ i‖

+2‖Λ̃i(t)‖‖Pi‖‖ēi‖2

(II.12)
Whereηi is the largest eigenvalue ofPi.
In what follows, we will give some upper bounds of
‖Λiδϕ i‖ and‖Λ̃i(t)‖.
Using the triangular structure (II.5) together with the ex-
pression ofϕ̂ i, we get:



• for j = 1

(Λiδϕ i)1 = θ−δi(ϕ̂ i
1−ϕ i

1) = 0 (II.13)

• for 2≤ j ≤ ni −1;

|(Λiδϕ i) j| = θ− jδi |Π j−1
l=1ail ||ϕ̂ i

j −ϕ i
j|

≤ cθ− jδia j−1
i

√

(ei
2)

2 + · · ·+(ei
j)

2

(II.14)
• for j = ni;

|(Λiδϕ i)ni | = θ−niδi |Πni−1
l=1 ail ||ϕ̂ i

ni
−ϕ i

ni
|

≤ cθ−niδiani−1
i ‖e‖

(II.15)
wherec is the Lipschitz constant of theϕ i’s given in
H1) andai is the upper bound of the|ai j(s,y)|’s, when
(s,y) describesS×Y .

Now, choseθ̄0 > 1 andθ0 ≥ θ̄0, and taking into account the
fact thatθ̇ =−k(θ −θ0) with θ(0) > 0, it follows that there
existst1(θ0) > 0 such that∀t ≥ t1(θ0), we haveθ(t) ≥ 1.
Hence, from (II.13), (II.14) and (II.15), the following in-
equalities hold for everyt ≥ t1(θ0):
• for 1≤ j ≤ ni −1

|(Λiδϕ i) j| ≤ c‖ēi‖ (II.16)

• for j = ni

|(Λiδϕ i)ni | ≤ c
p

∑
l=1

θ nlδl−niδi‖ēl‖ (II.17)

Now set,
αi = max

1≤l≤p
{0,nlδl −niδi} (II.18)

and combining (II.16), (II.17) and (II.18) , then we have:

∀t ≥ t1(θ0), ‖Λiδϕ i‖ ≤ βiθ αi‖ē‖ (II.19)

whereβi is a positive constant which doesn’t depend onθ0.
The following holds forΛ̃i:
There existst2(θ0) > 0; there exists a constantβ̃i > 0 which
doesn’t depend onθ0 such that for everyt ≥ t2(θ0), we have:

‖Λ̃i(t)‖ ≤ β̃i (II.20)

Indeed, sinceθ̇(t) → 0 as t → ∞ (θ̇ = −k(θ − θ0)) and
Λ̃i only depends continuously on the bounded signals
y(t), ẏ(t),s(t), ṡ(t), we can deduce (II.20).
Now combining (II.12), (II.19) and (II.20) and takingt ≥
max(t1(θ0), t2(θ0)), and setη̃i to be the smallest eigenvalue
of Pi, we obtain:

V̇i ≤ −η−1
i θ δiVi +2βiθ αi‖Pi‖‖ēi‖‖ē‖+2β̃iΛ̃i‖Pi‖‖ēi‖2

≤ −(η−1
i θ δi −2β̃i‖Pi‖η̃−1

i )Vi +2βiθ αi‖Pi‖‖ēi‖‖ē‖
(II.21)

Using the inequality: 2θ αi |‖ēi‖‖ē‖ ≤ θ 2αi |‖ēi‖2 +‖ē‖2 and
set η̃ = min

{

η̃1, · · · , η̃p
}

, we get:

V̇i ≤ −(η−1
i θ δi −2β̃i‖Pi‖η̃−1

i )Vi

+βi‖Pi‖(θ 2αi |‖ēi‖2 +‖ē‖2)

≤ −(η−1
i θ δi −2β̃i‖Pi‖η̃−1

i −βiθ 2αi‖Pi‖η̃−1
i )Vi

+η̃−1βi‖Pi‖V
(II.22)

Hence:

V̇ ≤
p

∑
i=1

{−(η−1
i θ δi −2β̃i‖Pi‖η̃−1

i −βiθ 2αi‖Pi‖η̃−1
i )Vi

+η̃−1βi‖Pi‖V}
≤ −(α(θ)−ν)V

(II.23)
where α(θ) = min{η−1

i θ δi −βiθ 2αi‖Pi‖η̃−1
i ; 1 ≤ i ≤ p}

and

ν = max{2β̃i‖Pi‖η̃−1
i ; 1 ≤ i ≤ p} + η̃−1

p

∑
i=1

βi‖Pi‖ is a

positive constant which doesn’t depend onθ . From inequal-
ity (II.7) and expression (II.18), we deduce thatα(θ0)→ ∞
as θ0 → ∞. Now chooseθ̄0, such thatµ(θ̄0)− ν > 0 and
considerθ0 > θ̄0. Since θ(t) → θ0 as t → ∞, it follows
that there existst3(θ0) such that∀t ≥ t3(θ0), we have
α(θ(t)) − ν ≥ ρ for some constantρ > 0. Finally, set
t(θ0) = max(t1(θ0), t2(θ0), t3(θ0)), it follows that:
∀t ≥ t(θ0), V̇ (t) ≤−(α(θ(t))−ν)V ≤−ρV (t).
This ends the proof of the theorem.

