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High gain observer : Attenuation of the peak phenomena

E.H. El Yaagoubi*, A. El Assoudi* and H. Hammouri"

* LCPI, Departement GE, ENSEM, Univ. Hassan Il Ain Chock
B.P 8118, Oasis, Casablanca MORROCCO
e.elyaagoubi@ensem-uh2c.ac.ma
a.elassoudi@ensem-uh2c.ac.ma
T LAGEP, UMR CNRS 5007 Univ. Lyon | - ESCPE-LYON, Bat. 308G,
43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex, FRANCE

e-mail hammouri@lagep.cpe.fr

Abstract—In many problems of estimation, the high gain the control problems.
technic is used to compensate for nonlinear terms in order This paper is organized as follows:

to guarantee the convergence of the estimator. However, the In section 2, we extend the high gain observer stated in

use of the high gain generally generates the so-called peak . - .
phenomena (at the beginning, the estimated trajectory deviates [5] to a multi-output case. This observer takes into account

from the desired one). In this paper we extend the observer the peak phenomena. In section 3, an application to a heat
stated in [5] to a class of MIMO nonlinear systems. The exchanger is illustrated in simulation.

proposed observer takes into account the peak phenomena.

An application to a heat exchanger is illustrated in simulation. [l. HIGH GAIN OBSERVER: PEAK PHENOMENA

First, let us recall the high gain observer stated in [5].

. INTRODUCTION Consider the class of single output systems of the form:

Consider the nonlinear system:

X = AX+y(xu) L1
x = f(xu) y = Cx (1)
y = h(¥ (.2)
0 1 0
where the statg(t) € R", the inputu(t) € R™ and the output . .
y(t) € RP. A=| - ' , C=[1 0 ... 0],
An observer is generally a dynamical system of the form: : 1
{ X = f(®u)—kt)(hR) —y(t)) 0 - 0
g = G()A(agvyvu) (|-2) (lji(x u) = Wi(xl ¢ u)
k(t) = K(g(t))

Under the assumption that the nonlinear tegnare global
Lipschitz functions w.r.tx, the authors in [5], show that the
following system:

where k(t) is the gain of the observex(t) € R", g(t)
belongs to som&N, such that:

g(t) is bounded,tlr;jH)“((t) —X(t)|| =0 and if X{0) = x(0) . i L
thenx(t) = x(t), ¥t > 0. X= A+ (X,u) —$5°C (CR—y) (1.2)

In many observation problems the second equation of (I.2yrms an exponential observer, whele- 0 is a constant
is an algebraic on¢g = 0), see for instance [1], [2], [3], which must be chosen sufficiently large ai®d is the
[4], [5], [6],[10], [11], [12]. solution of:

To design an observer, many approaches can be considered: 05 +ATSy+SA=CTC

One of them consists in applying the E.K.F. (Extended

Kalman Filter). The gain of this observer derives from aViore precisely, it is shown thate'(t)Spe(t) <
Ricatti differential equation. e (0T (0)e(0), where e(t) = R(t) — x(t) is the
The second approach is a structural one. It consists for equation and\ is a positive constant which only
characterizing a special class of nonlinear systems fochvhi depends on the Lipschitz constantypf This last inequality
an observer can be designed: linear systems up to outpitplies that:

injection [10], [11], [12], state affine systems up to output 2 Ny o (B-A)t 2
injection [7], [8], [9]. let)[|* < 6"ae le(0)]
For many systems, the use of a high gain is necessary ftr some positive constart.

guarantee the convergence of the observer [2], [3], [4], [SHence ||e(t)|| may become close t6"|e(0)||, for t close

[6]. However, the use of such gain generates the so-calléd 0. This implies that at the beginning, the estimate state
peak phenomendX(t) —x(t)|| becomes large at the startingmay deviate from the unknown state of the system (the peak
of the observer. This phenomena is generally undesirable jphenomena).
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In this section, we will give an extension of the highNoticing that one solution of (11.7) consists in takirjgtn—li.

gain observer (I1.2) which takes into account this pealow, we can state our main result;

phenomena. The considered class of systems is given by: Theorem 1: Let & > 0,---,8, > 0 be any parameters
satisfying (I1.7). Then there exis® > 0 such thatv6y >

o= Asy)<E+ol(xu) Bo; 3t (6o) > 0;Vt > t(6p); Vx(0); ¥X(0);¥6(0) > 0, we have:
: 1.4 R(t) — (1) < AeH||R(0) — X(0

P = A(sy)P+P(xU) (11.4) 1%(t) =) < 1%(0) —x(0)

y = [Clxl,...,CpxP]T whereA >0, u > 0 are constants.

Remark 1: if 6(0) = 6y, thenvt > 0, B(t) = 6y, and
u is a known input which takes its values in a com-ence observer (Il.2) becomes a particular case of (I1.6).

pact subset of R™, s(t) is a known signal and' = Remark 2: The choice of small valué(0) permits to

[X, ., X ]T eRM: x= [ XX }T €RN. obtain a small gain at the starting of the observer. This
0 au(sy) 0 allows to reduce the peak phenomena (see simulations

’ below).
Asy) = : Proof of theorem 1 . )
’ : an_1(5Y) ’ Seté(t) =% (t) — X (t) ande(t) = [e* (t),---,€P (1)]T, we

0 " 0 , get:

G=[10 .. 0]and¢'=[ ¢} ... ¢ ], d=(A(sY)+N'KG)a+8¢'  1<i<p

The gj’s and the¢'’s are of clas<C! w.r.t. their arguments

o LOOS whered¢' =¢' — ¢'.
and are satisfying the following triangular structure: o' =00

Now consider the following change of coordinates:

¢1 = $i(vu), . & =NA¢é (11.8)
¢JI = ¢}(T[}(XI)7yau)a ZSJ Sni_l (“5) . . .
¢, = ¢ (xu) A simple calculation gives:

& =0%A+KCJE+NP +A(1)E  1<i<p (I.9)

1 (X) = (%,...,%). where
In the sequel, we will assume the following hypotheses:

wheret is the projection fromR" into RI~* defined by:

H1) The ¢!'s are global Lipschitz w.r.trt (X'): Ai(t) = diag 56 -256 L 8 —ngf  Mla
3¢ > 0,V VX, |95 (1 (X), y,u) — ¢; (71 (X), Y, u)| < ¢f|x—X] | 67 6 a7 0 nily

H2) y(t), s(t) and their derivativeg(t), §(t) are bounded. (1.10)
H3) The &j’s never vanish on the compact sub¥ek S  Nqy, setv = Vi +---+Vp, WhereV; = g&'R& andPR is a
whereY andS are the bounded sets containing the signalg p p matrix such that:

y(t) ands(t). . .

Our candidate observer takes the following form: (A +KiC) R +PR(A +KC) = —Ii (1.11)

L= A(s YR+ LR U+ ALK (CRE—yp) wherel; is then; > nj identity matrix.

To prove theorem 1, it suffices to show théft) expo-
_A3 . R L ) nentially asymptotically decreases to zero. Indeed, from
X = Ap(sY)RP+ PP (R,U) +ApKp(CpRP —yp) hypothesedd1),H2), [Ai(t)]], A (t)|| become bounded.

6 —k(6 — 6o) iL6) Hence, there exist two constants > 0, A, > 0 which may

p
2
wherek is a positive constant. Thi's are such that the depend orfo such thaiks €[> <V :‘zivi < A2|/€]|. Thus
i=

real parts of eigenvalues ¢4 +K;C;) are negative, where . .
parts of eigenvalues & +KG) gaiive, WheTe ;1) — 0 is equivalent ta|e(t)| = 0.