III. A PPLICATION

The aim of this section consists in applying the above
observer synthesis to a heat exchange process described by
figure 1.

A. Modelling of the heat exchange system

The process is mainly built around a counter-flow tubular
heat exchanger. The warm water flows in a closed circuit,
the temperature in the hot water tank is fixed by an
independently controlled electric heater. The cold water
flows in an open circuit. The flows of both warm and
cold water are controlled by two electro-pneumatic valves.
T1, T3 are respectively the inlet temperatures of the warm
and the cold water andT2, T4 are the corresponding outlet
temperatures. The dynamics of actuators (electro-pneumatic
valves) cannot be neglected. Indeed their time constants
are equivalent to the residence time constants of the heat
exchanger (0.5s - 1s). The corresponding state variables
are the displacements and the velocities of the electro-
pneumatic valves. The temperatures are assumed to be
homogeneous in the tubular heat exchanger. Under the
hypothesis that the circuit of the thermal exchange is a

T1 T4 T3 T2

Cold water

Cold water

Electricoutput

input

valve

heater

Hot water
tank

Pump

Flow
sensor

Electro-pneumatic

Fig. 1. heat exchanger plant



closed system which contains a constant mass of water, the
inertia of the fluid is negligible and the flow is turbulent, a
model of the process takes the form:

{

ẋ = f (x)+u1g1(x)+u2g2(x)
y = (y1,y2) = (x1,x4)

(III.1)

where: f (x) =

















(e1−a1x1)x2−b1(x1− x4)
x3

−ω2
0x2−2ξ ω0x3

(e2−a2x4)x5 +b2(x1− x4)
x6

−ω2
0x5−2ξ ω0x6

















g1(x) =

















0
0

k0ω2
0

0
0
0

















andg2(x) =

















0
0
0
0
0

k0ω2
0

















.

a1, a2, b1, b2, e1, e2, are physical constants which derive
from the energy balance transfer.k0 is the static gain of the
valve, ω0 is the undamped natural frequency and finally,ξ
is the damping factor.
x = [x1, · · · ,x6]

T , u = (u1,u2) is the control vector;(x1,x4) =
(T2,T4) is the output measurements;x2, x5 are respectively
the displacement of the warm water valve and the cold water
valve and finally,x3, x6 are respectively the velocity of the
warm water valve and the cold water valve.
Noticing that the above system takes the form (II.4), with
p = 2, x1 = [x1,x2,x3]

T , x2 = [x4,x5,x6]
T , a11 = (e1−a1y1),

a12 = 1, a21 = (e2− a2y2), a22 = 1. Moreover, taking into
account the physical data, the terms:e1 − a1y1(t), e2 −
a2y2(t) never vanish on the corresponding physical domain.
Clearly, the hypothesesH1), H2), H3) are satisfied. Hence
the observer (II.6) can be applied.
To show the relationship between the gain of the observer
and the peak phenomena, we compare two simulations: the
state estimation obtained from an observer with constant
gain (θ(t) = θ0) and that derived from a similar observer
with variable gainθ(t) (with a small initial conditionθ(0)),
see figure 2 below.
All simulations use the following physical data:
a1 = 222.55, a2 = 137.95 , b1 = 0.163, b2 = 0.108,
e1 = 76.353 103, e2 = 41.103 103, k0 = 0.93, ω0 = 6.28,
ξ = 0.7, u1 = 5mA, u2 = 5mA and initial conditions:
x(0) = [338, 0, 0, 301, 0, 0]T ,
x̂(0) = [343, 4. 10−3, 4. 10−3, 296, 4. 10−3, 4. 10−3]T ,
θ(0) = 1, θ0 = 60, δ1 = δ2 = 1, k = 1.5,
K1 = K2 = [1.O5, 0.37, 0.04]T

The output measurements are disturbed by adding a Gaus-
sian noise with zero mean and amplitude equivalent to 5%.

IV. CONCLUSION

In this paper, we have extended the high gain observer
synthesis stated in [5] to a multi-output class of uniform
observable systems. The proposed gainθ(t) derives from
a first order dynamic linear equation. This method permits

to initialize the gain of the observer at a small value which
allows to reduce the peak phenomena. Noticing that the
use of the first order dynamic equation is not necessary and
one can choose an other adequate stable reference model
θ̇(t) = Θ(θ(t),u(t),y(t)) to calculate the gainθ(t).
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Fig. 2. — Observer with constant gain, – - Observer with variable gain,× × System
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