Now, let us prove tha¥ (t) exponentially converges to zero.

el

A=l is then x i matrix Combining (11.9), (1.11) we deduce:
5 1 Vi = —63||8)|2+28 RASY +28 A()RE
o o O : . < —ntedvi+2R|€lIA5e|
and A; is the n x n d|agonal matrix: +2‘|ﬂi(t)||||ﬁ||||ér||2
diag(efa, 6~ ai1(s)y),. .., 9*”‘5ﬂ?';11aj(s,y))- (I1.12)

Noticing that fromH3), A;%(t) is well defined for every Wheren; is the largest eigenvalue 6f.
t > 0. Finally, & > 0,---,3, > 0 are constants satisfying In what follows, we will give some upper bounds of

the following linear program: IAi&¢'|| and | Ai(t)]].
Using the triangular structure (11.5) together with the ex-
—ni& +n;d; < %; 1<i, j<p (1.7)  pression ofpi, we get:
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o for j=1 Hence:

ShiN, — =G (Hl _ Hi) _ .
(Ri0¢)1=0"7(91~ 1) =0 13 v < Z{ (n26% — 26 IR~ BO IR |17 M

Pleresl=nch 1B RIV)
(NS¢ = l“II'I am||<15' \ < —(a(®)—v)V

< chidg) \/ (e)2 (1.23)

a (|| 14) where a(6) = min{n;16% — BOX||R||A4 Y 1<i<p}

e for j =ny; and - P
|(Ai5¢i)n-| 0~ n.cﬁ‘n ail”‘ﬁn ¢}1| v = maX{ZBiHPIHFIiil; 1<i< p}+f’71. BilR| is a

co- n.dalnl ||e|| positive constant which doesn't depend@lﬁzrom inequal-
(1.15) ity (1.7) and expression (I1.18), we deduce tteatfy) —

wherec is the Lipschitz constant of thé¢'’s given in  as 6y — . Now choosef, such thatu(6p) —v >0 and
H1) andg; is the upper bound of thij(s,y)|'s, when considerfp > 6. Since 8(t) — 6y ast — o, it follows
(s,y) describesSx Y. that there existd3(6p) such thatvt > t3(8y), we have

Now, choseflp > 1 and6y > 6o, and taking into account the a(8(t)) —v > p for some constanp > 0. Finally, set

fact thatd = —k(6 — 6p) with 8(0) > 0, it follows that there t(6o) = max(t1(6o),t2(6b),t3(6b)), it follows that:

existsty(6p) > 0 such thatt > t;(6g), we haved(t) >1.  Vt>t(6), V(1) <—(a(6(t))—Vv)V < —pV(t).

Hence, from (11.13), (I1.14) and (11.15), the following in- This ends the proof of the theorem.

equalities hold for every >t (6p):

e forl<j<n-—-1

IN

[1l. A PPLICATION
The aim of this section consists in applying the above

Sdh; j
|(NiSeh)j| < | €]l (11.16) observer synthesis to a heat exchange process described by
o for j =n; figure 1.
|(NidP)n| < CZ gna—nid ||g|| (11.17) A. Modelling of the heat exchange system
The process is mainly built around a counter-flow tubular
Now set, heat exchanger. The warm water flows in a closed circuit,
a; = 1T|a<>é{0’ na —nid} (1.18) the temperature in the hot water tank is fixed by an

o independently controlled electric heater. The cold water
and combining (11.16), (11.17) and (11.18) , then we have: fiows in an open circuit. The flows of both warm and
Wt >t1(60), [NiS@'[| < BO%]€l] (1.19) cold water are controlled by two electro-pneumatic valves.

) , Ti1, T3 are respectively the inlet temperatures of the warm
wheref; is a positive constant which doesn’t depend6an 54 the cold water anth, T4 are the corresponding outlet
The following holds forA;: temperatures. The dynamics of actuators (electro-pnéumat
There,eX|st$2(60) > 0; there exists a constafit > 0 which valves) cannot be neglected. Indeed their time constants
doesn’t depend ofip such that for every>ta(6p), we have:  gre equivalent to the residence time constants of the heat

||/~\i(t)H ngi (1.20) exchanger (0.5s - 1s). The corresponding state variables
are the displacements and the velocities of the electro-
Eneumatic valves. The temperatures are assumed to be
omogeneous in the tubular heat exchanger. Under the
hypothesis that the circuit of the thermal exchange is a

Indeed, sinced(t) — 0 ast — w (6 = —k(6 — 6)) and

Ai only depends continuously on the bounded signa

y(t),y(t),s(t),s(t), we can deduce (11.20).

Now combining (11.12), (11.19) and (11.20) and taking>
max(t1(6o),t2(60)), and set]; to be the smallest eigenvalue

of P, we obtain: @
Vi < -ntedv;+2B,0% R ||IE] €]+ 26A R 1I€]2
< —(n7'e% —2B|R|IAY) |+ZB|9“'HPIIII§HIIQ\ Fiow
Using the inequality: 8% ||| ||€]] < 629 ||| €]2+ ||§[|2 and
setf =min{f,---,fip}, we get: CI} B e
O?J d \Lljv‘ater E\eclric
Vi < —(n 0% —2BIRIA Y ” =
+RIR O[]+ 8] o -
< - 0% — 2B, |[R 17— B6% R4
+A 1B RV
’7 BI” ” (1.22) Fig. 1. heat exchanger plant
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closed system which contains a constant mass of water, tteinitialize the gain of the observer at a small value which
inertia of the fluid is negligible and the flow is turbulent, aallows to reduce the peak phenomena. Noticing that the

model of the process takes the form:

use of the first order dynamic equation is not necessary and
one can choose an other adequate stable reference model

{ x = f(X)+u1g1(x) +Uxg(X) (I11.1)
y = (y17y2) = (Xl7x4)
(€1 — arx1)Xe — by (x1 — Xa)
2 e (1]
. B —WpXe — 2¢ aoX3
where: f(x) = (€2 — ApX4)Xs + b2 (X1 — X4) 2
Xe
—ng5 - ZE WoXe (3]
0 0
0 0 [4]
2 0
O Bl E O ;
0 0
0 o [6]

ay, ap, by, by, €1, &, are physical constants which derive [7]
from the energy balance transfig.is the static gain of the
valve, ay is the undamped natural frequency and finadly,
is the damping factor.
X=[x1,--,Xg] , U= (U, Up) is the control vector{x;,xs) =
(T2, T4) is the output measurements;, xs are respectively
the displacement of the warm water valve and the cold water
valve and finallyxs, s are respectively the velocity of the [11]
warm water valve and the cold water valve. 1
Noticing that the above system takes the form (11.4), with
p=2,x =[x, %, %3] T, X2 = [Xa,X5,Xe] ", Q11 = (€1 —auy1),
a;p =1, ap1 = (&2 — azy2), a2 = 1. Moreover, taking into
account the physical data, the ternes:— ajyi(t), e —
apy»(t) never vanish on the corresponding physical domain.
Clearly, the hypothesddl), H2), H3) are satisfied. Hence
the observer (I1.6) can be applied.
To show the relationship between the gain of the observer
and the peak phenomena, we compare two simulations: the
state estimation obtained from an observer with constant
gain (6(t) = 6p) and that derived from a similar observer
with variable gainf(t) (with a small initial conditiong(0)),
see figure 2 below.
All simulations use the following physical data:

= 22255, a, =137.95 ,b; =0.163, b, = 0.108,
e; = 76.353 1F, & = 41103 16, ko = 0.93, ap = 6.28,
& =0.7, u; = 5mA, u, = 5mA and initial conditions:
x(0)=[338 0, 0, 301 0, O],
%(0) = [343 4. 1073, 4. 1073, 296, 4. 1073, 4. 10°9|T,
6(0)=1, 6=60, 0 =9=1,k=15,
Ky =Ky =[1.05, 0.37, 0.04"
The output measurements are disturbed by adding a Gaus-
sian noise with zero mean and amplitude equivalent to 5%.

(8]

(9]

IV. CONCLUSION

In this paper, we have extended the high gain observer
synthesis stated in [5] to a multi-output class of uniform
observable systems. The proposed g@ih) derives from
a first order dynamic linear equation. This method permits

B(t) = O(8(t),u(t),y(t)) to calculate the gaib(t).
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Fig. 2. — Observer with constant gain, — - Observer with \@eagain, x x System
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